Non-Gaussian Inflationary Signatures of Heavy Sectors and the Scale of UV Physics

Spyros Sypsas

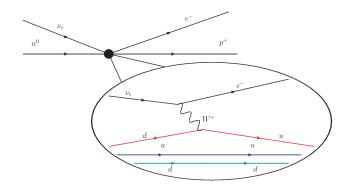
APCTP

New Perspectives in Cosmology

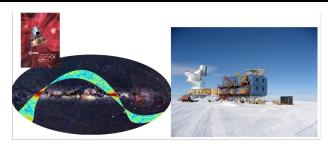
© HKUST-IAS, Hong Kong

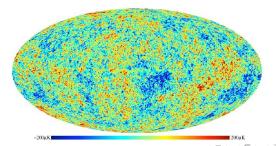
based on JCAP 1304 (2013) 004 [arXiv:1210.3020] + ongoing work

with Rhiannon Gwyn, Gonzalo Palma and Mairi Sakellariadou



Effective Field Theory For Inflation EFT of Weakly Coupled Models Interpretation of Cosmological Observables Concluding Remarks





Outline

- 1 Effective Field Theory For Inflation
- 2 EFT of Weakly Coupled Models
 - Effective description of heavy physics
 - New physics regime
- 3 Interpretation of Cosmological Observables
 - Energy Scales of the EFT
- 4 Concluding Remarks

Effective Field Theory For Inflation EFT of Weakly Coupled Models Interpretation of Cosmological Observables Concluding Remarks

 General statement: Inflation = QFT on a time dependent gravitational background

- General statement: Inflation = QFT on a time dependent gravitational background
- We want to study perturbations of a scalar field following a time-dependent solution

$$\phi(x,t) = \phi_0(t) + \delta\phi(x,t)$$

Creminelli et al. '06, Cheung et al., Weinberg '08,

Senatore/Zaldarriaga '09

Effective Field Theory For Inflation EFT of Weakly Coupled Models Interpretation of Cosmological Observables Concluding Remarks

How to construct the EFT for the fluctuations $\delta \phi$?

Use every possible operator that respects the symmetries of the theory!

How to construct the EFT for the fluctuations $\delta \phi$?

Use every possible operator that respects the symmetries of the theory!

 Time translation invariance is spontaneously broken by the background! The fluctuation is a Goldstone boson!

$$\mathcal{L}^{(2)}\supset -M_{\mathrm{Pl}}^2\dot{H}igg[\dot{\pi}^2-rac{(\partial\pi)^2}{a^2}igg]+2M_2^2\dot{\pi}^2$$

$$\mathcal{L}^{(3)} \supset +2 \frac{M_2^4}{2} \left[\dot{\pi}^3 - \dot{\pi} \frac{(\partial \pi)^2}{a^2} \right] - \frac{4}{3} \frac{M_3^4}{3} \dot{\pi}^3 + \cdots$$

Heavy "imprints" in the EFT ?

Main idea:

self-interactions in the IR appear due to mediation of massive particle states in the UV

Baumann/Green '11

Gwyn/Palma/Sakellariadou/SS '12

In other words

$$M_n o M_n rac{\mathcal{M}^2}{\mathcal{M}^2 - \square}$$

EFT from integration of massive fields

$$\mathcal{L}_{\mathcal{F}} = \dot{\mathcal{F}}^2 - (\nabla \mathcal{F})^2 - \mathcal{M}^2 \mathcal{F}^2 - \alpha \mathcal{F} \delta g^{00}(\pi) - \beta \mathcal{F}^2 \delta g^{00}(\pi) - \gamma \mathcal{F}^3 \delta g^{00}(\pi)$$
$$- \gamma \mathcal{F}^3 \delta g^{00}(\pi)$$

By restricting ourselves to low energies we can integrate out \mathcal{F} .

EOM:
$$\mathcal{F} = \frac{\alpha}{\mathcal{M}^2 - \nabla^2} \left[\delta g^{00} \frac{\beta}{\mathcal{M}^2 - \nabla^2} \right] \delta g^{00}$$

EFT from integration of massive fields

In general the resulting effective Lagrangian reads:

$$\mathcal{L} = -M_{ ext{Pl}}^2 a^3 \dot{H} igg[\dot{\pi} igg(1 + rac{2M_2^4}{M_{ ext{Pl}}^2 |\dot{H}|} rac{\mathcal{M}^2}{\mathcal{M}^2 - ilde{
abla}^2} igg) \dot{\pi} - (ilde{
abla} \pi)^2 igg] + \mathcal{O}(\pi^3)$$

Recall Lorentz so the system may find itself in a non-relativistic regime.

Low energy condition:

$$\omega^2 < \mathcal{M}^2 + p^2 \implies \omega < \mathcal{M}/c_{\mathrm{s}} \equiv \Lambda_{\mathrm{UV}}$$

where $\frac{1}{c_{\rm s}^2}=1+\frac{2M_2^4}{M_{\scriptscriptstyle {
m D}}^4||H|}$ the speed of sound.

Non-locality and ghosts

Higher derivative theories: Ostrogradsky instability.

EFT is not such a case.

Eliezer/Woodard '89, Sousa/Woodard '03

Pole structure:

Biswas/Mazumdar/Siegel '06, Barnaby/Kamran '08

$$D(
ho^2) \propto rac{1}{\Gamma(
ho^2)}, \qquad \Gamma(
ho^2) =
ho^2 - \omega^2 - rac{2\mathcal{M}^2\omega^2/c_{
m s}^2}{\mathcal{M}^2 +
ho^2 - \omega^2}$$

Poles:
$$\omega_{+}^{2}(p) \sim \Lambda_{\mathrm{UV}}^{2} + \mathcal{O}(p^{2})$$
, $\omega_{-}^{2}(p) = c_{\mathrm{s}}^{2}p^{2} + \frac{(1-c_{\mathrm{s}}^{2})^{2}}{\mathcal{M}^{2}c_{\mathrm{s}}^{-2}}p^{4} + \mathcal{O}(p^{6})$

 ω_+^2 has a negative residue! no ghosts $\Longrightarrow \omega \ll \Lambda_{\rm UV}$

Dispersion relation

There is an important scale hidden in the dispersion relation!

$$\omega^{2}(p) = c_{\rm s}^{2} p^{2} + \frac{(1-c_{\rm s}^{2})}{\mathcal{M}^{2} c_{\rm s}^{-2}} p^{4}$$

$$p \ll \mathcal{M}$$

$$\downarrow \qquad \qquad \qquad \downarrow$$

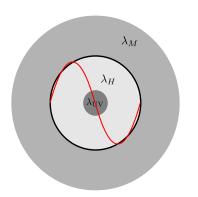
$$\omega \simeq c_{\rm s} p$$

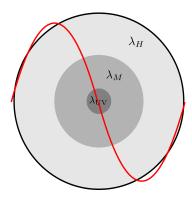
$$\mathcal{M} c_{\rm s} \equiv \Lambda_{\rm new} \ll \Lambda_{\rm UV}$$

$$\omega \simeq \frac{p^{2}}{\Lambda_{\rm UV}} + \frac{1}{2} \Lambda_{\rm new}$$

Light mode propagates in a medium $\rightarrow c_s \ll 1$.

Phonon excitations vs particle excitations





Left panel: mode freezes within the dispersive medium. Right panel: mode freezes outside the effective medium. λ_M sets the characteristic scale of the medium.

Inflationary Observables

For horizon crossing in the new phys. regime $H > \Lambda_{\text{new}}$,

$$p^2 \to \Lambda_{\rm UV} H, \qquad \partial_t \to H$$

$$\pi_k(\tau) = \frac{H}{\sqrt{2M_{\rm Pl}^2\epsilon}} \sqrt{\frac{\pi}{8}} \frac{k}{\Lambda_{\rm UV}} (-\tau)^{5/2} H_{5/4}^{(1)}(x), \ \ x \equiv \frac{H}{2\Lambda_{\rm UV}} k^2 \tau^2$$

Speed of sound replaced by the ratio $\sqrt{H/\Lambda_{\rm UV}} \equiv v_{\rm ph}|_{\omega=H}$

$$\mathcal{P}_{\zeta} \propto \frac{H^2}{M_{\mathrm{Pl}}^2 \epsilon} \sqrt{\frac{\Lambda_{\mathrm{UV}}}{H}}, \qquad r \propto \epsilon \sqrt{\frac{H}{\Lambda_{\mathrm{UV}}}}, \qquad f_{\mathrm{NL}} \sim \frac{\Lambda_{\mathrm{UV}}}{H}$$

as compared to $\mathcal{P}_{\zeta} \propto \frac{H^2}{M_{\rm Pl}^2 \epsilon c_{\rm s}}, \qquad r \propto \epsilon c_{\rm s}, \qquad f_{\rm NL} \sim \frac{1}{c_{\rm s}^2}$ No extra parameter: 3 measurements \rightarrow 3 parameters

Weakly coupled inflation

Scattering of four scalars \rightarrow loss of unitarity \rightarrow strong coupling scale

$$\mathcal{L}_{\mathrm{int}} = \tfrac{(1-c_{\mathrm{s}}^2)}{16M_{\mathrm{Pl}}^2\varepsilon H^2} (\nabla \pi_n)^2 \tfrac{\mathcal{M}^2 c_{\mathrm{s}}^{-2}}{\mathcal{M}^2 - \nabla^2} (\nabla \pi_n)^2$$

$$\mathcal{A}(p_1, p_2 \to p_3, p_4) = 16\pi \left(\frac{\partial \omega}{\partial p} \frac{\omega^2}{p^2}\right) \sum_{\ell} (2\ell + 1) P_{\ell}(\cos \theta) a_{\ell}$$

optical theorem: $a_\ell + a_\ell^* \leq 1$

$$\Lambda_{\rm s.c.} \sim \Lambda_{\rm s.b.} \sim \Lambda_{
m UV}$$

Low derivative EFT: $\Lambda_{\rm s.c.} \sim c_{\rm s}^{5/4} (M_{\rm Pl}^2 |\dot{H}|)^{1/4}, \; \Lambda_{\rm s.b.} \sim c_{\rm s} M_{\rm Pl}^2 |\dot{H}|$

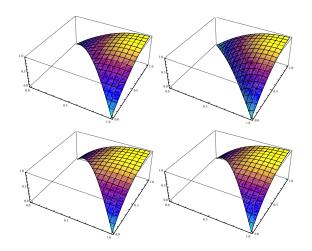
3-pt correlators

The main interactions leading to new effects are due to M_2^4 and M_3^4 and are given by

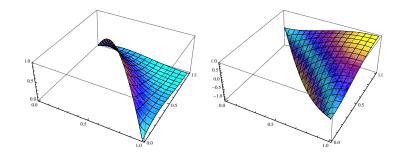
$$\mathcal{L}_{I}^{(3)} = M_{\text{Pl}}^{2} a^{3} |\dot{H}| \dot{\pi}^{2} \Sigma(\nabla^{2}) \dot{\pi}
\mathcal{L}_{II_{1}}^{(3)} = -M_{\text{Pl}}^{2} a^{3} |\dot{H}| (\tilde{\nabla} \pi)^{2} \Sigma(\nabla^{2}) \dot{\pi}
\mathcal{L}_{II_{2}}^{(3)} = -M_{\text{Pl}}^{2} a^{3} |\dot{H}| \frac{2M_{3}^{4} c_{s}^{2}}{3M_{2}^{4}} \dot{\pi} \Sigma(\nabla^{2}) (\dot{\pi} \Sigma(\nabla^{2}) \dot{\pi})
\mathcal{L}_{III}^{(3)} = M_{\text{Pl}}^{2} a^{3} |\dot{H}| \frac{2M_{2}^{2} \tilde{M}_{3} c_{s}^{4}}{3M_{3}^{3}} (\Sigma(\nabla^{2}) \dot{\pi})^{3}$$

where
$$\Sigma(ilde{
abla}^2)
ightarrow - rac{\Lambda_{
m UV}^2}{ ilde{
abla}^2}$$

leading to



as well as folded and orthogonal shapes, arising from linear combinations of the four basic shapes



The non linearity parameters read

$$\begin{split} f_{\mathrm{NL}}^{\mathrm{equil}}(v_{\mathrm{ph}},\tilde{c}_{3},\tilde{d}_{3}) &= 0.0157 + 1.8961 v_{\mathrm{ph}}^{-2} + 0.0128\tilde{c}_{3}v_{\mathrm{ph}}^{-2} + 0.0167\tilde{d}_{3}v_{\mathrm{ph}}^{-4}, \\ f_{\mathrm{NL}}^{\mathrm{ortho}}(v_{\mathrm{ph}},\tilde{c}_{3},\tilde{d}_{3}) &= 0.0005 + 0.1719 v_{\mathrm{ph}}^{-2} - 0.0004\tilde{c}_{3}v_{\mathrm{ph}}^{-2} - 0.0003\tilde{d}_{3}v_{\mathrm{ph}}^{-4}, \\ f_{\mathrm{NL}}^{\mathrm{flat}}(v_{\mathrm{ph}},\tilde{c}_{3},\tilde{d}_{3}) &= 0.0028 + 0.3182 v_{\mathrm{ph}}^{-2} + 0.0024\tilde{c}_{3}v_{\mathrm{ph}}^{-2} + 0.0031\tilde{d}_{3}v_{\mathrm{ph}}^{-4}, \end{split}$$

which can be inverted to yield

$$\frac{\Lambda_{\rm UV}}{H} = -0.0009 + 38.4502 f_{\rm NL}^{\rm equil} - 29.577 f_{\rm NL}^{\rm ortho} - 209.997 f_{\rm NL}^{\rm flat},$$

$$\tilde{c}_{3}\frac{\Lambda_{\rm UV}}{H} = 3.5240 + 46461.8 f_{\rm NL}^{\rm equil} - 41701.4 f_{\rm NL}^{\rm ortho} - 254330 f_{\rm NL}^{\rm flat},$$

$$\tilde{d}_3 \frac{\Lambda_{\rm UV}^2}{H^2} = -3.54037 - 39917.2 f_{\rm NL}^{\rm equil} + 35320.9 f_{\rm NL}^{\rm ortho} + 218778 f_{\rm NL}^{\rm flat}.$$

where \tilde{c}_3 , \tilde{d}_3 dimensionless combinations of the couplings M_2 , M_3 , \tilde{M}_3 .

Input from $\mathrm{PLANCK}/\mathrm{BICEP} o \mathsf{Bounds}$ on $\Lambda_{\mathrm{UV}}, \tilde{c}_3, \tilde{d}_3$

Effective Field Theory For Inflation EFT of Weakly Coupled Models Interpretation of Cosmological Observables Concluding Remarks

Conclusions

 Including UV heavy modes corresponds to a derivative expansion of the standard EFT formalism

Conclusions

- Including UV heavy modes corresponds to a derivative expansion of the standard EFT formalism
- Non-trivial change in the dispersion relation at horizon exit leading to novel interpretations for the cosmological observables: constraints on the scale of UV physics

Conclusions

- Including UV heavy modes corresponds to a derivative expansion of the standard EFT formalism
- Non-trivial change in the dispersion relation at horizon exit leading to novel interpretations for the cosmological observables: constraints on the scale of UV physics
- Heavy fields consistent with PLANCK/BICEP, e.g. assuming $\Lambda_{UV} \sim \Lambda_{GUT}$ requires $f_{NL} = \mathcal{O}(1)$

Conclusions

- Including UV heavy modes corresponds to a derivative expansion of the standard EFT formalism
- Non-trivial change in the dispersion relation at horizon exit leading to novel interpretations for the cosmological observables: constraints on the scale of UV physics
- Heavy fields consistent with PLANCK/BICEP, e.g. assuming $\Lambda_{\rm UV} \sim \Lambda_{\rm GUT}$ requires $f_{\rm NL} = \mathcal{O}(1)$
- Shapes are highly degenerate with the ones obtained in absence of heavy fields

Effective Field Theory For Inflation EFT of Weakly Coupled Models Interpretation of Cosmological Observables Concluding Remarks

Thank you!

$$\left(\begin{array}{c} f_{\mathrm{NL}}^{\mathrm{equil}} \\ f_{\mathrm{NL}}^{\mathrm{ortho}} \\ f_{\mathrm{NL}}^{\mathrm{ottho}} \\ f_{\mathrm{NL}}^{\mathrm{flat}} \end{array}\right) = \left(\begin{array}{c} \frac{S_{I} * S_{\mathrm{equil}}}{S_{\mathrm{equil}} * S_{\mathrm{equil}}} & \frac{S_{II} * S_{\mathrm{equil}}}{S_{\mathrm{equil}} * S_{\mathrm{equil}}} \\ \frac{S_{I} * S_{\mathrm{ottho}}}{S_{\mathrm{ortho}} * S_{\mathrm{ortho}}} & \frac{S_{II} * S_{\mathrm{equil}}}{S_{\mathrm{ortho}} * S_{\mathrm{ortho}}} \\ \frac{S_{II} * S_{\mathrm{ortho}} * S_{\mathrm{ortho}}}{S_{\mathrm{ortho}} * S_{\mathrm{ortho}} * S_{\mathrm{ortho}}} \\ \frac{S_{II} * S_{\mathrm{ortho}}}{S_{\mathrm{flat}} * S_{\mathrm{flat}}} & \frac{S_{II} * S_{\mathrm{oquil}}}{S_{\mathrm{flat}} * S_{\mathrm{flat}}} \end{array}\right)$$

$$\frac{s_{H}*s_{\text{equil}}}{s_{\text{equil}}*s_{\text{equil}}} \\ \frac{s_{H}*s_{\text{ortho}}}{s_{\text{ortho}}*s_{\text{ortho}}} \\ \frac{s_{H}*s_{\text{flat}}}{s_{\text{flat}}*s_{\text{flat}}}$$

$$\frac{S_{III}*S_{\rm equil}}{S_{\rm equil}*S_{\rm equil}} \\ \frac{S_{III}*S_{\rm ortho}}{S_{\rm ortho}*S_{\rm ortho}} \\ \frac{S_{III}*S_{\rm flat}}{S_{\rm flat}*S_{\rm flat}}$$

$$\begin{pmatrix} \frac{S_{H'}*S_{\text{equil}}}{S_{\text{equil}}*S_{\text{equil}}} \\ \frac{S_{H'}*S_{\text{ortho}}}{S_{\text{ortho}}*S_{\text{ortho}}} \\ \frac{S_{H'}*S_{\text{flat}}}{S_{\text{flat}}*S_{\text{flat}}} \end{pmatrix} \begin{pmatrix} f_{\text{NL}}^{I} \\ f_{\text{NL}}^{I} \\ f_{\text{NL}}^{II} \\ f_{\text{NL}}^{II} \\ f_{\text{NL}}^{II'} \end{pmatrix}$$

Using the templates

$$\begin{split} S_{\text{equil}}(x_1, x_2, x_3) &= 6 \left(-\frac{1}{x_1^3 x_2^3} - \frac{1}{x_1^3 x_3^3} - \frac{1}{x_2^3 x_3^3} - \frac{2}{x_1^2 x_2^2 x_3^2} + \frac{1}{x_1 x_2^2 x_3^3} + 5 \text{ perm} \right) \\ S_{\text{ortho}}(x_1, x_2, x_3) &= 6 \left(-\frac{3}{x_1^3 x_2^3} - \frac{3}{x_1^3 x_3^3} - \frac{3}{x_2^3 x_3^3} - \frac{8}{x_1^2 x_2^2 x_3^2} + \frac{3}{x_1 x_2^2 x_3^3} + 5 \text{ perm} \right) \\ S_{\text{flat}}(x_1, x_2, x_3) &= 6 \left(\frac{1}{x_1^3 x_2^3} + \frac{1}{x_1^3 x_3^3} + \frac{1}{x_2^3 x_3^3} + \frac{3}{x_1^2 x_2^2 x_3^2} - \frac{1}{x_1 x_2^2 x_3^3} + 5 \text{ perm} \right) \end{split}$$