

IAS workshop¹ New Perspectives on Cosmology HKUST, 21 May 2014

Open Inflation Reviving

- a signature of string theory landscape?-

Misao Sasaki (YITP, Kyoto University)

J. White, Y-L. Zhang & MS, in preparation

1. Era of precision cosmology

Big Bang theory has been firmly established

Strong evidence for Inflation

- almost scale-invariant spectrum: $n_s = 0.960 \pm 0.0073$ (68% CL)
- highly Gaussian fluctuations: $f_{NL}^{local} = 2.7 \pm 5.8$ (68% CL) only to be confirmed (by tensor modes?!)

Discovery(?) of primordial GWs BICEP2 (2014)

spacetime vacuum fluctuations from inflation Starobinsky (1979)

B-mode polarization in CMB anisotropy

Seljak & Zaldarriaga (1996)

E-mode (even parity)

B-mode (odd parity) = cannot be produced from density fluctuations

BICEP2 result

If confirmed, it "proves" (large field models of) primordial inflation & quantum gravity!

What's next?

2. String theory landscape

Lerche, Lust & Schellekens ('87), Bousso & Pochinski ('00), Susskind, Douglas, KKLT ('03), ...

- > There are ~ 10^{500} vacua in string theory
 - vacuum energy ρ_{v} may be positive or negative
 - typical energy scale ~ ${\rm M_P}^4$
 - some of them have $\rho_v <<\!\! M_P{}^4$

Is there any way to know what kind of landscape we live in?

Or at least to know what kind of neighborhood we live in?

Cosmic Landscape

string theory landscape implies an intriguing picture of the early universe

Maybe we live in one of these vacua...

- > A universe jumps around in the landscape by quantum tunneling
 - it can go up to a vacuum with larger ρ_v (dS space ~ thermal state with $T = H/2\pi$: cf BH Lee's talk)
 - if it tunnels to a vacuum with negative ρ_v , it collapses within t ~ $M_P/|\rho_v|^{1/2}$.
 - so we may focus on vacua with positive ρ_v : dS vacua

> Most plausible state of the universe before inflation is a dS vacuum with $\rho_v \sim M_P^4$. dS = O(4,1) \rightarrow O(5) $\sim S^4$

false vacuum decay via O(4) symmetric (CDL) instanton Coleman & De Luccia ('80)

 $O(4) \rightarrow O(3,1)$

inside bubble is an open universe

creation of open universe MS, Tanaka, Yamamoto & Yokoyama (1993)

3. Open inflation in the landscape

- universe is inside nucleated bubble = open universe
- observational data indicate $1-\Omega < 10^{-2}$: almost flat
- > two possibilities

1. inflation after tunneling was long enough (N>>60)

 $1 - \Omega_0 \ll 1$ "flat universe"

signatures from bubble collisions?

- tunneling rate may be enhanced in the landscape

Tye & Wohns (2009)

2. inflation after tunneling was short enough (N = 50 ~ 60) $1 - \Omega_0 = 10^{-2} \sim 10^{-3}$ "open universe"

any signatures in large angle CMB anisotropies?

Here we argue that we are already seeing a couple of such signatures on large angle CMB dipolar statistical anisotropy tensor-scalar ratio: Planck vs BICEP2

4. Dipolar statistical anisotropy

dipole asymmetry observed by WMAP/Planck

dipole asymmetry of C_l in the direction maximizing the asymmetry

Planck XXIII	Data set	FWHM [°]	A	(<i>l,b</i>) [°]	$\Delta \ln \mathcal{L}$	Significance
	Commander	5	$0.078^{+0.020}_{-0.021}$	$(227, -15) \pm 19$	8.8	3.5 <i>o</i>
	NILC	5	0.069+0.020	$(226, -16) \pm 22$	7.1	3.0σ
	SEVEM	5	$0.066^{+0.021}_{-0.021}$	$(227, -16) \pm 24$	6.7	2.9σ
	SMICA	5	$0.065^{+0.021}_{-0.021}$	$(226, -17) \pm 24$	6.6	2.9σ
	WMAP5 ILC	4.5	0.072 ± 0.022	$(224, -22) \pm 24$	7.3	3.3σ
	Commander	6	$0.076^{+0.024}_{-0.025}$	$(223, -16) \pm 25$	6.4	2.8σ
	NILC	6	$0.062^{+0.025}_{-0.026}$	$(223, -19) \pm 38$	4.7	2.3σ
	SEVEM	6	0.060+0.025	$(225, -19) \pm 40$	4.6	2.2σ
	SMICA	6	0.058+0.025	$(223, -21) \pm 43$	4.2	2.1σ
	Commander	7	$0.062^{+0.028}_{-0.030}$	$(223, -8) \pm 45$	4.0	2.0σ
	NILC	7	$0.055^{+0.029}_{-0.030}$	$(225, -10) \pm 53$	3.4	1.7σ
$\frac{\delta T}{T} = \left(1 + A\cos\theta\right) \left(\frac{\delta T}{T}\right)$	EM	7	0.055 ^{+0.029} -0.030	$(226, -10) \pm 54$	3.3	1.7σ
	CA	7	$0.048^{+0.029}_{-0.029}$	$(226, -11) \pm 58$	2.8	1.5 <i>σ</i>
I (I)	iso mander	8	$0.043^{+0.032}_{-0.029}$	$(218, -15) \pm 62$	2.1	1.2σ
	NILC	8	$0.049^{+0.032}_{-0.031}$	$(223, -16) \pm 59$	2.5	1.4σ
	SEVEM	8	$0.050^{+0.032}_{-0.031}$	$(223, -15) \pm 60$	2.5	1.4σ
$A \approx 0.07$	SMICA	8	0.041+0.032 -0.029	$(225, -16) \pm 63$	2.0	1.1σ
	Commander	9	0.068+0.035	$(210, -24) \pm 52$	3.3	1.7σ
	NILC	9	0.076+0.035	$(216, -25) \pm 45$	3.9	1.9σ
	SEVEM	9	0.078+0.035	$(215, -24) \pm 43$	4.0	2.0σ
	SMICA	9	0.070+0.035	$(216, -25) \pm 50$	3.4	1.8σ
	WMAP3 ILC	9	0.114	(225, -27)	6.1	2.8σ
	Commander	10	$0.092^{+0.037}_{-0.040}$	$(215, -29) \pm 38$	4.5	2.2σ
	NILC	10	0.098+0.037	$(217, -29) \pm 33$	5.0	2.3σ
	SEVEM	10	$0.103^{+0.037}_{-0.039}$	$(217, -28) \pm 30$	5.4	2.5σ
	SMICA	10	0.094+0.037	$(218, -29) \pm 37$	4.6	2.2σ

Gradient of a field over the horizon scale = Super-curvature mode in open inflation

may modulate the amplitude of perturbation depending on the direction.

a viable model

Kanno, MS & Tanaka (2013)

$$L = -\frac{1}{2} \left(\nabla \phi \right)^2 - V(\phi) - \frac{1}{2} \left(\nabla \sigma \right)^2 - m_\sigma^2 \sigma^2 - \frac{1}{2} f^2(\sigma) \left(\nabla \chi \right)^2 - \frac{1}{2} m_\chi^2 \chi^2$$

(\sigma, \chi)-sector \sigma "axion"-like

 ϕ : inflaton

 σ : isocurvature mode with super-curvature perturbation $\Delta \sigma$ χ : curvaton

 H_F : Hubble at $\Longrightarrow H_F^2 \gg m_\sigma^2 \approx H^2 \gg V''(\phi) \gg m_\chi^2$ false vacuum

Curvature perturbation is almost Gaussian

$$\mathcal{R}_c = N_\phi \delta \phi + N_\chi \delta \chi + \frac{1}{2} N_{\chi\chi} \delta \chi^2 + \cdots$$

$$\left< \delta \phi^2 \right> \approx H^2, \ \left< \delta \chi^2 \right> \approx \frac{H^2}{f^2(\sigma + \Delta \sigma)}$$

$$P_{S}(k) \approx \left[N_{\phi}^{2} H^{2} + N_{\chi}^{2} \frac{H^{2}}{f^{2} (\sigma + \Delta \sigma)} \right]_{k/a=H}$$

dipolar modulation through $f(\sigma)$

 χ -field is a "free" field (no direct coupling to inflaton)

no significant non-Gaussianity, nor quadrupole

 σ -field eventually dies out (because $m_{\sigma} \sim H$)

modulation is larger on larger scales = consistent with Planck 2013

5. r-controversy? Planck vs BICEP2

resolved if $dn_s/d\ln k < 0$ (running spectral index) cf. QG Huang' talk

broken spectrum is more favored than running Abazajian et al. (2014)

observational indication

fast-roll phase in open inflation

Fast-roll phase

lasts for a few e-folds until ε_V becomes small.

duration of fast-roll phase ΔN

approximate estimate:

$$\frac{d\ln\varepsilon_{V}}{dN} \approx -2\eta_{V}; \quad \eta_{V} \equiv M_{P}^{2}\frac{V''}{V}$$
$$\implies \varepsilon_{V} \approx \varepsilon_{V^{*}}\exp\left[-2\int_{0}^{\infty}\eta_{V}dN\right]$$

model for η_V :

 $\eta_{V} \approx \eta_{V^{*}} \exp\left[-\beta N\right] + \eta_{V,\text{slow-roll}}; \ \beta \lesssim 1, \ \eta_{V,\text{slow-roll}} \ll 1$

for $\varepsilon_{V^*} \sim \eta_{V^*} \sim 1$, above estimate gives $\varepsilon_V \sim \varepsilon_{V^*} e^{-\Delta N}$ where $\Delta N = H \Delta t \sim 2-4$ e-folds of fast-roll phase

theoretical (qualitative) predictions

 suppression of curvature perturbation during the first few e-folds (↔large scales) of open inflation

$$P_{S}(k) = \frac{H^{2}}{2\varepsilon(2\pi)^{2}M_{pl}^{2}} : \qquad \varepsilon \equiv -\frac{\dot{H}}{H^{2}} \left(\gtrsim \varepsilon_{V} \right)$$

no suppresion in tensor perturbation

$$P_T(k) = \frac{8H^2}{(2\pi)^2 M_{pl}^2} \qquad \Longrightarrow \qquad r \equiv \frac{P_T}{P_S} = 16\varepsilon$$

• curvature scale at the beginning of fast-roll phase $t = t_*$

scalar & tensor spectrum in open inflation

6. Summary

1. Dipolar statistical anisotropy requires a non-standard inflation scenario

Modulation of the fluctuation amplitude by supercurvature mode in open inflation

- Tension between Planck & BICEP2 may be resolved if P_s(k) is suppressed on large scales
 - Suppression due to fast-roll phase at the beginning of in open inflation

These may be signatures from string landscape

- embedding models in string theory?
- How accurately can $\Omega_{\rm K}$ be determined?
- any other testable predictions?
- other features in CMB? LSS? ...?

We are beginning to test string landscape!