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Set up
• We begin with (Kallosh et al 1306.5220) 

!

• This Lagrangian bears two symmetries: 

• 1) local conformal symmetry under 

!

• 2) additional SO(1,1) symmetry in field space.
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Fix the gauge
• The field χ is called conformon. It is not a real d.o.f. but 

can be removed by gauge fixing. 

• A gauge also respect the SO(1,1) symmetry is a 
hyperbola asymptotes to “light cone”. 

!

• Or parameterisation  

!

• The Higgs-like potential turn to be a pure constant 9λ.
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Starobinsky model
• If we revise the potential a little bit, Starobinsky 

model is recovered. 

!

• After we take the gauge fixing, it becomes
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Starobinsky model
• Starobinsky 1980 

!

• After the conformal 
transformation it goes in the 
Einstein frame with potential 
(Barrow et. al. 1988) 

!

• This can be described by the 
conformal inv two-field theory.
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Extension
• We can see that the essential part of the conformal 

description is 

• 1. Preserve the conformal symmetry; 

• 2. Inflation happens near the SO(1,1) symmetry. 

• Try to preserve these properties, and see the 
possible extension of Starobinsky-like model.
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Extension
• The most general theory that respect the conformal 

symmetry is 

!

• The potential does not respect the SO(1,1) 
symmetry. But it is invariant under the local 
conformal transformation. 

• Define z=φ/χ for future convenience.
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Slow-roll parameter
• The first slow-roll parameter 

!

• Inflation occurs at 

• z->0. Then |f’/f| must be small. 

!

• z->1. Then f’/f has a first order pole at z=1:
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Residue

• How to interpret the residue β? 

• After integration we have 

!

• When β=-2, it is equivalent to Starobinsky model. 
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Residue
• When β!=-2, it is (recover the conformon) 

!

• equivalent to a fractal index of Ricci scalar (Cai, 
Gong and SP, 1404.2560). 
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Residue
• There are some 

constraints based on 
recent observations on 
primordial B-modes. 

• 2-sigma Planck data 
(without running): 
1.988<β<2.055 

• 2-sigma BICEP2 data: 
1.806<β<1.848 
(Codello et al 
1404.3558; 
Chakravaty et al 
1405.1321) β=2 β=1.96

β=1.90

β=1.834
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Other Extensions
• Other poles (relatively far from z=1) are possible.  

!

• A typical example is the T-model. 

!

• The poles at z=-1 and z=0 can never be 
reached.
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T-model

• In the conformal description, T-model is 

!

• F is an arbitrary function. 

• F(χ/φ) breaks the SO(1,1) symmetry unless F(χ/
φ)=constant.
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T-model
• After choosing the gauge, it reduces to 

!

• The hyper tangent can stretch the potential to make 
almost any potential flat enough around  

• Inflation happens when 
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T-model

• A typical (but not necessary) choice of F function is 

!

• λ is a coupling constant and n is an (integer?) 
index.  

• Inflation happens when φ goes to infinity. 
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T-model

• There is a plateau around φ>>1 

!

• It is similar to Starobinsky plateau when n=1/2.
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T-model

• The slow-roll e.o.m. in the large field case is 

!

!

• Integrate above we have
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T-model
• The physical meaning of new variable 

!

• Now the potential becomes
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T-model
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Beyond

• The above models are  

!

• What if it is bounded but not smooth?
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A toy model
• Suppose β=-2, but the other part is a function 

which has a removable singularity at z=1.  

!

• In this case the function f is 

!

• Again, define ξ=1-z.
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Slow-roll parameters
• The slow-roll parameter 

!

• We can solve  

!

• W is the Lambert function (lower branch). 
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• tensor-to-scalar ratio is 

!

• The e-folding dependence is
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Can we recover power-law?

• Yes. Inflation happens elsewhere. 

• We construct reversely from power-law chaotic 
inflation to get the form of f-function.  

• Or add another parameter to control the form of 
effective potential. Kallosh et al 1311.0472, 
1405.3646.
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Recover power-law
• Take a new parameter in the gauge fixing condition, we 

can have 

!

• Here once α is of order 1, we go all back to the 
argument above. 

• Once α is large and makes inflation happens elsewhere
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Recover power-law
• And still take a typical T-model potential 

!

!

• This is a standard quadratic potential which 
predicts
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Summary
• Conformal description is a good mechanism to 

generate a class of Starobinsky-like and similar 
models. 

• The “stretch” effect flatten the potential even if it is 
steep in the two-field case. 

• They can also produce large tensor-to-scalor ratio 
as we introduce a new parameter.
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Thank you!


