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 1. Motivation & Basics 

Bubbles  
(*) For Phase Tran.  in the early universe with or w/o cosmol. constants,  
    Can we obtain the mechanism for the nucleation of a false vac bubble? 
    Can a false vacuum bubble expand within the true vacuum background? 

 How can we be in the vacuum 
    with  positive cosmol const ? 
   - KKLT(Kachru,Kallosh,Linde,Trivedi, PRD 2003)) : “lifting” the potential 
   - an alternative way? :  Revisit the gravity effect in cosmol. phase trans. 

We will revisit and analyse  vacuum bubbles in various setup. 

 Observation : Universe  is expanding with acceleration   
                   - needs  positive cosmological constant  

The string theory landscape provides 
    a vast number of metastable vacua. 

AdS dS 
KKLT 

(*) Other possible roles of the Euclidean Bubbles and Walls?   
    Ex) quantum cosmology?  Domain Wall Universe? 



Basics : Bubble formation  
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Vacuum-to-vacuum phase transition rate 
 
 
 
 
 
 

B : Euclidean Action (semiclassical approx.) 
     S. Coleman, PRD 15, 2929 (1977) 
     S. Coleman and F. De Luccia, PRD21, 3305 (1980) 
     S. Parke, PLB121, 313 (1983) 
 
 
A : determinant factor from the quantum correction  
     C. G. Callan and S. Coleman, PRD 16, 1762 (1977) 

- Nonperturbative Quantum Tunneling 
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(1) Tunneling in Quantum Mechanics  
- particle in one dim. with unit mass -

Lagrangian 

 
 Quantum Tunneling:(Euclidean time -∞<τ <0  or  0<τ<∞) 
   The particle (at “false vacuum” q0) penetrates  
   the potential barrier and materializes at the  
   escape point, σ , with zero kinetic energy, 

where                                                                        = Classical Euclidean  
                                                                                   action (difference)                                                                  
Eq. of motion :                            boundary conditions 
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Tunneling probability 

 Time evolution after tunneling : (back to Minkowski time, t > 0)  
  Classical Propagation after tunneling (at τ = 0=t) 
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→ The bounce solution is a particle moving in the potential –V in time τ 
                                  is unstable (exists a mode w/ negative eigenvalue)  
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(2) Tunneling  in multidimension 

Lagrangian 
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The leading approx. to the tunneling rate  
is obtained from the path and endpoints  
that minimize the tunneling exponent B.  
 
 
 
 
 
 
Boundary conditions for the bounce 
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Time evolution after the tunneling is classical with the ordinary Minkowski time. 



(3) Tunneling in field theory (in flat spacetime – no gravity ) 

Theory  with single scalar field 
 
 
 
where 
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Tunneling rate : 
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O(4)-symmetry  : Rotationally invariant Euclidean metric   
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The Euclidean field equations  & boundary conditions 

“Particle” Analogy : (at position Ф at time η)  

The motion of a particle   
in the potential  –U  
with the damping force   
proportional to 1/ η. 
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Thin-wall approximation 

B is the difference 

in wall outB B B B= + +
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Large 4dim. spherical bubble  
with radius R and thin wall 

Bubble solution  
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In this approximation 



the radius of a true vacuum bubble 
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Evolution of the bubble 

The false vacuum makes a quantum tunneling  into  
a true vacuum bubble at time τ=t=0, such that 

Afterwards, it evolves according to  
the classical equation of motion  
in Lorentzian spacetime. 

The solution (by analytic continuation) 
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2. Bubble nucleation in the Einstein gravity 

Action 
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O(4)-symmetric  Euclidean metric Ansatz 

The Euclidean field equations (scalar eq. & Einstein eq.) 

boundary conditions for bubbles 



the nucleation rate 
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(i) From de Sitter to flat spacetime  

the radius of the bubble 

where 

 Minkowski dS  

(ii) From flat to Anti-de Sitter spacetime 

the radius of the bubble 

 Minkowski AdS  



(iii) the case of arbitrary vacuum energy                                        
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• Evolution of the bubble   

  → via analytic continuation back to Lorentzian time   

  Ex) de Sitter → de Sitter : A. Brown & E. Weinberg, PRD 2007  

the radius 

the nucleation rate 

S. Parke, PLB121, 313 (1983) 

AdS→AdS 

flat→AdS 
dS→AdS 

dS→flat 

dS→dS 

Note : Analytic continuation in the presence of gravity is nontrivial. 



Homogeneous tunneling 
A channel of the inhomogeneous tunneling 

Ordinary bounce  
(vacuum bubble) solutions 

before after 

A channel of the homogeneous tunneling 

Hawking-Moss 
instanton 

before after 



- The Einstein theory of gravity with a nonminimally coupled scalar field 

Einstein equations 
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3. More Bubbles and Tunneling  

False vacuum bubble  

True vacuum bubble  



boundary conditions 
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Rotationally invariant Euclidean metric  : O(4)-symmetry 

The Euclidean field equations 

Our main idea 
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(during the phase transition) 



False-
to-true 

(True vac. 
Bubble) 

True-to-
false (*) 

(False vac. 
Bubble) 

De Sitter – de Sitter O O (*) 

Flat – de Sitter O O  

Anti de Sitter – de Sitter O O 

Anti de Sitter – flat O O 

Anti de Sitter – Anti de Sitter  O O 

(*) exists in   

(1)non-minimally coupled gravity 

   

or in  

(2)Brans-Dicke type theory 

(W.Lee, BHL, C.H.Lee,C.Park, PRD(2006)) 

(*)Lee, Weinberg, PRD 

Dynamics of False Vacuum Bubble : 

Can exist an expanding false vac bubble  
inside the true vacuum 

BHL, C.H.Lee, W.Lee, S. Nam, C.Park,  
PRD(2008)  (for nonminimal coupling) 

True & False Vacuum Bubbles 

BHL, W.Lee, D.-H. Yeom,  JCAP(2011) 
(for Brans-Dicke) 

(H.Kim,BHL,W.Lee, Y.J. Lee, D.-
H.Yoem,  PRD(2011)) 

X 

AdS→AdS 

flat→AdS 

dS→AdS 
dS→flat 

dS→dS 

True Vac Bubble 

False Vac Bubble 



dS-dS dS-AdS 

dS-flat flat-AdS and AdS-AdS  

η η 

ρ 

Φ 

3.2 vacuum bubbles with finite geometry BHL, C.H. Lee, W.Lee & C.Oh, 



Boundary condition (consistent with Z2-sym.) 

 

 

- in de Sitter space.  

   The numerical solution by Hackworth and Weinberg.  

    The analytic computation and interpretation : 

    (BHL & W. Lee, CQG (2009)) 

 

 

 

 

 

3.3 Tunneling between the degenerate vacua 
∃ Z2-symm. with finite geometry bubble 

Potential   

Equations of motions   

O(4)-symmetric  Euclidean metric 
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dS - dS 

flat -flat 

AdS-AdS 

B.-H. L, C. H. Lee, W. Lee & C. Oh, PRD82 (2010) 



3.3 Oscillaing solutions : a) between flat-flat degenerate vacua    (              )   

27    

B.-H. Lee, C. H. Lee, W. Lee & C. Oh, arXiv:1106.5865 

This type of solutions is possible only if gravity is taken into account. 



energy density 

30    



3.3 Oscillaing solutions  -  b) between dS-dS degenerate vacua 

31    



3.3 Oscillaing solutions – c) between AdS-AdS degenerate vacua 

33    



The phase space of solutions 

36    

The y-axis represents no gravity. 
the notation (n_min, n_max), where n_min means the minimum number of 
oscillations and n_max the maximum number of oscillation 



37    

the schematic diagram of the phase space of all solutions including another 
type solution and the number of oscillating solutions with different κs.  
 
The left figure has κ = 0 line indicating no gravity effect. In the middle area 
including the flat case, n_min and n_max are increased as κ and κUo are 
decreased. The tendencies are indicated  as the arrows. In the 
left lower region, there exist another type solution.  
 
The right figure shows n_min and n_max are changed in terms of κUo and κ. 
As we can see from the figure, n_max and n_min are increased as κUo is 
decreased. 



Review : In the Absence of Gravity 

• Fubini, Nuovo Cimento 34A (1976) 
• Lipatov – JETP45 (1977) 

action 

Equation of motion 

Boundary conditions 

solution 

3.4 Fubini Instanton in Gravity 



In the Presence of Gravity 

Action 

O(4) symmetric metric 

Equantions of motion 

Boundary Conditions 



B-HL, W. Lee, C.Oh, D. Yeom, D. Rho 
JHEP 1306 (2013) 003; 
in preparation 



After the nucleation, the domain wall (that may be interpreted as our 
braneworld universe) evolves in the radial direction of the bulk spacetime.  

λ = 3A  : the effective cosmological constant.  
mass term  ~   the radiation in the universe  
charge term ~  the stiff matter  
                      with a negative energy density.  

Cosmological solutions  

the expanding domain wall (universe) solution (a > r∗,+).  
approaching the de Sitter inflation with λ, since the contributions of the 
mass and charge terms are diluted. 
 
contracting solution (a < r∗,+)  : the initially collapsing universe.  
The domain wall does not run into the singularity & experiences a bounce 
since there is the barrier in V (a) because of the charge q. 

The equation becomes  

4.1    5Dim. Z2 symmetric Black hole with a domain wall solution.  

4. Possible Cosmological Implication 



4.2 Application to the No-boundary 

to avoid the singularity problem of a Universe 

the no-boundary proposal by Hartle and Hawking 
cf) Vilenkin’s tunneling  boundary condition 

before 

nothing 

after 

Something, 
homogeneous 

the ground state wave function of the universe is given by the 
Euclidean path integral satisfying the WD equation 

Consider the Euclidean action 

the mini-superspace approximation => the scale factor as the only dof. 



The equations of motion 

the regular initial conditions at  

We want to analytically continue the solution to the Lorentzian 
manifold using                    Then at the tunneling point 
we have to impose the followings 

9    



12    
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4.3 General vacuum decay problem 



4.4 False Cosmic String and its Decay  

Acton 

Vortex Solution 

B-HL, W. Lee, R. MacKenzie, M.Paranjape U. Yajnik, D-h Yeom.  
PRD88 (2013) 085031 arXiv:1308.3501 
PRD88 (2013) 105008  arXiv:1310.3005 



Decay of the False String (thin wall approximation) 

Tunnelling Solution 





5. Summary  and Discussions 

 We reviewed the formulation of the bubble. 
 
 False vacua  exist e.g., in non-minimally coupled theory. 

 
 Vacuum bubbles with finite geometry, with the radius & nucleation rate  
 
 New Type of the solutions :  
   Ex) bubble with compact geometry, 
   degenerate vacua in dS, flat, & AdS. 
   Oscillating solutions; can make the thick domain wall. 

 
 Similar analysis for the Fubini instanton 

 
 Physical role and interpretation of many solutions are still not clear. 

  The application to the braneworld cosmology has been discussed 
 for the model of magnetically charged BH pairs separated by a 
domain wall in the 4 or 5-dim. spacetime with a cosmological constant.  
 
 Can there be alternative model for the accelerating expanding universe? 
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