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SM without SUSY is very good. 
From string theory point of view, SUSY 
breaking scale can be anywhere. 
So the simplest guess is that SUSY breaks 
at the Planck scale. 

Outline 

In other words, SM physics may be directly 
connected to the Planck scale physics. 
One concrete example is the Higgs inflation. 

However we need a new principle by which 
Higgs mass and the cosmological constant 
are explained. 



Suppose the underlying fundamental theory, 
such as string theory, has the momentum 
scale mS and the coupling constant gS . 
 

The naturalness problem 

Then, by dimensional analysis and the power 
counting of the couplings, the parameters of 
the low energy effective theory are given as 
follows: 
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SUSY as a solution to the naturalness problem  

Bosons and fermions cancel the UV 
divergences: 

However, SUSY must be spontaneously 
broken at some momentum scale MSUSY , 
below which the cancellation does not work. 
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(cont’d)  

Therefore, if MSUSY is close to mH , the 
Higgs mass is naturally understood, 
although the cosmological constant is still 
a big problem.  
 
However, no signal of new particles is 
observed in the LHC below 1 TeV. 
 
It is better to think about the other 
possibilities. 
 
 



Possibility of desert 

The first thing we should know is whether the 
SM is valid to the string/Planck scale or some 
new physics should come in. 
 
If it is the former case,  there is a possibility that 
the SM is directly connected to the Planck scale 
physics. 

String theory 

SM ms 



Is the SM valid to the Planck/string scale? 

In order to answer the question, we consider the 
SM Lagrangian with cutoff momentum Λ, 
 
 
and determine the bare parameters in such a way 
that the observed parameters are recovered. 
 
If no inconsistency arises, it means that the SM can 
be valid to the energy scale Λ.  

.+

Y. Hamada, K. Oda and HK:  arXiv:1210.2358 ,   
                    arXiv:1305.7055 , 1308.6651        



The bare couplings λＢ  

The bare couplings can be approximated by the 
running couplings at momentum scale Λ in a mass 
independent scheme such as MS bar.   
(The error can be evaluated once the cutoff scheme 
is specified, and is turns out to be as small as the 
two-loop corrections.) 

: dimensionless couplings
        (gauge, Yukawa, Higgs self couplings)

i
Bλ

( ).i i
B MSλ λ Λ



10 

• In general, the bare mass consists of quadratically 
divergent part and logarithmically divergent part: 

 
 

 
• Here we consider only the first part, or we simply 

assume  
 
•          is determined by an order by order 

perturbative calculation in the bare couplings by 
   demanding  
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Renormalization group equation 



Initial values 

G. Degrassi, S. Di Vita, J. Elias-Miro, J. R. Espinosa, G. F. 
Giudice, G. Isidori and A. Strumia,  
Higgs mass and vacuum stability in the Standard Model at 
NNLO," JHEP 1208 (2012) 098 [arXiv:1205.6497 [hep-ph]]. 



Bare parameters of the cutoff theory (1) 

mHiggs =126GeV 
   mtop =172 GeV 

Ytop 

U(1) 
SU(2) 
SU(3) 

Higgs self coupling 

Higgs mass 2 
log10 Λ[GeV} 

No inconsistency arises 
below the string scale. 



Bare parameters of the cutoff theory (2) 

Ytop 

U(1) 

SU(2) 

SU(3) 

Higgs self coupling 

Higgs mass 2 

log10 Λ[GeV} 

Higgs field becomes unstable. 

mHiggs =126GeV 
   mtop =190 GeV 



Bare parameters of the cutoff theory (3) 

mHiggs =126GeV 
   mtop =150 GeV 

Ytop 

U(1) 
SU(2) 
SU(3) 

Higgs self coupling 

Higgs mass 2 

log10 Λ[GeV} 

No inconsistency arises, 
but the Higgs self 
coupling tends to diverge. 



Bare parameters of the cutoff theory (4) 

Ytop 

U(1) 

SU(2) 
SU(3) 

Higgs self coupling 

Higgs mass 2 

log10 Λ[GeV} 

Higgs field becomes unstable. 

mHiggs =100GeV 
   mtop =172 GeV 



Bare parameters of the cutoff theory (5) 

mHiggs =150GeV 
   mtop =172 GeV 

Ytop 

U(1) 

SU(2) 

SU(3) 

Higgs self coupling 

Higgs mass 2 

log10 Λ[GeV} 

No inconsistency arises, 
but the Higgs self 
coupling tends to diverge. 



mtop =171 GeV 

Standard Model Criticality Prediction: 

Top mass 173 ± 5 GeV and 
Higgs mass 135 ± 9 GeV. 

 

Froggatt, Nielsen(1995) 

Stability of the potential 

mHiggs =125GeV 



mHiggs =125GeV 
mtop =171.31 GeV 

mHiggs =127GeV 
mtop =172.29 GeV 

mHiggs =129GeV 
mtop =173.26 GeV 

Froggatt Nielsen by the recent values 



small mt 

large mt 

Cut off dependence of the bare mass 



Bare Higgs mass becomes zero if mt=170GeV. 
Quadratic coupling vanishes if mt=171GeV. 

Both mB
2 and λ vanish around the Planck scale 

Λ=MPl 



Three quantities, 

 

become close to zero around the Planck/string scale. 

Triple coincidence 

( ), ,B B Bmλλ β λ



• The SM can be valid to the string scale.  
• The Higgs mass seems to be just on the stability bound.  
     Nature likes the marginal stability. 
• The bare Higgs mass becomes close to zero at the string 

scale. It implies that Higgs particle comes from a massless 
state of string, which does not receive a large stringy loop 
correction. 

• The Higgs self coupling and the beta function also become 
close to zero at the string scale.  

     Higgs potential becomes almost flat around the string scale. 
         Iso’s talk   origin of the electro-weak scale 
         Higgs field can play the roll of inflaton. 
 

Summary of the Higgs bare parameters 



Higgs inflation 
(1) conservative approach 
     We trust the effective potential only below the cutoff  
     scale,  and try to make bound on the parameters. 
     Hamada, Oda and HK:  arXiv: 1308.6651 
 
(2) radical approach 
     We trust the flat potential including the inflection point. 
     We assume that nature does fine tunings if  they are  
     necessary. 
     We introduce a non-minimal coupling. 
     Hamada, Oda, Park and HK,  arXiv: 1403.5043  
                “Higgs inflation still alive” 
      Cook. Krauss, Lawrence , Long and Sabharwal, arXiv: 1403.4971 
                 “Is Higgs Inflation Dead? ” 
      Bezrukov and Shaposhnikov,  arXiv: 1403.6078  
                 “Higgs inflation at the critical point” 
 



mH = 125.6 GeV 

Higgs potential  

𝜑[GeV] 

( ) ( ) 4

4
V

λ ϕ
ϕ ϕ=



The effective potential we have seen can be trusted only 
below the cutoff scale Λ.  

Above Λ it is not described by SM but we need string 
theory. 

 

Conservative approach  

SM string 

𝚲 



At present we do not have enough knowledge above Λ. 

But there is a possibility that the Higgs potential in the 
stringy region is almost constant, and the inflation occurs 
in this region. 

 In order for this scenario to work, the necessary 
conditions are  
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Higgs inflation is possible if the cutoff scale is ∼ 1017GeV . 

 



Radical approach  
We assume that the Higgs potential can be trusted up 
to the inflection point region. 

The naïve guess is that inflation occurs if the 
parameters are tuned such that the inflection point 
almost becomes a saddle point. 

𝜑[GeV] 



inflection1η ϕ ϕ< ⇒ 

However, this inflection point can not produce a 
realistic inflation: 

( )*sufficient  in this region  small N V ϕ′⇒

* too large /SA V ε⇒ 

𝜑[GeV] 



We introduce a non-minimal coupling                 
as the  original Bezrukov-Shaposhnikov’s.          
Then a realistic Higgs inflation is possible. 

2Rξ ϕ

( )
2 2

, .
1 /

h h
P

hV
h M

ϕ ϕ
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In the Einstein frame the 
effective potential becomes 

 Non minimal Higgs inflation with flat potential 



• 𝜉 need not be so large, and can be as small as 10.     

• 𝑟 is no longer 1/𝑁∗2, and can be as large as 0.2. 

Important difference from the original B-S 

Higgs potential is small and flat around the string scale 
from the beginning. 

We do not have to lower the potential by the coupling.  

The only role of the coupling is to flatten the potential 
for the large field region. 



 𝝃 need not be very large 

Maximum value of V is 𝑉 ∼ 𝜆 𝜑ℎ 𝜑ℎ4 ∼ 𝜆 𝜑ℎ 𝑀𝑃
4/𝜉2. 

The situation so far is the same as the original BS. 

What is new here is that 𝜆 𝜑  becomes small 
around the string scale: 𝜆 𝜑ℎ∗ ∼ 10−6 . 

This allows rather small values for 𝜉 ∼ 10 . 

65 4*
* 1.3 10 GeV .

0.11
rV  = × × 

 



𝒓 can be any value in 𝟎.𝟎𝟎 ≤ 𝒓 ≤ 𝟎.𝟑 . 

In this case 𝑟 is no longer 1/𝑁∗2 . 
Instead possible values of 𝑟 is governed by the height 
of the potential: 

𝑉∗ varies from ∼ 2 × 1064 GeV4  to ∼ 2 × 1065 GeV4, 

when 𝑚𝐻 varies from 125.5 GeV to 126.5 GeV . (next slide) 

65 4*
* 1.3 10 GeV .

0.11
rV  = × × 

 

Higgs inflation is still alive even if 𝒓 ∼ 𝟎.𝟎𝟎 . 



mH = 125.6 GeV 

𝜑[GeV] 



example 

𝑚𝐻 = 126.4 GeV 

𝑚𝑡 :  

 

𝜉 = 7  
ℎ∗ = 0.90 MP 

tuned around ∼ 171.5 GeV such that the height of 
the potential is 1 percent larger than that of the 
saddle point case.  

Then we have 
𝑟∗ = 0.19,      𝑁∗= 58 ,    V∗

𝜖∗
= 5.0 × 10−7 ,   𝑛𝑆∗ = 0.955 . 



time evolution of the example  



Naturalness and Big Fix 

There is a possibility that SM parameters are 
tuned such that the Higgs potential becomes 
almost flat around the string scale. 
 
Such tuning  seems unnatural in the ordinary 
local field theory , but  it may be understood by 
slightly going beyond the local field theory. 



There are several attempts to slightly extend 
the framework of the local field theory in order 
to explain such fine tunings. 
• multiple point principle 
           Froggatt, Nielsen, Takanishi 
• baby universe and Big Fix 
            Coleman 
            Okada, Hamada, Kawana, HK 
• classical conformality             Iso’s talk 
            Meissner, Nicolai, 
            Foot, Kobakhidze, McDonald, Volkas 
            Iso, Okada, Orikasa 
• asymptotic safety 
            Shaposhnikov, Wetterich 



1. Multiple point principle 

“PREdicted the Higgs Mass” 
 H.B.Nielsen, arXiv:1212/5716 



Why canonical ensemble? 

[ ] [ ]( )expd Sϕ ϕ−∫

In the ordinary quantum theory, the path integral of 
the form 

On the other hand in the statistical mechanics, 
the most fundamental concept is the micro 
canonical ensemble 

[ ] [ ]( ) ,Z d H Eϕ δ ϕ= −∫

is the most fundamental concept. 

and the canonical ensemble follows from it in the 
thermodynamic limit: 

[ ] [ ]( ) [ ] [ ]( )exp / .d H E d H Tϕ δ ϕ ϕ ϕ− ⇒ −∫ ∫



The total energy is given first, and the temperature 
is determined as a result. 
Example:  Water molecules in a cylinder with a  
                  fixed pressure. 

[ ] [ ]( ) [ ] [ ]( )exp /d H E d H Tϕ δ ϕ ϕ ϕ− ⇒ −∫ ∫

p 

water 

vapor 

E 

T 

water 

vapor 

water + vapor T* 

T is automatically tuned to T* for wide range of E. 

T corresponds to coupling constants in field theory. 

micro canonical               canonical 



Question:  
What happens if the quantum theory is defined 
by micro canonical like path integral? 
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∫
∫ ∫
∫

∫

Here let’s see what happens if we start with  

One value of  𝒎𝟐 dominates, and the mass is 
effectively fixed to this value. 

( )( )2 2exp .Z dm iV F m= −∫

[ ] [ ]( ).Z d S Eϕ δ ϕ= −∫

Then the path integral over 𝝓 becomes  



Assume that the 
effective potential for S 
has two minima. 
⇒ There is some critical    
    value for 𝒎𝟐. 

2φ
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If  𝝓𝟏
𝟐 ≤ 𝑰𝟎/𝑽 ≤ 𝝓𝟐

𝟐 , the constraint 
 

∫ 𝒅𝟒𝒙 𝝓†𝝓 = 𝑰𝟎 
 
can be satisfied by making a mixture of the two  
phases. 
 
This means that  𝒎𝟐 is automatically fixed to the 
critical value 𝒎𝒄

𝟐. 



If there is no special reason, it is natural to expect 

2φ

effV

2
2φ

2
1φWhat is the most probable  

value for       ?  2
2φ

2 2
2 .Pmφ 

Then                              can be naturally satisfied, 
because           is expected to be of order   

2 2
1 0 2/I Vφ φ≤ ≤

0 /I V 2 .Pm



The Higgs potential should have a degenerate 
minimum at a large value of the field.  

mH = 125.6 GeV 



generalization 
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generalized to 
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2-1 Baby universe and Big Fix  



Consider Euclidean path integral which involves 
the summation over topologies, 

Coleman (‘88)      not completely consistent   

Then there should be a wormhole-like configuration in 
which a thin tube connects two points on the universe.  
Here, the two points may belong to either the same 
universe or the different universes. 

[ ] ( )
topology

exp .dg S−∑ ∫

If we see such configuration from the side of the large 
universe(s), it looks like two small punctures.  

But the effect of a small puncture is equivalent to an 
insertion of a local operator.  



Summing over the number of wormholes, we have 

bifurcated wormholes   
⇒  cubic terms, quartic terms, … 

[ ] ( )4 4

,
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i j

i j
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Therefore, a wormhole contribute to the path 
integral as 
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Thus wormholes contribute to the path integral as 



The effective action becomes a factorized form 
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By introducing the Laplace transform  

[ ] ( ) ( ) [ ]effexp exp .i i
i

Z d S d w d Sφ λ λ φ λ = − = − 
 
∑∫ ∫ ∫

 

Coupling constants are not merely constant but to 
be integrated.          ← The same as MPP. 

( )( ) ( )eff 1 2 1 2exp , , , , exp ,i i
i

S S S d w Sλ λ λ λ − = − 
 
∑∫ 

we can express the path integral as  



Big Fix 

Coleman pointed out the possibility that all the 
low energy coupling constants are fixed in such a 
way that the partition function is maximized. 

However because of the inconsistency of 
Euclidean gravity,  many confusions were made, 
and no concrete answer was obtained. 



2-2 Lorentzian Path integral  
and  

maximum entropy principle 

T. Okada, HK: arXiv:1110.2303, 1104.1764 
HK: Int. J. of Mod. Phys. A vol. 28, nos. 3 & 4 (2013) 1340001 
Hamada, Kawana, HK: arXiv:14051310 



We consider the low energy effective action as before 
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The path integral should be done in Minkovski time: 

[ ] ( ) ( ) [ ]effexp exp .i i
i

Z d i S d w d i Sφ λ λ φ λ = =  
 
∑∫ ∫ ∫

 

Coupling constants are not merely constant but to 
be integrated. 



We also sum over the number of universes:  
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The partition function of a single universe is given by 

maximum entropy principle  
The coupling constants are determined in such a way  
that  the entropy at the late stages of the universe is 
maximized. 

( ) ( )4
1 radconst .Z Cλ λ

The path integral contains the integration over the time 
(lapse). 
The universe spends most of its time in the late stages.  
The late stages dominate in the path integral. 

matt rad
2 3 4

1 C C
a a a

ρ = − Λ − −



Examples of the Big Fix (1) 

However, some of the couplings can be determined without 
knowing the details of the cosmological evolution. 

( )radC λ
If the cosmological evolution is completely understood, 
we can calculate              theoretically, and all of the  
renormalized couplings are in principle determined. 

case 1.  Symmetry QCDθexample 

1. It becomes important only after the QCD phase 
    transition. 
2. Hadron mass spectrum is invariant under 
                         QCD QCD.θ θ→ −

⇒   is minimum or maximum at             at least locally.  QCD 0θ =radC
QCDθ

radC

At present, we do not have enough knowledge about the  
very early and late stages of the universe, especially the 
origin of inflation, dark energy and dark matter. 



case 2.  End point Hλexample    Higgs coupling 

1.  Some (renormalized) couplings are bounded.  
2.          can be monotonic in them. radC
⇒         is maximized at the end point.  radCHλ

radC

リレーションシップ ID rId14 のイメージ パーツがファイルにありませんでした。

A scenario for    .  Hλ
Fix vh to the observed value and vary .Hλ
assuming the leptogenesis 

 ⇒ sphaleron process 

 ⇒ baryon number  
Hλ 

 ⇒ radiation from baryon decay  







⇒ Higgs mass is at its lower bound.  

Examples of the Big Fix (2) 

Another explanation of Froggatt- Nielsen 



Constraints on the Higgs portal DM 

Flatness of the Higgs potential imposes  
constraints on the Higgs portal DM.  

 

 Hamada, Oda and HK:  arXiv: 1404.6i41 



Higgs portal dark matter  
We consider 𝒁𝟐 invariant Higgs portal DM: 

ℒ = ℒ𝑺𝑺 +
𝟏
𝟐
𝝏𝝁𝑺

𝟐 −
𝟏
𝟐
𝒎𝑺

𝟐𝑺𝟐 −
𝝆
𝟒!
𝑺𝟒 −

𝜿
𝟐
𝑺𝟐𝑯†𝑯 

mHiggs =125GeV 
mtop =172.892 GeV 

κ 
ρ 



The effect of  𝑺 on 𝝀 is opposite to that of top quark. 

Top Yukawa lowers 𝝀 for smaller values of 𝝁,          
while 𝜿 increases 𝝀 almost uniformly in 𝝁. 

increasing Top Yukawa increasing 𝜿 
𝝁 

𝝀 
Suppose we have an inflection point at some scale 𝚲:    

𝝀 𝚲 = 𝟎, 𝜷 𝝀 𝚲 = 𝟎. 

If top mass is increased, 𝝀 becomes negative 
at some scale. Then we can recover the 
inflection point by increasing 𝜿.  
The scale of the inflection point decrease. 



From the natural abundance of DM, the DM mass 
should be related to 𝜿: 

𝒎𝑫𝑫 ∼ 𝟑𝟑𝟑𝐆𝐆𝐆 ×
𝜿
𝟎.𝟏

 

𝑚𝐻 = 126GeV 





• It seems we have nothing other than a minor 
modification of SM below the string scale. 

• It is possible that the fine tunings result from not 
the conventional local field theory but something 
(slightly) beyond. 

• For example, we can consider the possibility that 
the couplings are fixed to maximize the entropy of 
the universe.  

• From this point of view Higgs inflation is natural. 

• If DM is the Higgs portal scalar, its mass is 
predictable. 

Naturalness and Higgs inflation 
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