Cosmological Implications from BICEP2

Qing-Guo Huang

based on some works done with Cheng Cheng and Wen Zhao

New perspectives on cosmology, HKUST-IAS ITP-CAS, Beijing 05/21/2014

Outline

- Probing the inflationary universe from low-l CMB data
- How to reconcile Planck with BICEP2
- The tilt of relic gravitational waves power spectrum
- Summary

Probing the inflationary universe from low-I CMB data

Successes of Inflation:

- The Universe is big
- Homogeneity and isotropy
- Flatness problem
- □ Why no magnetic monopole?
- Nearly scale-invariant, adiabatic and Gaussian density perturbations.
- Nearly scale-invariant relic gravitational waves.

Slow-Roll Inflation

$$a(t) \sim e^{Ht}$$

□ There are three kinds of perturbations: scalar, vector and tensor (gravitational waves) perturbations.

- □ At the linear order, these three kinds of perturbations evolve independently and therefore we can analyze them separately.
- □ Since there are no rotational velocity fields during inflation, the vector perturbations are not excited.

Scalar perturbations:

$$\zeta = \delta N = H\delta t = \frac{H}{\dot{\phi}}\delta\phi = -\frac{1}{\sqrt{2\epsilon}M_p}\delta\phi$$
$$P_s = \frac{H^2/M_p^2}{8\pi^2\epsilon}$$

$$n_s \equiv 1 + \frac{d\ln P_s}{d\ln k} = 1 - 6\epsilon + 2\eta$$

Gravitational waves:

$$P_t = \frac{H^2/M_p^2}{\pi^2/2}$$

$$r = P_t / P_s = 16\epsilon$$

$$n_t = -2\epsilon$$
$$n_t = -r/8$$

Nearly scale-invariant!

Discovery of relic gravitational waves (BICEP2)

 $r = 0.2^{+0.07}_{-0.05}$, with r = 0 is disfavored at 7.0 σ

BICEP2 collaboration, arXiv:1403.3985

Naturalness of inflation?

$$\frac{\Delta T}{T} \sim 10^{-5} \quad {\rm cm}$$

A small dimensionless parameter

Lyth Bound:

$$\epsilon \equiv \frac{M_p^2}{2} \left(\frac{V'}{V}\right)^2 = \frac{1}{2} \frac{\dot{\phi}^2}{M_p^2 H^2}$$
$$r = 16\epsilon$$
$$\frac{d\phi}{M_p} = \sqrt{\frac{r}{8}} H dt = \sqrt{\frac{r}{8}} dN$$

$$\frac{|\Delta\phi|}{M_p} \simeq \sqrt{\frac{r}{8}} \Delta N$$

For $r = 0.2$, $\frac{|\Delta\phi|}{M_p} \simeq 0.16 \Delta N$

Lyth, 1997(PRL)

Warped D-brane inflation

$$M_p^2 \sim \frac{M_s^8}{g_s^2} V_6$$

Single brane:
$$|\Delta \phi| = \sqrt{T_3}r \leq rac{2}{\sqrt{N_B}}M_p$$

A stack of D-branes (N): $|\Delta \phi| = \sqrt{T_3}r \le \frac{2}{\sqrt{N}}M_p$

$$\Delta \Phi \equiv \sqrt{\sum (\Delta \phi_i)^2} \le 2M_p$$

Baumann, McAllister, 2007

Monodromy axion inflation in string theory

 $V \sim \phi^{2/3}$ Silverstein and Westphal, 2008 $V \sim \phi$ McAllister, Silverstein and Westphal, 2008 $V \sim \phi^2$ Marchesano, Shiu, Uranga, 2014 $V \sim \phi^3, \dots$ McAllister, Silverstein, Westphal, Wrase, 2014

.

String landscape inflation

QGH, JCAP 05(2007)009

Everything is encoded in the data.

How to correctly extract the information from the data?

Global fitting may not be the best strategy.

- On large scales (>1°) any causal effects have not had time to operate.
- Low-I CMB power spectra are dominated by the Sachs-Wolfe effect.

$n_t - 1/0$		$v \left(v_{\text{max}} = 100 \right)$		$(v_{\text{max}} = 100)$
parameters	best fit	68% limits	best fit	68% limits
$\Omega_b h^2$	0.0192	$0.0270\substack{+0.0074\\-0.0104}$	0.0209	$0.0263\substack{+0.0077\\-0.0149}$
$\Omega_c h^2$	0.140	$0.166\substack{+0.029\\-0.046}$	0.141	$0.141\substack{+0.018\\-0.038}$
$100 heta_{ m MC}$	1.116	$1.104\substack{+0.046\\-0.048}$	1.142	$1.098\substack{+0.044\\-0.027}$
au	0.095	$0.099\substack{+0.015\\-0.018}$	0.105	$0.099\substack{+0.015\\-0.018}$
$\ln(10^{10}A_s)$	3.106	$3.051\substack{+0.061 \\ -0.054}$	3.021	$3.024\substack{+0.065\\-0.057}$
n_s	1.098	$1.104\substack{+0.052\\-0.051}$	1.120	$1.074_{-0.042}^{+0.056}$
r	0.19	$0.26\substack{+0.07\\-0.11}$	0.23	$0.28\substack{+0.07 \\ -0.12}$

C. Cheng, QGH, arXiv:1405.0349

C. Cheng, QGH, arXiv:1405.0349

C. Cheng, QGH, arXiv:1404.1230

How to reconcile Planck with BICEP2

NO TENSION between Planck and BICEP2 on large scales.

- The TT and TE power spectra generated by the relic gravitational waves are significant only the large scales. We take l_max=100.
- □ We fix the background parameters $(\Omega_b h^2, \Omega_c h^2, 100 \theta_{MC}, \tau)$ at their best-fit values in the Λ CDM model from Planck, and the free running parameters are A_s , n_s and r.

 $C_{\ell}^{TT} = C_{\ell,s}^{TT} + C_{\ell,t}^{TT}$ $C_{\ell}^{TE} = C_{\ell,s}^{TE} + C_{\ell,t}^{TE}$ $C_{\ell,t}^{TT} > 0, \ C_{\ell,t}^{TE} < 0$

- The tensor-to-scalar ratio is peaked at around 0.2.
- **The spectral index** $n_s > 1$.

W. Zhao, C. Cheng and QGH, arXiv:1403.3919

Planck collaboration, arXiv:1303.5076, 1303.5082

C. Cheng, QGH, W. Zhao, arXiv:1404.3467

B2+P13+WP

$$P_s(k) = A_s \left(\frac{k}{k_p}\right)^{n_s - 1 + \frac{1}{2}\frac{dn_s}{d\ln k}\ln\frac{k}{k_p} + \frac{1}{6}\frac{d^2n_s}{d\ln k^2}\ln^2\frac{k}{k_p}}$$

1.3							
1.2					$\Lambda CDM + nrun + nrunrun + r$	B2+P13+WP	
z" 1.1					parameters	Best fit	68% limits
1.0					$\Omega_b h^2$	0.02221	0.02217 ± 0.00035
1.0					$\Omega_c h^2$	0.1203	0.1184 ± 0.0023
]	$100 heta_{ m MC}$	1.04145	$1.04142\substack{+0.00064\\-0.00063}$
0.00					au	0.0983	$0.1054\substack{+0.0142\\-0.0168}$
~ -0.08	-				$\ln(10^{10}A_s)$	3.047	$3.063\substack{+0.066\\-0.050}$
p/sup = 0.16					n_s	1.1656	$1.1344^{+0.0612}_{-0.0608}$
0.10					$dn_s/d\ln k$	-0.139	$\left(\begin{array}{c} -0.108^{+0.049}_{-0.048} \end{array} \right)$
-0.24		-			$d^2 n_s/d\ln k^2$	0.045	$0.033^{+0.018}_{-0.019}$
0.00					$r_{0.002}$	0.22	$0.24\substack{+0.05\\-0.07}$
0.09							
0.06 ري						_	
ulp/su			-		$\Delta \chi^2$ =	= -3.	12
^م 0.00		-	-	. /			
-0.03			-				
	0.1 0.2 0.3 0.4 0.5 0.6	1.0 1.1 1.2 1.3	-0.24 -0.16 -0.08 0.00	-0.03 0.00 0.03 0	.06 0.09		
	$r_{0.002}$	$n_{ m s}$	$dn_s/d\ln k$	$d^2 n_{ m s}/d{ m ln}k^2$			

C. Cheng, QGH, W. Zhao, arXiv:1404.3467

The tilt of relic gravitational waves power spectrum

$$P_t = A_t \left(\frac{k}{k_p}\right)^{n_t} \qquad r = 0.21^{+0.04}_{-0.10} \qquad n_t = -0.06^{+0.25}_{-0.23}$$

C. Cheng and QGH, arXiv:1403.5463

C. Cheng, QGH, arXiv:1405.0349

Summary

- A red-tilt tensor power spectrum is compatible with the data, and the simplest version of inflation is consistent with the data.
- A blue-tilted scalar power spectrum is preferred on the large scales (e.g. l<150).</p>
- The inflation model with inverse power-law potential can fit the data quite well.
- The space-time non-commutativity can help chaotic inflation and power-law inflation to fit the data.

- A negative running of spectral index is favored at around 3 sigma level.
- Furthermore, a positive running of running is preferred at around 1.7 sigma level.

Thank You!