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Abstract

This paper considers likelihood-based testing of the null hypothesis of m0 components against

the alternative of m0 + 1 components in a finite mixture model. The number of components is

an important parameter in the applications of finite mixture models. Still, testing the number

of components has been a long-standing challenging problem because of its non-regularity.

We develop a framework that facilitates the analysis of the likelihood function of finite

mixture models and derive the asymptotic distribution of the likelihood ratio test statistic for

testing the null hypothesis of m0 components against the alternative of m0 + 1 components.

Furthermore, building on this framework, we propose a likelihood-based testing procedure of

the number of components. The proposed test, extending the EM approach of Li et al. (2009),

does not use a penalty term and is implementable even when the likelihood ratio test is difficult

to implement because of non-regularity and computational complexity.

Keywords and phrases: asymptotic distribution; modified EM test; likelihood ratio test; local MLE;

number of components; reparameterization.

1 Introduction

Finite mixture models provide flexible ways to account for unobserved population heterogeneity.

Because of their flexibility, finite mixture models have seen numerous applications in diverse fields

such as biological, physical, and social sciences. For example, finite mixtures are often used to

control unobserved individual-specific effects in labor economics (Heckman and Singer, 1984; Keane

∗The authors thank Jiahua Chen, Tatsuya Kubokawa, Tong Li and the seminar participants at Vanderbilt Univer-
sity and the University of British Columbia for their helpful comments. This research was supported by the SSHRC
and the JSPS Grant-in-Aid for Scientific Research (C) No. 23530249.
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and Wolpin, 1997; Cameron and Heckman, 1998), health economics (Deb and Trivedi, 2002), and

marketing (Kamakura and Russell, 1989; Andrews and Currim, 2003). Comprehensive theoretical

accounts and examples of applications have been provided by several authors, including Lindsay

(1995), Titterington et al. (1985), and McLachlan and Peel (2000).

This paper considers likelihood-based testing of the null hypothesis of m0 components against

the alternative of m0 + 1 components in a finite mixture model. The number of components is an

important parameter in finite mixture models. In economics applications, the number of compo-

nents often represents the number of unobservable types or abilities. In many other applications,

the number of components signifies the number of clusters or latent classes in the data.

Testing the number of components in finite mixture models has been a long-standing challeng-

ing problem because of its non-regularity. When testing the null of m0 components against the

alternative of m0 + 1 components, the true m0-component density can be described with many

elements of the parameter space in the (m0 + 1)-component alternative model. These elements

are characterized by the union of the two parameter subsets: A, where two components have the

same mixing parameter that takes component-specific values; and B, where one of the components

has zero mixing proportion. In both null parameter sets, the regularity conditions for a standard

asymptotic analysis fail because of such problems as parameter non-identification, singular Fisher

information matrix, and true parameter being on the parameter space boundary. When the pa-

rameter space is compact, the asymptotic distribution of the likelihood ratio test (LRT) statistic

has been derived as a supremum of the square of a Gaussian process indexed by the closure of

the convex cone of directional score functions (Dacunha-Castelle and Gassiat, 1999; Liu and Shao,

2003); however, it is difficult to implement these symbolic results.1

This paper makes three main contributions. First, we develop a framework that facilitates the

analysis of the likelihood function of finite mixture models. In the null parameter space A discussed

above, the standard quadratic expansion of the log-likelihood function is not applicable because of

the singular Fisher information matrix. The existing works handle this problem by resorting to non-

standard approaches and tedious manipulations (see, for example, Zhu and Zhang (2004); Cho and

White (2007)). We develop an orthogonal parameterization that extracts the direction in which the

Fisher information matrix is singular. Under this reparameterization, the log-likelihood function

is locally approximated by a quadratic form of squares and cross-products of the reparameterized

parameters, leading to a simple characterization of the asymptotic distribution of the LRT statistic.

Second, building on this framework and the results from Andrews (1999, 2001), we derive the

asymptotic distribution of the LRT statistic for testing the null hypothesis of m0 components for a

general m0 ≥ 1 in a mixture model with a multidimensional mixing parameter and a structural pa-

rameter. Under the null parameter set A, the asymptotic distribution is shown to be the maximum

of m0 random variables, each of which is a projection of a Gaussian random vector on a cone. Both

1For some specific models, the asymptotic distribution of the LRT statistic has been derived. See, for example,
Chernoff and Lander (1995); Lemdani and Pons (1997); Chen and Chen (2003); Garel (2001).
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the LRT statistic under the null parameter set B and the (unrestricted) LRT statistic are shown to

converge in distribution to the maximum of m0 random variables, each of which is the supremum

of the square of a Gaussian process over the support of the mixing parameter. In contrast to the

existing symbolic results, the covariance structure of the Gaussian processes is explicitly presented.

Implementing the LRT has, however, practical difficulties: (i) in some mixture models that

are popular in applications (e.g., Weibull duration models), the Fisher information for the null

parameter space B is not finite (Li et al., 2009), and the regularity conditions in Dacunha-Castelle

and Gassiat (1999) and Liu and Shao (2003) are violated; (ii) the asymptotic distribution depends

on the choice of the support of the parameter space, and (iii) simulating the supremum of a Gaussian

process is computationally challenging unless the dimension of the parameter space is small, because

of the curse of dimensionality.

As our third contribution, we develop a likelihood-based testing procedure of the null hypothesis

of m0 components against the alternative of m0 + 1 components that circumvents these difficulties

associated with the null parameter space B. The proposed modified EM test statistic has the

same asymptotic distribution as the LRT statistic for testing the null parameter space A, and its

asymptotic distribution can be simulated without facing the curse of dimensionality. Furthermore,

the modified EM test is implementable even if the Fisher information for the null parameter space

B is not finite.

Our modified EM test extends the EM approach pioneered by Li et al. (2009) (henceforth, LCM).

In contrast to the original EM approach by LCM, the modified EM test does not use a penalty term

to bound the mixing proportion away from 0 and 1. This feature is practically appealing because

the choice of the penalty term has an important influence on the finite sample performance of the

EM test. Even though a data-driven formula for the penalty term was obtained via simulations

for Poisson, binomial, normal, and exponential distributions by Chen and Li (2011b), developing

a formula for general mixture models is challenging. Simulations show that the modified EM test

has good finite sample size, and power properties comparable to those of the original EM test.

There exist many works on likelihood-based tests of the number of components that either focus

on testing homogeneity (i.e., m0 = 1) or assume a scalar mixing parameter, but these existing tests

are not applicable to testing the null hypothesis of m0 ≥ 2 components in a general mixture model

with a vector mixing parameter and a structural parameter. Assuming a scalar mixing parameter,

Chen et al. (2001, 2004) developed a modified LRT for the null hypothesis of m0 = 1 and m0 = 2;

LCM developed the EM test for testing m0 = 1; Chen and Chen (2001) and Cho and White

(2007) derived the asymptotic distribution of the LRT statistic and quasi-LRT statistic for testing

m0 = 1, respectively; Li and Chen (2010) and Chen and Li (2011a) constructed EM tests for

testing m0 ≥ 2. For models with a multidimensional mixing parameter, Zhu and Zhang (2004)

analyzed the asymptotics of LRT and Niu et al. (2011) focused on an EM test for testing m0 = 1.

Except for Zhu and Zhang (2004) and Cho and White (2007), none of the works discussed above

accommodates a structural parameter.
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The remainder of this paper is organized as follows. Section 2 introduces finite mixture models

and describes examples. Section 3 derives the asymptotic distribution of the LRT statistic of

homogeneity as a precursor for the test of general m0 components. Section 4 establishes the

asymptotic distribution of the LRT statistic of the null hypothesis of m0 components against the

alternative of m0 + 1 components. Section 5 introduces the modified EM test and determines its

asymptotic distribution. Section 6 reports the simulation results. The appendix contains proofs

of results given in the paper, and auxiliary results. All limits below are taken as n → ∞ unless

stated otherwise. Let := denote “equals by definition.” For a k × 1 vector a and a function f(a),

let ∇af(a) denote the k× 1 vector of the derivative (∂/∂a)f(a), and let ∇aa′f(a) denote the k× k
vector of the derivative (∂/∂a∂a′)f(a).

2 Finite mixture models and examples

2.1 Finite mixture models

Given a family of parametric densities {f(x; γ, θ) : γ ∈ Θγ ⊂ Rp, θ ∈ Θθ ⊂ Rq} for a random

variable X ∈ Rr, we consider an m-component finite mixture density of the form

m∑
j=1

αjf(x; γ, θj), (1)

where the αj ’s are mixing probabilities that satisfy αj ∈ [0, 1] and
∑m

j=1 α
j = 1, θj = (θj1, . . . , θ

j
q)′

is a mixing parameter that characterizes the j-th component, and γ = (γ1, . . . , γp)
′ is a structural

parameter that is common to all the components. Here, m is understood as the smallest number

such that the data density admits representation (1). In specification (1), each observation may be

viewed as a sample from one of the m latent classes, or “types.” This specification includes a finite

mixture of conditional distributions, in which a component distribution is given by f(x1, x2; γ, θj) =

f(x1|x2; γ, θj)f(x2).

We are interested in testing the number of components in a finite mixture model, specifically,

in testing

H0 : m = m0 against HA : m = m0 + 1.

2.2 Examples

Example 1 (Duration model with mixed proportional hazard). Heckman and Singer (1984) pro-

posed a discrete mixture distribution for estimating parametric duration models with unobserved

heterogeneity. Consider a finite mixture proportional hazard model of duration Y ∈ R+ condi-

tional on observed heterogeneity X ∈ R, where the hazard rate of the jth component distribution

is specified as f(y|x;θj)
1−F (y|x;θj)

= exp(θj1)k1(x; θj2)k2(y; θj3), where θj = (θj1, (θ
j
2)′, (θj3)′)′, k1(x; θ2) cap-

tures the part of the hazard that is systematically related to observed variable x, and k2(y; θ3) is
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the baseline hazard. Then, the model is written as
∑m

j=1 α
mf(y|x; θj)f(x), where f(y|x; θj) =

exp(θj1)k1(x; θj2)k2(y; θj3) exp[− exp(θj1)k1(x; θj2)
∫ y

0 k2(s; θj3)ds] is the conditional density of y given

x implied by the hazard exp(θj1)k1(x; θj2)k2(y; θj3).

3 Likelihood ratio test of H0 : m = 1 against HA : m = 2

Before developing the LRT of m0 components, we analyze a simpler case of testing the null hy-

pothesis H0 : m = 1 against HA : m = 2 when the data are from H0.

We consider a random sample of n independent observations X1, . . . , Xn from the true density

f(x; γ∗, θ∗). Here, the superscript ∗ denotes the true population value. Consider a two-component

mixture density function

f(x;α, γ, θ1, θ2) := αf(x; γ, θ1) + (1− α)f(x; γ, θ2), (2)

where (α, γ, θ1, θ2) ∈ Θ := [0, 1] × Θγ × Θ2
θ. The two-component model (2) gives rise to the true

density f(x; γ∗, θ∗) if the parameter (α, γ, θ1, θ2) lies in a subset of the parameter space

Γ∗ :=
{

(α, γ, θ1, θ2) ∈ Θ : θ1 = θ2 = θ∗ and γ = γ∗; or α(1− α) = 0 and γ = γ∗
}
.

Let (α̂, γ̂, θ̂1, θ̂2) denote the maximum likelihood estimator (MLE) that maximizes the log-

likelihood function
∑n

i=1 ln f(Xi;α, γ, θ
1, θ2). The following proposition shows that the MLE is

consistent under the standard condition.2

Assumption 1. (a) If (γ, θ) 6= (γ∗, θ∗), then f(X; γ, θ) 6= f(X; γ∗, θ∗) with a nonzero probability.

(b) Θθ and Θγ are compact. (c) ln f(X; γ, θ) is continuous at each (γ, θ) ∈ Θγ×Θθ with probability

one.

(d) E[sup(γ,θ)∈Θγ×Θθ
| ln f(Xi; γ, θ)|] <∞.

Proposition 1. Suppose that Assumption 1 holds. Then,

we have inf(α,γ,θ1,θ2)∈Γ∗ ||(α̂, γ̂, θ̂1, θ̂2)− (α, γ, θ1, θ2)|| →p 0.

As in Cho and White (2007), we partition the null hypothesis H0 : m = 1 into two sub-

hypotheses:

H01 : θ1 = θ2 and H02 : α(1− α) = 0.

Under H01, α is not identified, and furthermore, the Fisher information matrix for the other param-

eters becomes singular. Under H02, α is on the boundary of the parameter space, and either θ1 or

θ2 is not identified. In the following, we analyze the asymptotic distribution of the LRT statistics

for testing H01 and H02 in turn, and combining these results, derive the asymptotic distribution of

the LRT statistics for testing H0.3

2Alternatively, we can use the sufficient condition in Redner (1981).
3 This approach is used by Cho and White (2007) to analyze the quasi-LRT of H0 : m = 1 in a model with a
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3.1 Reparameterization

We first develop a reparameterization that substantially simplifies the analysis of the LRT statistic

for testing H01. One difficult problem in the analysis of finite mixture models is that the Fisher

information matrix is singular. Under the true parameter value (γ∗, θ∗, θ∗) at α ∈ (0, 1), the first

derivative of the log-density

l(x;α, γ, θ1, θ2) := ln
(
αf(x; γ, θ1) + (1− α)f(x; γ, θ2)

)
with respect to (w.r.t.) θ1 is a linear function of the first derivative of l(x;α, γ, θ1, θ2) w.r.t. θ2:

∇θ1 l(x;α, γ∗, θ∗, θ∗) = α∇θf(x; γ∗, θ∗)/f(x; γ∗, θ∗) and

∇θ2 l(x;α, γ∗, θ∗, θ∗) = (1− α)∇θf(x; γ∗, θ∗)/f(x; γ∗, θ∗).

In addition, the first derivative of l(x;α, γ, θ1, θ2) w.r.t. α evaluated at (γ∗, θ∗, θ∗) is identically

equal to zero. Consequently, the Fisher information matrix is rank deficient by 1+dim(θ), and

the log-likelihood function is not amenable to the standard analysis using a second-order Taylor

expansion.

We handle the singular Fisher information problem via a reparameterization. Our approach

generalizes that of Rotnitzky et al. (2000), who derive the asymptotics of the LRT statistic when

the Fisher information matrix is rank deficient by 1. A key insight is that by a particular repa-

rameterization, we can determine the direction in which the Fisher information matrix is singular.

Consider the following one-to-one reparameterization:(
λ

ν

)
:=

(
θ1 − θ2

αθ1 + (1− α)θ2

)
, so that

(
θ1

θ2

)
=

(
ν + (1− α)λ

ν − αλ

)
, (3)

where ν = (ν1, ν2, . . . , νq)
′ and λ = (λ1, λ2, . . . , λq)

′ are q × 1 reparameterized parameter vectors.

Collect the reparameterized parameters except for α into one vector as

ψ := (γ′, ν ′, λ′)′ ∈ Θψ,

where Θψ := {ψ : γ ∈ Θγ , ν + (1 − α)λ ∈ Θθ and ν − αλ ∈ Θθ}. The parameter ψ and the

parameter space Θψ depend on α, although we do not explicitly indicate their dependence for

notational brevity. In the reparameterized model, the null hypothesis of H01 : θ1 = θ2 is written as

H01 : λ = (0, . . . , 0)′. We denote the true value of ψ by ψ∗ = ((γ∗)′, (θ∗)′, 0, . . . , 0)′.

Under the reparameterization (3), the density and its logarithm are expressed as

f(x;ψ, α) := αf(x; γ, ν + (1− α)λ) + (1− α)f(x; γ, ν − αλ), l(x;ψ, α) := ln[f(x;ψ, α)]. (4)

scalar mixing parameter. Their asymptotic analysis is very complex, however, and can only handle the case with a
scalar mixing parameter. Cho and White (2007) do not analyze testing H0 : m = m0 for m0 ≥ 2, either.
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Evaluated at the true parameter value, the first derivative of the reparameterized log-density (4)

w.r.t. λ becomes zero:

∇λl(x;ψ∗, α) = [(1− α)α∇θf(x; γ∗, θ∗)− α(1− α)∇θf(x; γ∗, θ∗)]/f(x; γ∗, θ∗) = 0. (5)

On the other hand, the first derivative of (4) w.r.t. γ and ν under the true parameter value is a

mean-zero non-degenerate random vector:

∇γl(x;ψ∗, α) = ∇γf(x; γ∗, θ∗)/f(x; γ∗, θ∗),

∇ν l(x;ψ∗, α) = ∇θf(x; γ∗, θ∗)/f(x; γ∗, θ∗).
(6)

Because ∇λl(x;ψ∗, α) = 0, the information matrix for the reparameterized model is singular, and

the standard quadratic approximation of the log-likelihood function fails. Nonetheless, we may

characterize the asymptotic distribution of the LRT statistic using the second derivative of l(x;ψ, α)

w.r.t. λ in place of its score:

∇λλ′ l(x;ψ∗, α) = α(1− α)
∇θθ′f(x; γ∗, θ∗)

f(x; γ∗, θ∗)
. (7)

When α 6= {0, 1} and ∇θθ′f(x; γ∗, θ∗)/f(x; γ∗, θ∗) 6= 0 with positive probability, the elements of

∇λλ′ l(x;ψ∗, α) are mean-zero random variables and serve as the scores.

3.2 Approximation of the log-likelihood function in quadratic form

In this section, we analyze the asymptotic behavior of the log-likelihood function. Let Ln(ψ, α) :=∑n
i=1 l(Xi;ψ, α) denote the reparameterized log-likelihood function. Define η := (γ′, ν ′)′ and η∗ :=

((γ∗)′, (θ∗)′)′ so that ψ = (η′, λ′)′ and ψ∗ = ((η∗)′, 0, . . . , 0)′. Fix the value of α ∈ (0, 1). Then,

Ln(ψ, α) has a quartic expansion around (ψ∗, α) as

Ln(ψ, α)− Ln(ψ∗, α) = ∇ηLn(ψ∗, α)(η − η∗) +
1

2!
(η − η∗)′∇ηη′Ln(ψ∗, α)(η − η∗)

+
1

2!

q∑
i=1

q∑
j=1

∇λiλjLn(ψ∗, α)λiλj +
3

3!

q∑
i=1

q∑
j=1

(η − η∗)′∇ηλiλjLn(ψ∗, α)λiλj

+
1

4!

q∑
i=1

q∑
j=1

q∑
k=1

q∑
l=1

∇λiλjλkλlLn(ψ∗, α)λiλjλkλl +Rn(ψ, α),

(8)

where Rn(ψ, α) is a remainder term whose stochastic order is established later.

We introduce some notations to simplify (8). Define qλ := q(q + 1)/2. For λ ∈ Rq, collect the
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elements of vech(λλ′) into a qλ × 1 vector:

v(λ) = (v11, . . . , vqq, v12, . . . , v1q, v23, . . . , v2q, . . . , vq−1,q)
′

:= (λ2
1, . . . , λ

2
q , λ1λ2, . . . , λ1λq, λ2λ3, . . . , λ2λq, . . . , λq−1λq)

′.

Note that the elements of v(λ) must satisfy the restriction vii ≥ 0 and vijvkl = vikvjl for all

i ≤ j ≤ k ≤ l. We rewrite the right hand side of (8) as a quadratic function of η and v(λ).

Combine η and v(λ) into a (p+ q + qλ)× 1 vector:

ζ := (η′, v(λ)′)′.

Let ∇̃ζ l(Xi;ψ, α) be a (p+ q + qλ)× 1 vector defined by

∇̃ζ l(Xi;ψ, α) := (∇η′ l(Xi;ψ, α), ∇̃v(λ)′ l(Xi;ψ, α)/(α(1− α)))′, (9)

with ∇̃v(λ)′ l(Xi;ψ, α) := (c11∇λ1λ1 li, . . . , cqq∇λqλq li, c12∇λ1λ2 li, . . . , cq−1,q∇λq−1λq li), where cjk =

1/2 if j = k and cjk = 1 if j 6= k, and ∇λjλk li denotes ∇λjλk l(Xi;ψ, α). The coefficients cij ’s

are necessary because of the coefficient (1/2!) in front of the third term on the right hand side of

(8) and because the ∇λjλk li’s with j 6= k appear twice in the expansion owing to ∇λjλk = ∇λkλj .
Define

tn(ψ, α) :=

(
n1/2(η − η∗)

n1/2α(1− α)v(λ)

)
. (10)

Define the normalized score and its variance as

Gn := n−1/2
n∑
i=1

∇̃ζ l(Xi;ψ
∗, α) and I := E[∇̃ζ l(Xi;ψ

∗, α)∇̃ζ′ l(Xi;ψ
∗, α)], (11)

respectively, where ∇̃ζ l(Xi;ψ
∗, α) satisfies

∇̃ζ l(Xi;ψ
∗, α) =

 ∇γf(Xi; γ
∗, θ∗)/f(Xi; γ

∗, θ∗)

∇θf(Xi; γ
∗, θ∗)/f(Xi; γ

∗, θ∗)

∇̃v(θ)f(Xi; γ
∗, θ∗)/f(Xi; γ

∗, θ∗)


with ∇̃v(θ)f(Xi; γ

∗, θ∗) defined similarly to ∇̃v(λ)l(Xi;ψ, α). Note that neither Gn nor I depends

on α. With these notations, (8) can be written as a quadratic expansion in terms of tn(ψ, α):

Ln(ψ, α)− Ln(ψ∗, α) = tn(ψ, α)′Gn −
1

2
tn(ψ, α)′Intn(ψ, α) +Rn(ψ, α), (12)

where In corresponds to the negative of the sample Hessian, which converges to I in probability.

For brevity, the formula of In is provided in the proof of Proposition 2. We introduce the following

sufficient condition for expanding the log-likelihood function four times:
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Assumption 2. (a) γ∗ and θ∗ are in the interior of Θγ×Θθ. (b) For every x, f(x; γ, θ) is four times

continuously differentiable in a neighborhood of (γ∗, θ∗). (c) For α ∈ (0, 1), E supψ∈N ||∇(k) ln f(X;ψ, α)|| <
∞ for a neighborhood N of ψ∗ and for k = 1, . . . , 4, where ∇(k) denotes the kth derivative w.r.t.

ψ. (d) For α ∈ (0, 1), E||∇(k)f(X;ψ∗, α)/f(X;ψ∗, α)||2 <∞ for k = 1, 2, 3.

The following proposition establishes the asymptotic behavior of Rn(ψ, α), In, and Gn.

Proposition 2. Suppose that Assumption 2 holds. Then, for each α ∈ (0, 1), we have (a) for

any δ > 0, lim supn→∞ Pr(supψ∈Θψ :||ψ−ψ∗||≤κ |Rn(ψ, α)| > δ(1 + ||tn(ψ, α)||)2) → 0 as κ → 0. (b)

Gn →d G ∼ N(0, I), (c) In →p I.

3.3 The asymptotic distribution of the LRT statistics for testing H01

In this section, we derive the asymptotics of the LRT statistic for testing H01, building on the

representation (12) and Proposition 2. Let us introduce an assumption on the rank of I.

Assumption 3. I is finite and positive definite.

In view of ∇xyf(x, y)/f(x, y) = ∇xy ln f(x, y) +∇x ln f(x, y)∇y ln f(x, y), Assumption 3 holds

if the covariance matrix of (∇(γ′,θ′) ln f(Xi; γ
∗, θ∗),

(vech(∇θθ′ ln f(Xi; γ
∗, θ∗) +∇θ ln f(Xi; γ

∗, θ∗)∇θ′ ln f(Xi; γ
∗, θ∗))′)′ is finite and nonsingular.

Define Zn := I−1
n Gn, and rewrite (12) as

Ln(ψ, α)− Ln(ψ∗, α) =
1

2
Z ′nInZn −

1

2
[tn(ψ, α)− Zn]′In[tn(ψ, α)− Zn] +Rn(ψ, α). (13)

Let Θη be the parameter space of η = (γ′, ν ′)′, and let Θλ be the parameter space of λ so that

Θψ = {ψ = (η′, λ′)′ : η ∈ Θη; λ ∈ Θλ}.
The set of feasible values of tn(ψ, α) is given by the shifted and rescaled parameter space for

(η, v(λ)) defined as Λn := n1/2(Θη − η∗) × n1/2α(1 − α)v(Θλ), where v(A) := {x ∈ Rqλ : x =

v(λ) for some λ ∈ A ⊂ Rq}. Because Λn/n
1/2 is locally approximated by a cone Λ := Rp+q× v(Rq)

(see Andrews (1999) for the definition of “locally approximated by a cone”), the supremum of the

left hand side of (13) is approximated as follows (Andrews, 1999, Lemma 2, Theorem 3):

sup
ψ∈Θψ

2{Ln(ψ, α)− Ln(ψ∗, α)} = Z ′nInZn − inf
t∈Λ

(t− Zn)′In(t− Zn) + op(1)

→d Z
′IZ − inf

t∈Λ
(t− Z)′I(t− Z) = t̂′I t̂,

(14)

where Z ∼ N(0, I−1) and t̂ is a version of the projection of a Gaussian random vector Z onto the

cone Λ w.r.t. the norm (t′It)1/2 defined by

g(t̂) = inf
t∈Λ

g(t), g(t) := (t− Z)′I(t− Z). (15)
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Here, t̂ is not necessarily unique because Λ is not necessarily convex. The equality (14) uses

the orthogonality condition t̂′I(t̂ − Z) = 0; see Andrews (1999, p. 1361) or Lindsay (1995, p.

98). Combining (14) with the asymptotic representation of the log-likelihood function of the one-

component model, we obtain the asymptotic distribution of the LRT statistic.

We collect some notations before providing a formal proposition. Partition Z and G as

Z =

[
Zη

Zλ

]
, G =

[
Gη

Gλ

]
, Zη, Gη : (p+ q)× 1, Zλ, Gλ : qλ × 1.

Define Iη := E(GηG
′
η), Iλη := E(GλG

′
η), Iηλ := I ′λη, and Iλ := E(GλG

′
λ). Note that Zλ =

I−1
λ.ηGλ.η, where Gλ.η := Gλ − IληI−1

η Gη and Iλ.η := Iλλ − IληI−1
η Iηλ = var(Gη.λ) = (var(Zλ))−1.

Similar to t̂ in (15), define t̂λ by

gλ(t̂λ) = inf
tλ∈Λλ

gλ(tλ), gλ(tλ) := (tλ − Zλ)′Iλ.η(tλ − Zλ), (16)

where Λλ := v(Rq).
The following proposition derives the convergence rate of the MLE and the asymptotic distribu-

tion of the LRT statistic. Let ψ̂α = (η̂′α, λ̂
′
α)′ denote the MLE that maximizes Ln(ψ, α) for a given

α. Let (γ̂0, θ̂0) denote the one-component MLE that maximizes the one-component log-likelihood

function L0,n(γ, θ) :=
∑n

i=1 ln f(Xi; γ, θ). For ε1 ∈ (0, 1/2), define the LRT statistic for testing H01

as LRn,1(ε1) := maxα∈[ε1,1−ε1] 2{Ln(ψ̂α, α) − L0,n(γ̂0, θ̂0)}. As shown in the following proposition,

the asymptotic null distribution of the LRT statistic is invariant to α.

Proposition 3. Suppose Assumptions 1, 2, and 3 hold. Then, for each α ∈ (0, 1), we have (a)

η̂α − η∗ = Op(n
−1/2) and λ̂α = Op(n

−1/4), (b) 2{Ln(ψ̂α, α)− Ln(ψ∗, α)} →d t̂
′
λIλ.η t̂λ +G′ηI−1

η Gη,

(c) 2{Ln(ψ̂α, α)− L0,n(γ̂0, θ̂0)} →d t̂
′
λIλ.η t̂λ, and (d) LRn,1(ε1)→d t̂

′
λIλ.η t̂λ.

When q=1, we have v(λ) = λ2
1, and the cone Λ becomes convex. Then, t̂λ is uniquely defined

as t̂λ = arg infλ≥0(λ − Zλ)2(V ar(Zλ))−1 = ZλI{Zλ ≥ 0}, and t̂′λIλ.η t̂λ ∼ (max{N(0, 1), 0})2.

Furthermore, it follows from Corollary 1(b) of Andrews (1999) that

n1/2v(λ̂)→d t̂λ, n1/2(η̂ − η∗)→d I−1
η Gη − I−1

η Iηλt̂λ. (17)

Hence, under the null hypothesis, the MLE of η has a non-standard asymptotic distribution. This

is also true when q ≥ 2.

In a mixture regression model with an intercept and dummy explanatory variables, Assumption

3 fails because some “second-derivative” scores, ∇λkλ` l(Xi;ψ
∗, α)’s, are perfectly correlated with the

other “second-derivative” scores. The following assumption relaxes Assumption 3 to accommodate

such cases.

Assumption 4. (a) rank(I) = p+ q+ qλ− r with 1 ≤ r < qλ, and there exists an r× qλ matrix B

of rank r such that B∇̃v(λ)l(X;ψ∗, α) = 0 and B∇(k)∇̃v(λ)l(X;ψ∗, α) = 0 for k = 1, 2 hold almost
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surely. (b) Let B⊥ be an (qλ−r)×qλ matrix such that B⊥B′ = 0 and B⊥(B⊥)′ = Iqλ−r, and define

Q
(p+q+qλ−r)×(p+q+qλ)

:=

(
Ip+q 0

0 B⊥

)
. (18)

Then, the matrix QIQ′ is finite and positive definite.

The matrix B⊥ satisfies the property in Assumption 4(b) when its rows form the basis of the or-

thogonal complement of the column space ofB′. Under Assumption 4, E[∇̃v(λ)l(Xi;ψ
∗, α)∇̃v(λ)′ l(Xi;ψ

∗, α)]

can be rank deficient by r, but the non-degenerate linear combinations B⊥∇̃v(λ)l(Xi;ψ
∗, α) are not

perfectly correlated with ∇ηl(Xi;ψ
∗, α). Furthermore, the derivatives of B∇̃v(λ)l(X;ψ∗, α) do not

provide information for identifying the parameters. As we later illustrate through examples, As-

sumptions 3 and 4 can be verified for various popular mixture models by computing the first and

the second derivatives of the log-likelihood function. When neither Assumption 3 nor Assumption

4 holds, the log-likelihood function needs to be expanded further, up to the sixth or the eighth

order, to obtain a valid approximation.

Under Assumption 4, we obtain the following expression from (12) (see the proof of Proposition

4 for the derivation):

Ln(ψ, α)− Ln(ψ∗, α) = (Qtn(ψ, α))′QGn −
1

2
(Qtn(ψ, α))′(QInQ′)Qtn(ψ, α) +Rn(ψ, α), (19)

whereRn(ψ, α) is the remainder term defined in (12). The following proposition extends Proposition

3 under Assumption 4. Define ZQ := [Z ′Qη, Z
′
Qλ]′ = (QInQ′)−1QG, where ZQλ is (qλ−r)×1. Define

t̂Qλ by t̂Qλ ∈ arg inftλ∈Λλ (B⊥tλ −ZQλ)′IQλ.η(B⊥tλ −ZQλ) and Q := (B⊥t̂Qλ)′IQλ.ηB⊥t̂Qλ, where

IQλ.η is defined similarly to Iλ.η using the submatrices of QIQ′.

Proposition 4. Suppose Assumptions 1, 2, and 4 hold. Then, for each α ∈ (0, 1), we have (a) for

any ε > 0, lim supn→∞ Pr(supψ∈Θψ :||ψ−ψ∗||≤κ |Rn(ψ, α)| > ε(1 + ||Qtn(ψ, α)||)2)→ 0 as κ→ 0, (b)

η̂α − η∗ = Op(n
−1/2) and B⊥v(λ̂α) = Op(n

−1/2), (c) 2{Ln(ψ̂α, α) − Ln(ψ∗, α)} →d Q + G′ηIηGη,

(d) 2{Ln(ψ̂α, α)− L0,n(γ̂0, θ̂0)} →d Q, and (e) LR1,n(ε1)→d Q.

In Proposition 4, the exact form of Q is model-specific. In the following, we provide some

examples, paying close attention to Assumptions 3 and 4. The formula of ∇v(λ)l(Xi;ψ, α) is easily

derived using the relation ∇xyf(x, y)/f(x, y) = ∇x ln f(x, y)∇y ln f(x, y) +∇xy ln f(x, y).

Example 1 (continued). (i) Consider the Weibull duration model with the conditional density

f(y|x; θj , γ) = γ2y
γ2−1 exp

(
θj + γ′1x− exp(θj + γ′1x)yγ2

)
for j = 1, 2, where θj is scalar-valued.

From (6) and (7), the derivatives of the log-density are given by ∇ν l(y|x;ψ∗, α) = 1 − exp(θ∗ +

(γ∗1)′x)yγ
∗
2 , ∇γ1 l(y|x;ψ∗, α) = x∇ν l(y|x;ψ∗, α), ∇γ2 l(y|x;ψ∗, α) = 1/γ∗2 +∇ν l(y|x;ψ∗, α) ln y, and

∇λλl(y|x;ψ∗, α) = α(1−α){[∇ν l(y|x;ψ∗, α)]2− exp(θ∗+ γ∗1x)yγ
∗
2}. Hence, by inspection, Assump-

tion 3 holds. In view of (17), one should not use the standard asymptotic normal inference on γ̂2

when the number of components is over-specified.
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(ii) Consider another Weibull duration model with the conditional density f(y|x; θj , γ) =

γyγ−1 exp(θj1 + θj2x − exp(θj1 + θj2x)yγ). Then, we have ∇ν1 l(y|x;ψ∗, α) = 1 − exp(θ∗1 + θ∗2x)yγ
∗
,

∇ν2 l(y|x;ψ∗, α) = x∇ν1 l(y|x;ψ∗, α), ∇γl(y|x;ψ∗, α) = 1/γ∗ +∇ν1 l(y|x;ψ∗, α) ln y, and ∇λ1λ1 l(y|x;ψ∗, α)/2

∇λ2λ2 l(y|x;ψ∗, α)/2

∇λ1λ2 l(y|x;ψ∗, α)

 =

 α(1− α){[∇ν1 l(y|x;ψ∗, α)]2 − exp(θ∗1 + θ∗2x)yγ
∗}/2

x2∇λ1λ1 l(y|x;ψ∗, α)/2

x∇λ1λ1 l(y|x;ψ∗, α)

 . (20)

When X is neither a constant nor a dummy variable, I is of full rank and Assumption 3 holds.

(iii) Suppose X is a dummy variable in model (ii). We consider a parameterization such that

x1 and x2 are dummy variables each taking the value 0 or 1 and satisfying x1 + x2 = 1.4 Let

the density be f(y|x; γ, θj) = γyγ−1 exp(θj1x1 + θj2x2 − exp(θj1x1 + θj2x2)yγ). Because x1x2 = 0, we

have ∇λ1λ2 l(y|x;ψ∗, α) = 0, and Assumption 3 fails. Assumption 4 holds with B = (0, 0, 1) and

B⊥ = ( 1 0 0
0 1 0 ), and we may apply Proposition 4 with

QGn = n−1/2
n∑
i=1

 ∇ηl(Yi|Xi;ψ
∗, α)

X1i∇λ1λ1 l(Yi|Xi;ψ
∗, α)/2α(1− α)

X2i∇λ2λ2 l(Yi|Xi;ψ
∗, α)/2α(1− α)

 and Qtn(ψ, α) =

 n1/2(η − η∗)
n1/2α(1− α)λ2

1

n1/2α(1− α)λ2
2

 ,

where ∇λ1λ1 l(Yi|Xi;ψ
∗, α) and ∇λ2λ2 l(Yi|Xi;ψ

∗, α) are defined in (20).

Assumption 3 does not hold for normal regression model with unknown variance.

Example 2 (Normal mixtures). Consider a mixture of normal regressions with a common variance

αf(y; θ1 +w′β, σ2)+(1−α)f(y; θ2 +w′β, σ2), where f(y;µ, σ2) = (1/σ)φ((y−µ)/σ) and φ(z) is the

standard normal density. Here, the structural parameter is γ = (β′, σ2)′. Because ∇µµf(y;µ, σ2) =

2∇σ2f(y;µ, σ2) holds, ∇λλl(y|x;ψ∗, α) is perfectly correlated with ∇σ2 l(y|x;ψ∗, α), and Assumption

4 is violated. Similarly, Assumption 4 is violated when the variance is component-specific. Cho and

White (2007), Chen and Li (2009), Chen et al. (2012), and Kasahara and Shimotsu (2012) analyze

likelihood-based test of the number of components in normal mixture models.

3.4 The asymptotic distribution of the LRT statistic for testing H02

We now examine the LRT statistic for testing H02 : α(1−α) = 0. We focus on the null hypothesis

of α = 0 below because, by symmetry, the analysis for α = 1 is the same. Because λ is not identified

when H02 is true, we follow Andrews (2001, p. 694) and derive the limit of the LRT statistic for each

λ in Θλ(ε2) = {λ ∈ Θλ : ||λ|| ≥ ε2} for some ε2 > 0 and then take its supremum over λ ∈ Θλ(ε2).

To simplify the asymptotic representation and regularity conditions, we use the parameter

λ = θ1−θ2 defined in (3) and reparameterize (θ1, θ2) to (λ, θ2). Define ξ := (γ′, (θ2)′)′ ∈ Θξ so that

4This parameterization gives a simpler representation of QGn and Qtn(ψ, α) than that with a constant term and
one dummy variable.

12



the model parameters are (ξ, λ, α), and define the reparameterized log-density as l(x; ξ, λ, α) :=

ln(αf(x; γ, θ2 + λ) + (1− α)f(x; γ, θ2)). Collect the partial derivative of l(x; ξ, λ, α) w.r.t ξ and its

right partial derivative w.r.t. α evaluated at (ξ∗, λ, 0) as

s(x;λ) :=

(
sξ(x)

sα(x;λ)

)
:=

(
∇ξl(x; ξ∗, λ, 0)

∇αl(x; ξ∗, λ, 0)

)
=


∇(γ′,θ′)′f(x; γ∗, θ∗)

f(x; γ∗, θ∗)
f(x; γ∗, θ∗ + λ)− f(x; γ∗, θ∗)

f(x; γ∗, θ∗)

 . (21)

Define J (λ) := E[s(Xi;λ)s(Xi;λ)′], and define its submatrices as Jξ := E[sξ(Xi)sξ(Xi)
′], Jξα(λ) :=

E[sξ(Xi)sα(Xi;λ)], Jαξ(λ) := Jξα(λ)′, and Jα(λ) := E[sα(Xi;λ)2]. Let {G(λ) = (G′ξ, Gα(λ))′ : λ ∈
Θλ(ε2)} be a mean zero R(p+q+1)-valued Gaussian process such that E[G(λ)G(λ)′] = J (λ), where

Gξ is (p+q)×1 and independent of λ, andGα(λ) is 1×1. DefineGα.ξ(λ) := Gα(λ)−Jαξ(λ)J −1
ξ (λ)Gξ

and Jα.ξ(λ) := Jα(λ)− Jαξ(λ)J −1
ξ Jξα(λ) = E[Gα.ξ(λ)2]. Define the LRT statistic for testing H02

as LRn,2(ε2) := 2{max(ξ,λ,α)∈Θξ×Θλ(ε2)×[0,1/2] Ln(ξ, λ, α)− L0,n(γ̂0, θ̂0)}.

Assumption 5. (a) γ∗ and θ∗ are in the interior of Θγ ×Θθ. (b) f(x; γ, θ) is twice continuously

differentiable on Θγ×Θθ. (c) J (λ) satisfies 0 < infλ∈Θλ(ε2) ρmin(J (λ)) ≤ supλ∈Θλ(ε2) ρmax(J (λ)) <

∞, where ρmin(A) and ρmax(A) are the smallest and the largest eigenvalues of matrix A, respectively.

Proposition 5. Suppose Assumptions 1 and 5 hold. Then,

LRn,2(ε2)→d supλ∈Θλ(ε2)(max{0,Jα.ξ(λ)−1/2Gα.ξ(λ)})2.

A necessary condition for Assumption 5(c) is supλ∈Θλ(ε2)E[∇αl(Xi; ξ
∗, λ, 0)]2 <∞. This condi-

tion is violated in many models including the following Weibull duration model. Furthermore, LCM

and Chen and Li (2009) show that a mixture of exponentials and a mixture of normals, respectively,

have the same infinite variance problem. The asymptotic distribution of the LRT statistic in such

cases remains an open question. In Section 4, we develop a test of H0 that does not rely on this

assumption.

Example 1 (continued). Consider the Weibull duration model (ii) with the density function

f(y|x; γ, θj) = γyγ−1 exp[θj1 + θj2x − exp(θj1 + θj2x)yγ ] for j = 1, 2. The score w.r.t. α at (ξ∗, λ, 0)

is given by ∇αl(y|x; ξ∗, λ, 0) = exp{λ1 + λ2x− [exp(θ∗1 + λ1 + (θ∗2 + λ2)x)− exp(θ∗1 + θ∗2x)]yγ} − 1.

The conditional variance of ∇αl(Y |X; ξ∗, λ, 0) given X is

E
[
(∇αl(Y |X; ξ∗, λ, 0))2|X

]
=

−1 + exp(λ1+λ2X)
2−exp(−λ1−λ2X) if λ1 + λ2X > − ln 2,

∞ if λ1 + λ2X ≤ − ln 2.

Hence, the score has an infinite variance when Pr(λ1 + λ2X ≤ − ln 2) > 0.

3.5 The asymptotic distribution of the LRT statistic for testing H0

In this section, we complete the analysis of the LRT statistic for testing H0 : (θ1 − θ2)α(1− α)=0

by analyzing the asymptotic behavior of Ln(ξ, λ, α) when λ is small. Define the complement of
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Θλ(ε2) as Θλ(ε2) = {λ ∈ Θλ : ||λ|| < ε2}, and define the LRT statistic when λ ∈ Θλ(ε2) as

LRn,2(ε2) := 2{sup(ξ,λ,α)∈Θξ×Θλ(ε2)×[0,1/2] Ln(ξ, λ, α) − L0,n(γ̂0, θ̂0)}. Define the LRT statistic for

testing H0 as LRn := 2{Ln(α̂, γ̂, θ̂1, θ̂2)− L0,n(γ̂0, θ̂0)}.

Proposition 6. (a) Suppose Assumptions 1, 2, and 3 hold. Then, LRn,2(ε2) = LRn,1(ε1)+Rn(ε2),

where lim supn→∞ Pr(|Rn(ε2)| > δ) → 0 as ε2 → 0 for any δ > 0. (b) Suppose Assumptions 1, 2,

3, and 5 hold. Then LRn →d supλ∈Θλ
(max{0,Jα.ξ(λ)−1/2Gα.ξ(λ)})2.

Proposition 6(b) shows that the asymptotic distribution of the LRT statistic for testing H0 is

the supremum of the square of a Gaussian process over Θλ, thus generalizing the results of Chen

and Chen (2001) and Cho and White (2007, 2010) to the case with a vector mixing parameter.

Here, both the compactness of the parameter space Θθ and the finiteness of Fisher information

under H02 are crucial.

Proposition 6 does not apply to testing the homogeneity in the normal mixture with a common

variance because neither Assumption 3 nor Assumption 4 holds (see Example 2). Chen and Chen

(2003) and Cho and White (2007) derive the asymptotic distribution of the LRT statistic in such

a case.

4 Likelihood ratio test of H0 : m = m0 against H0 : m = m0 + 1

In this section, we derive the asymptotic distribution of the LRT statistic for testing m0 against

m0 + 1 components for any m0 ≥ 1. When m0 ≥ 2, there are many ways to generate the m0-

component true model from the (m0+1)-component model. We develop a partition of the parameter

space, where each subset corresponds to a specific way of generating the true model. We then derive

the asymptotic distribution of the LRT statistic for each subset, and characterize the asymptotic

distribution of the LRT statistic by their maximum.

Consider the mixture pdf with m0 components f0(x;ϕ0) =
∑m0

j=1 α
j
0f(x; γ0, θ

j
0), where ϕ0 :=

(α′0, γ
′
0, ϑ
′
0)′, α0 := (α1

0, . . . , α
m0−1
0 )′ ∈ Θα0 := {(α1, . . . , αm0−1)′ : αj ≥ 0,

∑m0−1
j=1 αj ∈ (0, 1)},

and ϑ0 := ((θ1
0)′, . . . , (θm0

0 )′)′ ∈ Θϑ0 := Θm0
θ with Θθ ⊂ Rq. Here, the subscript “0” signifies the

parameter of the m0–component model. The parameter αm0
0 is omitted from α0 and is determined

by αm0
0 = 1−

∑m0−1
j=1 αj0. We define Θϕ0 := Θα0 ×Θγ ×Θϑ0 .

We assume that a random sample X1, . . . , Xn of size n is generated from this m0-component

mixture density with the true parameter value ϕ∗0 = ((α∗0)′, (γ∗)′, (ϑ∗0)′)′, where αj∗0 > 0 for j =

1, . . . ,m0:

f0(x;ϕ∗0) :=

m0∑
j=1

αj∗0 f(x; γ∗0 , θ
j∗
0 ). (22)

Finite mixture models are identified only up to label switching. Thus, for identification, we assume

that θ1∗
0 < . . . < θm0∗

0 using the lexicographic order.
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We are interested in testing the number of components in a finite mixture model:

H0 : m = m0 against HA : m = m0 + 1.

Let the density of an (m0 + 1)–component mixture model be

f(x;ϕ) :=

m0+1∑
j=1

αjf(x; γ, θj), (23)

where ϕ := (α′, γ′, ϑ′)′, α := (α1, . . . , αm0)′ with αm0+1 = 1−
∑m0

j=1 α
j , and ϑ := ((θ1)′, . . . , (θm0+1)′)′ ∈

Θϑ := Θm0+1
θ . Define the set of admissible values of α by Θα := {(α1, . . . , αm0)′ : αj ≥ 0,

∑m0
j=1 α

j ∈
[0, 1]}, and let Θϕ := Θα×Θγ ×Θϑ. Define a subset of Θϕ that excludes α on the boundary of Θα

as Θϕ+ := {ϕ ∈ Θϕ : αj > 0,
∑m0

j=1 α
j ∈ (0, 1)}. Define the set of the values of ϕ that gives rise to

the true density (22) as Υ∗ := {ϕ : f(X;ϕ) = f0(X;ϕ∗0) with probability one}.
Define the unrestricted ((m0 + 1)-component) and the restricted (m0-component) MLE as

ϕ̂ = arg max
ϕ∈Θϕ

Ln(ϕ) and ϕ̂0 = arg max
ϕ0∈Θϕ0

L0,n(ϕ0), (24)

respectively, where Ln(ϕ) :=
∑n

i=1 ln f(Xi;ϕ) and L0,n(ϕ0) :=
∑n

i=1 ln f0(Xi;ϕ0). As the following

proposition shows, the unrestricted MLE is consistent in the sense that the distance between ϕ̂ and

Υ∗ tends to 0 in probability. Its proof is essentially the same as the proof of Proposition 1 and

hence is omitted. Assumption 6 extends Assumption 1 to the (m0 + 1)-component model.

Assumption 6. (a) If ϕ /∈ Υ∗, then f(X;ϕ) 6= f0(X;ϕ∗0) with a nonzero probability. (b) Assump-

tion 1(b)-(d) hold.

Proposition 7. Suppose Assumption 6 holds. Then, we have infϕ∈Υ∗ ||ϕ̂− ϕ|| →p 0.

The model (23) generates the true density (22) in two different cases: (i) two components have

the same mixing parameter so that θh = θh+1 = θh∗0 for some h, and (ii) one component has zero

mixing proportion so that αh = 0 for some h. Accordingly, we define the subsets of the parameter

space Θϕ corresponding to (i) and (ii) as, for h = 1, . . . ,m0,

Υ∗1h :=
{
ϕ ∈ Θϕ+ : αh + αh+1 = αh∗0 and θh = θh+1 = θh∗0 ;

αj = αj∗0 and θj = θj∗0 for j < h;

αj = αj−1∗
0 and θj = θj−1∗

0 for j > h+ 1; γ = γ∗
}
,
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and for h = 1, . . . ,m0 + 1,

Υ∗2h :=
{
ϕ ∈ Θϕ : αh = 0; αj = αj∗0 and θj = θj∗0 for j < h;

αj = αj−1∗
0 and θj = θj−1∗

0 for j > h; γ = γ∗
}
.

Because one can always permute the component labels on the (αj , θj)’s, we define Υ∗kh to be the set

such that the equalities in braces hold for some permutations of the component labels. Define the

union of the Υ∗kh’s as Υ∗1 := {Υ∗11 ∪ · · · ∪Υ∗1m0
}, Υ∗2 := {Υ∗21 ∪ · · · ∪Υ∗2,m0+1}; then, Υ∗ is expressed

as Υ∗ = Υ∗1 ∪Υ∗2.

Similar to the case of the test of homogeneity, we partition the null hypothesis H0. Define

H01 = ∪m0
h=1H0,1h and H02 := ∪m0+1

h=1 H0,2h, where

H0,1h : θ1 < · · · < θh−1 < θh = θh+1 < θh+2 < · · · < θm0+1

and

H0,2h : αh = 0

so that H0 = H01 ∪H02. The inequality constraints are imposed on the θj ’s for identification.

In the following, we analyze the LRT statistics of H01, H02, and H0 in turn.

4.1 Reparameterization and the LRT statistics for testing H01

In this section, we analyze the behavior of the LRT statistic for testing H01 = ∪m0
h=1H0,1h. Similar

to the case of the test of homogeneity, we approximate the log-likelihood function by expanding it

around the true parameter value. Unlike in the homogeneous case, however, the true m0-component

density (22) can be described by many different elements of the parameter space of the (m0 + 1)-

component model (23). A key observation here is that if we assume αh, αh+1 > 0, only Υ∗1h is

compatible with H0,1h because H0,1h requires that the hth largest θj and the (h + 1)th largest θj

take the same value. Therefore, if we assume αj > 0 for all j’s, the LRT statistic for testing H01 is

obtained by maximizing the log-likelihood function locally in a neighborhood of Υ∗1h for each h and

then taking the maximum of the maximized values. Furthermore, the local quadratic approximation

of the log-likelihood function around Υ∗1h is structurally identical to the approximation we derived

in Section 3 in testing H01 in the test of homogeneity.

Consider a sufficiently small neighborhood of Υ∗1h such that θ1 < · · · < θh−1 < θh, θh+1 < θh+2 <

· · · < θm0+1 holds, and introduce the following one-to-one reparameterization from (α1, . . . , αm0 , θh, θh+1)

to (β1, . . . , βm0−1, τ, ν, λ) similar to (3):

βh := αh + αh+1, τ :=
αh

αh + αh+1
, λ := θh − θh+1, ν := τθh + (1− τ)θh+1,

(β1, . . . , βh−1, βh+1 . . . , βm0−1)′ := (α1, . . . , αh−1, αh+2, . . . , αm0)′, (25)
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so that θh = ν + (1 − τ)λ and θh+1 = ν − τλ. In the reparameterized model, the null restriction

θh = θh+1 implied by H0,1h holds if and only if λ = 0.

For h < m0, collect the reparameterized model parameters other than τ and λ into

ηh := (β1, . . . , βm0−1, γ′, (θ1)′, . . . , (θh−1)′, ν ′, (θh+2)′, . . . , (θm0+1)′)′

and denote its true value by5

ηh∗ := (α1∗
0 , . . . , α

m0−1∗
0 , (γ∗)′, (θ1∗

0 )′, . . . , (θh−1∗
0 )′, (θh∗0 )′, (θh+1∗

0 )′, . . . , (θm0∗
0 )′)′. (26)

We also define ψh := ((ηh)′, λ′)′, ψh∗ := ((ηh∗)′, 0, . . . , 0)′, and define the parameter space Θψh

similarly to Θψ.

Define the density of X, f(x;ϕ), in (23) in terms of the reparameterized parameters as

fh(x;ψh, τ) := βh [τf(x; γ, ν + (1− τ)λ) + (1− τ)f(x; γ, ν − τλ)]

+

h−1∑
j=1

βjf(x; γ, θj) +

m0∑
j=h+1

βjf(x; γ, θj+1),

with βm0 = 1 −
∑m0−1

j=1 βj . As in (5), the derivative of the reparameterized density w.r.t. λ at

ψh∗ is zero by ∇λfh(x;ψh∗, τ) = βh[(1 − τ)τf(x; γ∗, θh∗0 ) − τ(1 − τ)f(x; γ∗, θh∗0 )] = 0, whereas its

derivative w.r.t. γ and ν at ψh∗ are proportional to
∑m0

j=1 α
j∗
0 ∇γf(x; γ∗, θj∗0 ) and ∇θf(x; γ∗, θh∗0 ).

Define the reparameterized log-likelihood function by

Lhn(ψh, τ) :=

n∑
i=1

lh(Xi;ψ
h, τ), where lh(x;ψh, τ) := ln fh(x;ψh, τ). (27)

Then, Lhn(ψh, τ)− Lhn(ψh∗, τ) admits the same expansion (12) as Ln(ψ, α)− Ln(ψ∗, α) with

(tn(ψ, α), Gn, In, Rn(ψ, τ)) on the right of (12) replaced with (thn(ψh, τ), Ghn, Ihn , Rhn(ψh, τ)), where

thn(ψh, τ) :=

(
n1/2(ηh − ηh∗)
n1/2τ(1− τ)v(λ)

)
, Ghn := n−1/2

n∑
i=1

∇̃ζh lh(Xi;ψ
h∗, τ), (28)

where ζh = ((ηh)′, v(λ)′)′, and ∇̃ζh lh(Xi;ψ
h∗, τ) is defined similarly to ∇̃ζ l(Xi;ψ

∗, α) in (9) and

5When h = m0, we need to redefine α as α = (α2, . . . , αm0+1)′ by dropping α1 from α and redefine ηh and ηh∗

accordingly; however, the essence of our argument remains unchanged.

17



takes the form ∇̃ζh lh(Xi;ψ
h∗, τ) = (s′αi, s

′
γi, s

′
θi, (s

h
v(θ)i)

′)′, where

sαi :=


f(Xi; γ

∗, θ1∗
0 )− f(Xi; γ

∗, θm0∗
0 )

...

f(Xi; γ
∗, θm0−1∗

0 )− f(Xi; γ
∗, θm0∗

0 )

/f0(Xi;ϕ
∗
0),

sγi :=

m0∑
j=1

αj∗0 ∇γf(Xi; γ
∗, θj∗0 )/f0(Xi;ϕ

∗
0),

sθi :=


α1∗

0 ∇θf(Xi; γ
∗, θ1∗

0 )
...

αm0∗
0 ∇θf(Xi; γ

∗, θm0∗
0 )

/f0(Xi;ϕ
∗
0),

shv(θ)i := αh∗0 ∇v(θ)f(Xi; γ
∗, θh∗0 )/f0(Xi;ϕ

∗
0).

(29)

Ihn is a matrix that converges to Ih := E[∇̃ζh lh(Xi;ψ
h∗, τ)(∇̃ζh lh(Xi;ψ

h∗, τ))′] in probability.

For τ ∈ (0, 1) and h = 1, . . . ,m0, define the local MLE of ψh by ψ̂hτ := ((η̂hτ )′, λ̂τ )′ =

arg maxψh∈N ∗h
Lhn(ψh, τ), where N ∗h is a closed neighborhood of ψh∗ such that ψh∗ is in its in-

terior and ψk∗ /∈ N ∗h for any k 6= h. Because ||θj∗0 − θk∗0 || > 0 for any j 6= k, it is possible to

construct such N ∗h ’s by making them sufficiently small. Define the local LRT statistic for test-

ing H0,1h as LRτn,1h := 2{Ln(ψ̂hτ , τ) − L0,n(ϕ̂0)}. For ε1 ∈ (0, 1/2), let Θα(ε1) := {α ∈ Θα :

α1, . . . , αm0 ∈ [ε1, 1 − ε1]}, and define the LRT statistic for testing H01 subject to α ∈ Θα(ε1) as

LRm0
n,1(ε1) := maxϕ∈Θϕ,α∈Θα(ε1) 2{Ln(ϕ)− L0,n(ϕ̂0)}.
The following proposition derives the asymptotic distribution of these LRT statistics. Collect

the unique elements of the ∇̃ζh lh(Xi;ψ
h∗, τ)’s into s1i and svi defined as s1i := (s′αi, s

′
γi, s

′
θi)
′ and

svi := ((s1
v(θ)i)

′, . . . , (sm0

v(θ)i)
′)′. Define I11 := E[s1is

′
1i], define I1v, Iv1, and Ivv similarly, and define

Iv.1 := Ivv − Iv1I−1
11 I1v. Let

G̃λ.η = ((G1
λ.η)
′, . . . , (Gm0

λ.η)
′)′ ∼ N(0, Iv.1), (30)

be an Rm0qλ–valued random vector, and define Ihλ.η := var(Ghλ.η) and Zhλ := (Ihλ.η)−1Ghλ.η. Similar

to t̂λ in the test of homogeneity, define t̂hλ by ghλ(t̂hλ) = inftλ∈Λλ g
h(tλ), where ghλ(tλ) := (tλ −

Zhλ)′Ihλ.η(tλ − Zhλ). Assumption 7 corresponds to Assumptions 2 and 3 in the homogeneous case.

Assumption 7. For h = 1, . . . ,m0, the following holds: (a) γ∗ and θh∗0 are in the interior of Θγ

and Θθ. (b) For every x, ln f(x; γ, θ) is four times continuously differentiable in a neighborhood of

(γ∗, θh∗0 ). (c) For τ ∈ [0, 1] and a neighborhood N h of ψh∗, E supψh∈Nh |∇(k) ln fh(X;ψh, τ)| <∞
for k = 1, . . . , 4. (d) For τ ∈ [0, 1], E||∇(k)fh(X;ψh∗, τ)/fh(X;ψh∗, τ)||2 < ∞ for k = 1, 2, 3. (e)

I :=
[
I11 I1v
Iv1 Ivv

]
is finite and positive definite.

Proposition 8. Suppose Assumptions 6 and 7 hold. Then, for h = 1, . . . ,m0 and for each

τ ∈ (0, 1), (a) η̂hτ − ηh∗ = Op(n
−1/2) and λ̂τ = Op(n

−1/4). (b) (LRτn,11, . . . , LR
τ
n,1m0

)′ →d
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[(t̂1λ)′I1
λ.η t̂

1
λ, . . . , (t̂

m0
λ )′Im0

λ.η t̂
m0
λ ]′. (c) LRm0

n,1(ε1)→d max{(t̂1λ)′I1
λ.η t̂

1
λ, . . . , (t̂

m0
λ )′Im0

λ.η t̂
m0
λ } if ε1 < minj α

j∗
0 .

Proposition 8 can be applied for testing m0 ≥ 2 in normal mixtures with a common variance.

Example 2. (continued) Consider testing H0 : m = m0 in mixtures of normal regressions with

a common variance f(x;ϕ) =
∑m0+1

j=1 αjf(y; θj + w′β, σ2). When m0 ≥ 2, Assumption 7(e)

holds in general because ∇σ2 lh(x;ψh∗, τ) =
∑m0

j=1 α
j∗∇σ2f(y; θj∗ + w′β∗, σ2∗), which is not per-

fectly correlated with the ∇µµf(y; θj∗ + w′β, σ2∗)’s. Then, applying Proposition 8(c), we have

LRm0
n,1(ε1) →d max{(ξ1+)2, . . . , (ξm0+)2}, where ξh+ := max{ξh, 0} and ξh := E[(Zhλ)2]−1/2Zhλ for

h = 1, ...,m0.

On the other hand, when the variance is component-specific so that f(x;ϕ) =
∑m0+1

j=1 αf(y; θj1 +

w′β, θj2), Assumption 7(e) is violated because ∇ν2 lh(x;ψh∗, τ) = ∇σ2f(y; θh∗1 + w′β∗, θh∗2 )

= (1/2)∇µµf(y; θh∗1 + w′β∗, θh∗2 ).

4.2 Testing the null hypotheses H02 and H0

As in Sections 3.4 and 3.5, we consider a testing procedure for the null hypotheses H02 and

H0. For h ∈ {1, . . . ,m0}, introduce the reparameterized parameter λh := θh − θh+1, and col-

lect all the parameters except for λh and αh into ξh ∈ Θh
ξ . Let lh(x; ξh, λh, αh) denote the

reparameterized log-density, and let Lhn(ξh, λh, αh) :=
∑n

i=1 l
h(Xi; ξ

h, λh, αh) denote the repa-

rameterized log-likelihood function. Define the LRT statistic for testing H02 as LRm0
n,2(ε2) :=

2{maxh=1,...,m0 maxξh∈Θhξ ,λ
h∈Θhλ(ε2),αh∈[0,1/2] L

h
n(ξh, λh, αh)−L0,n(ϕ̂0)}, where Θh

λ(ε2) := {λh ∈ Θλ :

||λh|| ≥ ε2} for some ε2 > 0.

As in (21), collect the partial derivative of lh(x; ξh, λh, αh) w.r.t. ξh and its right partial deriva-

tive w.r.t. αh evaluated at (ξh∗, λh, 0) as

sh(x;λh) :=

(
∇ξlh(x; ξh∗, λh, 0)

∇αh lh(x; ξh∗, λh, 0)

)
.

Note that sh(Xi;λ
h) is written as sh(Xi;λ

h) = (s′αi, s
′
γi, s

′
θi, s

h
2i(λ

h))′, where sαi, sγi, and sθi are

defined in (29) and sh2i(λ
h) := [f(Xi; γ

∗, θh∗0 + λh) − f(Xi; γ
∗, θh∗0 )]/f0(Xi;ϕ

∗
0). Collect the unique

elements of the sh(Xi;λ
h)’s into s̃i(λ̃) := (s′1i, s

1
2i(λ

1), . . . , sm0
2i (λm0))′, where s1i := (s′αi, s

′
γi, s

′
θi)
′

and λ̃ = (λ1, . . . , λm0)′. Define J̃ (λ̃) := E[s̃i(λ̃)s̃i(λ̃)′], J̃11 := E[s1is
′
1i], J̃ h12(λh) := E[s1is

h
2i(λ

h)],

J̃ h21(λh) := J̃ h12(λh)′, and J̃ h22(λh) := E[(sh2i(λ
h))2]. Let {G(λ̃) = (G′1, G

1
2(λ1), . . . , Gm0

2 (λm0))′ : λ̃ ∈
Θ̃λ(ε2) := Θ1

λ(ε2)×· · ·×Θm0
λ (ε2)} be a mean zero Gaussian process such that E[G(λ̃)G(λ̃)′] = J̃ (λ̃),

where G1 is (m0− 1 + p+m0q)× 1 and independent of λ̃, and Gh2(λh) is 1× 1. Define Gh2.1(λh) :=

Gh2(λh)− J̃ h21(λh)J̃ −1
11 G1 and J̃ h2.1(λh) := J̃ h22(λh)− J̃ h21(λh)J̃ −1

11 J̃ h12(λh) = E[(Gh2.1(λh))2].

The following propositions derive the asymptotic distribution of the LRT statistics for testing

H02 and H0. Assumption 8 corresponds to Assumption 5 in the homogeneous case. Define %h(ε2) :=

supλh∈Θhλ(ε2)(max{0, J̃ h2.1(λh)−1/2Gh2.1(λh)})2.
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Assumption 8. For h = 1, . . . ,m0, the following holds: (a) γ∗ and θh∗0 are in the interior of

Θγ × Θθ. (b) f(x; γ, θ) is twice continuously differentiable on Θγ × Θθ. (c) J̃ (λ̃) satisfies 0 <

inf λ̃∈Θ̃λ(ε2) ρmin(J̃ (λ̃)) ≤ supλ̃∈Θ̃λ(ε2) ρmax(J̃ (λ̃)) <∞.

Proposition 9. Suppose Assumptions 6 and 8 hold. Then, (a) LRm0
n,2(ε2)→d max{%1(ε2), . . . , %m0(ε2)}.

(b) Suppose Assumptions 6, 7, and 8 hold. Then, 2{Ln(ϕ̂)−L0,n(ϕ̂0)} →d max{%1(0), . . . , %m0(0)}.

Proposition 9(b) shows that the LRT statistic converges in distribution to the maximum of

m0 random variables, each of which is the supremum of the square of a Gaussian process over Θλ

and corresponds to the null hypothesis that one component density (for example, f(x; γ∗, θh∗0 )) has

redundancy.

We may obtain the p-value for testing H01 by drawing G̃λ.η from the multivariate normal

distribution in (30) and computing the (t̂hλ)′Ihλ.η t̂hλ’s across different draws of G̃λ.η. To obtain the

p-value for testing H0, we need to simulate supλh∈Θhλ
(max{0, J̃ h2.1(λh)−1/2Gh2.1(λh)})2. This involves

taking a supremum of a stochastic process over Θh
λ and is computationally challenging when the

dimension of λ is high.6 On the other hand, simulating the distribution of LRn,1(ε1) does not

involve taking the supremum over unidentified parameters and is thus less costly than simulating

the distribution of the LRT statistic in general.

5 Modified EM test

In this section, we develop a test of H0 : m = m0 against HA : m = m0 + 1 by extending the

EM approach pioneered by LCM. The proposed modified EM statistic has the same asymptotic

distribution as the LRT statistic for testing H01, and as discussed in the introduction, it has several

advantages over the LRT test.

We first develop a (local) modified EM test static for testing H0,1h : θh = θh+1. Because any of

the Υ∗1`’s is compatible with the true density f(x;ϕ∗0), we need a device to restrict our estimator

to be in a neighborhood of Υ∗1h. To this end, we construct m0 closed subsets {D∗1, . . . , D∗m0
} of the

parameter space Θθ such that θh∗0 ∈ int(Dh) and θk∗0 /∈ D∗h for any k 6= h. In practice, we may

consider, for h = 1, . . . ,m0,

D∗h := {θ ∈ Θθ : bh−1∗ ≤ θ1 ≤ bh∗} (31)

where θ1 denotes the first element of θ, b0∗ and bm0∗ are the lower and upper bounds of the support

of θ1, and bh∗ for h = 1, . . . ,m0− 1 lies in the open segment (θh∗01 , θ
h+1∗
01 ) with θh∗01 denoting the first

element of θh∗0 . When θh∗01 = θh+1∗
01 , we use the other elements of θ to construct additional cutoff

6For instance, for q = 3, if we choose 100 discrete grid points for each element of λ to approximate Θh
λ, we need

to maximize over (100)3 = 1000000 points for each draw.
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points. For h = 1, . . . ,m0, define a restricted parameter space

Ω∗h :=

{
ϑ ∈ Θϑ :θj ∈ D∗j for j = 1, . . . , h− 1;

θh, θh+1 ∈ D∗h; θj ∈ D∗j−1 for j = h+ 2, . . . ,m0 + 1

}
.

Let Ω̂h and D̂h be consistent estimates of Ω∗h and D∗h, which can be obtained from the MLE of the

m0-component model.

We test H0,1h by estimating an (m0 + 1)–component model under the restriction ϑ ∈ Ω̂h. For

example, when we test a two–component model with θ1 = θ2 against a three–component model, the

restriction becomes θ1, θ2 ∈ D̂1 and θ3 ∈ D̂2. Because ϕ̂0 is consistent, with probability approaching

one, Υ∗1h ∩ (Ω̂h ×Θγ ×Θα) is nonempty while Υ∗1` ∩ (Ω̂h ×Θγ ×Θα) is an empty set for all ` 6= h.

Therefore, if we maximize Ln(α, ϑ, γ) under the restriction {αj}m0+1
j=1 > 0 and ϑ ∈ Ω̂h, the resulting

estimator approaches a neighborhood of Υ∗1h when the true density is f(x;ϕ∗0).

In implementing a modified EM test, we consider another reparameterization similar to (25),

βh := αh + αh+1, τ :=
αh

αh + αh+1
,

(β1, . . . , βh−1, βh+1 . . . , βm0−1)′ := (α1, . . . , αh−1, αh+2, . . . , αm0)′,

β := (β1, . . . , βm0−1)′, β∗ := (α1∗
0 , . . . , α

m0−1∗
0 )′.

(32)

Let φh := (β′, γ′, ϑ′)′ with its true value φh∗ := ((β∗)′, (γ∗)′, (θ1∗
0 )′, . . . ,

(θh∗0 )′, (θh∗0 )′, . . . , (θm0∗
0 )′)′ so that the model parameter is (φh, τ) and the reparameterized density

is fh(Xi;φ
h, τ). Let Lhn(φh, τ) :=

∑n
i=1 ln fh(Xi;φ

h, τ) denote the log-likelihood function.

Let T be a finite set of numbers from (0, 0.5]. For each τ0 ∈ T , compute

φh(1)(τ0) := arg max
φh:ϑ∈Ω̂h

Lhn(φh, τ0). (33)

Note that φh(1)(τ0) maximizes the log-likelihood function without a penalty term. In the original

EM approach by LCM, φh(1)(τ0) maximizes a penalized log-likelihood function with a penalty term

p(τ) that tends to −∞ as τ approaches to 0 or 1.

Let τ (1)(τ0) = τ0. Starting from (φh(1)(τ0), τ (1)(τ0)), we update φh and τ by a generalized EM

algorithm. Henceforth, we suppress (τ0) from φh(k)(τ0) and τ (k)(τ0). Suppose we have φh(k) and

τ (k) calculated. For i = 1, . . . , n and j = 1, . . . ,m0 + 1, define the weights for an E-step as

w
j(k)
i :=

βj(k)f(Xi; γ
(k), θj(k))/f(Xi;φ

h(k), τ (k)) for j = 1, . . . , h− 1,

βj−1(k)f(Xi; γ
(k), θj(k))/f(Xi;φ

h(k), τ (k)) for j = h+ 2, . . . ,m0 + 1,

w
h(k)
i :=

τ (k)βh(k)f(Xi; γ
(k), θh(k))

f(Xi;φh(k), τ (k))
, w

h+1(k)
i :=

(1− τ (k))βh(k)f(Xi; γ
(k), θh+1(k))

f(Xi;φh(k), τ (k))
.
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In an M-step, update τ and β by

τ (k+1) :=

∑n
i=1w

h(k)
i∑n

i=1w
h(k)
i +

∑n
i=1w

h+1(k)
i

,

βj(k+1) :=


n−1

∑n
i=1w

j(k)
i for j = 1, . . . , h− 1,

n−1
∑n

i=1

(
w
h(k)
i + w

h+1(k)
i

)
, for j = h,

n−1
∑n

i=1w
j+1(k)
i for j = h+ 1, . . . ,m0,

and update γ and ϑ by

γ(k+1) := arg max
γ∈Θγ


n∑
i=1

m0+1∑
j=1

w
j(k)
i ln f(Xi; γ, θ

j(k))

 ,

θj(k+1) := arg max
θ∈Θθ

{
n∑
i=1

w
j(k)
i ln f(Xi; γ

(k+1), θ)

}
, j = 1, . . . ,m0 + 1.

We update γ and ϑ sequentially to reduce computational burden. Note that ϑ(k+1) is not restricted

to be in Ω̂h.

For each τ0 ∈ T and k, define

Mh(k)
n (τ0) := 2

{
Lhn(φh(k)(τ0), τ (k)(τ0))− L0,n(ϕ̂0)

}
.

Finally, with a pre-specified number K, define the modified local EM test statistic by taking the

maximum of M
h(K)
n (τ0) over τ0 ∈ T as

EMh(K)
n := max

{
Mh(K)
n (τ0) : τ0 ∈ T

}
.

There are m0 modified local EM test statistics. If H0 : m = m0 is correct, then each EM
h(K)
n

will have the same asymptotic size. On the other hand, different EM
h(K)
n ’s have different powers

under the alternative depending on the true parameter value. We define the modified EM-test

statistic by taking the maximum of m0 modified local EM test statistics:

EM(K)
n := max

{
EM1(K)

n ,EM2(K)
n , . . . ,EMm0(K)

n

}
.

We introduce the following additional regularity condition to derive the asymptotic distribution of

the modified EM test statistic.

Assumption 9. (a) E[f(Xi; γ
∗, θj∗0 )/f(Xi;φ

h∗, 0.5)]2 < ∞ for j = 1, . . . ,m0 + 1. (b) For a

neighborhood N h of φh∗ and for an arbitrary small ε1 > 0, we have

E sup(φh,τ)∈Nh×∈[ε1,1−ε1]

∣∣∇φh [f(Xi; γ, θ
j)/f(Xi;φ

h, τ)
]∣∣ <∞ for j = 1, . . . ,m0 + 1.
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The following proposition shows that, for any finite K, the modified EM test statistic is asymp-

totically equivalent to the LRT statistic for testing H01.

Proposition 10. Suppose that Assumptions 6, 7, and 9 hold. For any fixed finite K, as n → ∞,

{EM
h(K)
n }m0

h=1 →d {(t̂hλ)′Ihλ.η t̂hλ}
m0
h=1 and

EM(K)
n →d max

{
(t̂1λ)′I1

λ.η t̂
1
λ, . . . , (t̂

m0
λ )′Im0

λ.η t̂
m0
λ

}
,

where the (t̂hλ)′Ihλ.η t̂hλ’s are given in Proposition 8.

One can use simulations or parametric bootstrap to obtain the p-values of the modified EM

test. The consistency of the parametric bootstrap follows from the standard argument because the

distribution of (t̂hλ)′Ihλ.η t̂hλ is continuous in φh.

The modified EM test statistic has the same asymptotic distribution for any finite K, even

though it does not use a penalty term. The intuition behind this result is as follows. Note that, given

τ0, φh(1)(τ0) maximizes the log-likelihood function. When the data are from the m0-component

model, updating τ changes τ only by an op(1) amount, because the log-likelihood function is

invariant to τ ∈ (0, 1) up to an negligible term as shown in (13) and (14).

6 Simulation results

This section examines the finite sample performance of the modified EM test for H0 : m0 = 2

against H1 : m0 = 3 by Monte Carlo simulation using the Weibull model in Example 1(ii) on page

12, where X ∼ N(0, 1). Note that as illustrated in Example 1 in Section 3.4, neither the LRT

statistic for testing H02 nor the LRT statistic for testing H0 is applicable here because the Fisher

information is not finite.

We obtain the critical values for the test statistics by simulation using the result of Proposition

8(c). We set T = {0.5} and consider K = 1, K = 3, and K = 5. We set Dh by (5.1) with

bh∗ = κθh∗01 + (1− κ)θh+1∗
01 for h = 1, . . . ,m0 − 1 and κ = 0.9. The sizes and powers are computed

from 2000 simulated samples.

Table 1 reports the type I errors of the modified EM test. The data are generated from the

Weibull model in Example 1(ii) on page 12 under θ1 = (−1,−1), θ2 = (1, 1), and γ = 1 with α = 0.5

or α = 0.8. Across different values of K, the modified EM test has a good size when n ≥ 1000 if

α = 0.5 and when n = 2000 if α = 0.8. The type I errors increase with K. Comparing the upper

panel with the lower panel, we notice that the modified EM test has a better size when the mixing

proportions are equal across components at α = 0.5 than when they are unequal at α = 0.8.

The first two panels of Table 2 report the powers of the modified EM test when the data

are generated from the Weibull model in Example 1(ii) on page 12 with three components under

θ1 = (−1,−1), θ2 = (0, 0), θ3 = (1, 1), and γ = 1 with (α1, α2, α3) = (1/3, 1/3, 1/3) or (α1, α2, α3) =

(0.4, 0.4, 0.2). The power of the modified EM test increases with sample size. The power also
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increases with K but not substantially. In view of this result, we recommend using K = 1 or

K = 3. Comparing the first panel with the second panel, the modified EM test has a stronger

power when the mixing proportions are equal across components than when they are unequal

across components. The last two panels of Table 2 indicate that it is harder to correctly reject the

null hypothesis when the values of the coefficients of X are close to each other across components.

We also examine the performance of the original EM test that applies EM steps to a penalized

log-likelihood function PLhn(φh, τ) = Lhn(φh, τ) + p(τ), where the penalty term p(τ) takes the form

p(τ) = C ln(2 min{τ, 1 − τ}), as in LCM. The tuning parameter C in the penalty term affects

the finite sample performance of the EM test. We experiment with three values, C = 1, C = 2,

and C = 5, because no data-driven formula is available for this model. Following LCM, we set

T = {0.1, 0.3, 0.5} and K = 3. The type I error and powers are examined using the same model

as in Tables 1 and 2. The results are reported in Tables 3 and 4. In terms of the type I error, the

modified EM test with K = 1 and the original EM test with C = 5 perform similarly. The EM test

with C = 1 and C = 2 is oversized. In terms of power, the EM test with C = 5 performs slightly

better than the modified EM test with K = 1.

Overall, the performance of the modified EM test and original EM test are similar, although

the original EM test is slightly more powerful than the modified EM test. The modified EM test

provides a useful alternative to the EM test in applications where it is difficult to find an appropriate

value of C for the model at hand.
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Table 1: Type I errors (in %) of the modified EM test of H0 : m0 = 2 against HA : m0 = 3

nominal level 10% 5% 1% 10% 5% 1% 10% 5% 1%
K = 1 K = 3 K = 5

θ1 = (−1,−1), θ2 = (1, 1), γ = 1, α = 0.50
n = 500 13.7 7.0 1.8 14.8 8.3 2.0 15.2 8.7 2.1
n = 1000 10.2 5.4 1.0 10.4 5.9 1.1 10.7 6.2 1.1
n = 2000 9.8 5.0 1.5 10.1 5.3 1.5 10.2 5.4 1.5

θ1 = (−1,−1), θ2 = (1, 1), γ = 1, α = 0.80
n = 500 20.7 12.7 3.9 22.2 13.7 4.3 22.8 14.2 4.8
n = 1000 14.7 8.3 2.7 15.1 8.8 2.8 15.4 9.0 2.9
n = 2000 13.2 6.9 2.2 13.5 7.1 2.4 13.8 7.2 2.5

Note: Based on 2000 simulated samples. Critical values are obtained by randomly drawing 5000 statistics
at the true parameter value. We set κ = 0.9 and T = {0.5}.

Table 2: Powers (in %) of the modified EM test of H0 : m0 = 2 against HA : m0 = 3

nominal level 10% 5% 1% 10% 5% 1% 10% 5% 1%
K = 1 K = 3 K = 5

θ1 = (−1,−1), θ2 = (0, 0), θ3 = (1, 1), γ = 1, (α1, α2, α3) = (1/3, 1/3, 1/3)
n = 500 94.9 89.8 75.6 95.3 90.3 76.5 95.5 90.7 76.9
n = 1000 99.9 99.6 98.3 99.9 99.6 98.4 99.9 99.6 98.5
n = 2000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

θ1 = (−1,−1), θ2 = (0, 0), θ2 = (1, 1), γ = 1, (α1, α2, α3) = (0.4, 0.4, 0.2)
n = 500 85.2 77.3 57.6 86.6 78.9 60.5 87.2 79.6 61.6
n = 1000 98.0 96.5 90.1 98.4 97.2 90.6 98.5 97.7 91.1
n = 2000 100.0 100.0 99.7 100.0 100.0 99.7 100.0 100.0 99.7

θ1 = (−1,−0.5), θ2 = (0, 0), θ3 = (1, 0.5), γ = 1, (α1, α2, α3) = (1/3, 1/3, 1/3)
n = 500 42.8 29.9 11.2 44.1 30.8 12.0 44.9 31.4 12.4
n = 1000 64.0 53.4 29.1 64.3 53.9 29.6 64.4 54.3 30.3
n = 2000 91.5 85.6 68.5 91.5 85.8 68.7 91.6 85.8 68.7

θ1 = (−0.5,−1), θ2 = (0, 0), θ3 = (0.5, 1), γ = 1, (α1, α2, α3) = (1/3, 1/3, 1/3)
n=500 79.3 69.0 42.2 79.4 69.5 42.8 79.8 70.3 43.3
n = 1000 95.9 92.3 80.5 96.0 92.4 80.8 96.1 92.5 80.9
n = 2000 100.0 99.9 99.1 100.0 99.9 99.2 100.0 99.9 99.3

Note: Based on 2000 simulated samples. Critical values are obtained by randomly drawing 5000 statistics
at the pseudo-true parameter value. We set κ = 0.9 and T = {0.5}.
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Table 3: Type I errors (in %) of the original EM test of H0 : m0 = 2 against HA : m0 = 3

nominal level 10% 5% 1% 10% 5% 1% 10% 5% 1%
C = 1 C = 2 C = 5

θ1 = (−1,−1), θ2 = (1, 1), γ = 1, α = 0.50
n = 500 19.7 10.8 2.9 15.9 8.8 2.1 13.7 7.5 1.8
n = 1000 14.3 8.1 1.8 11.2 6.8 1.6 9.5 5.7 1.1
n = 2000 13.7 7.6 1.5 10.8 5.7 1.5 9.8 5.1 1.3

θ1 = (−1,−1), θ2 = (1, 1), γ = 1, α = 0.80
n = 500 24.2 14.9 4.9 21.3 12.8 4.4 19.4 11.8 3.8
n = 1000 17.6 10.2 3.5 15.2 8.8 2.8 13.6 7.8 2.6
n = 2000 16.6 9.3 2.9 14.0 7.5 2.5 12.0 6.4 2.2

Note: Based on 2000 simulated samples. Critical values are obtained by randomly drawing 5000 statistics
at the true parameter value. We set κ = 0.9, K = 3, and T = {0.1, 0.3, 0.5}.

Table 4: Powers (in %) of the original EM test of H0 : m0 = 2 against HA : m0 = 3

nominal level 10% 5% 1% 10% 5% 1% 10% 5% 1%
C = 1 C = 2 C = 5

θ1 = (−1,−1), θ2 = (0, 0), θ3 = (1, 1), γ = 1, (α1, α2, α3) = (1/3, 1/3, 1/3)
n = 500 95.5 92.2 78.8 95.5 91.7 78.4 95.0 91.1 77.8
n = 1000 100.0 99.8 98.8 100.0 99.7 98.7 99.9 99.7 98.5
n = 2000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

θ1 = (−1,−1), θ2 = (0, 0), θ2 = (1, 1), γ = 1, (α1, α2, α3) = (0.4, 0.4, 0.2)
n = 500 91.0 83.9 66.6 89.6 82.9 64.5 87.5 79.9 62.1
n = 1000 99.2 98.6 95.2 99.2 98.5 94.4 98.7 97.8 93.0
n = 2000 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

θ1 = (−1,−0.5), θ2 = (0, 0), θ3 = (1, 0.5), γ = 1, (α1, α2, α3) = (1/3, 1/3, 1/3)
n = 500 49.1 34.6 13.2 47.2 32.7 12.8 45.6 31.6 12.3
n = 1000 67.8 56.6 32.6 66.8 55.9 32.1 66.6 55.5 31.6
n = 2000 93.4 87.0 70.7 92.8 86.7 70.3 92.7 86.5 70.3

θ1 = (−0.5,−1), θ2 = (0, 0), θ3 = (0.5, 1), γ = 1, (α1, α2, α3) = (1/3, 1/3, 1/3)
n = 500 80.0 69.7 42.5 78.8 69.0 42.1 78.1 68.2 41.4
n = 1000 96.0 92.5 80.8 95.7 92.2 80.4 95.7 92.2 80.3
n = 2000 100.0 99.9 99.2 100.0 99.9 99.1 100.0 99.9 99.1

Note: Based on 2000 simulated samples. Critical values are obtained by randomly drawing 5000 statistics
at the pseudo-true parameter value. We set κ = 0.9, K = 3, and T = {0.1, 0.3, 0.5}.
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A Proofs

A.1 Proof of Proposition 1

Observe that 1/n times the log-likelihood function converges uniformly to E[ln f(Xi;α, γ, θ
1, θ2)]

in view of

sup(α,γ,θ1,θ2) | ln[αf(X; γ, θ1)+(1−α)f(X; γ, θ2)]| ≤ sup(γ,θ) | ln f(X; γ, θ)| and that E[ln f(Xi;α, γ, θ
1, θ2)]

is maximized when (α, γ, θ1, θ2) ∈ Γ∗. Consequently, the proof follows a standard argument such as

Theorem 2.1 of Newey and McFadden (1994) with an adjustment for the fact that the maximizer

of E[ln f(Xi;α, γ, θ
1, θ2)] is a set, not a singleton. �

A.2 Proof of Proposition 2

To prove part (a), we first show that

∇ηλjLn(ψ∗, α) = 0, ∇λiλjλkLn(ψ∗, α) = Op(n
1/2), (A.1)

∇ηηλiLn(ψ∗, α) = Op(n), ∇ηηηLn(ψ∗, α) = Op(n), (A.2)

and that for a neighborhood N of ψ∗,

sup
ψ∈Θψ∩N

∣∣∣n−1∇(4)Ln(ψ, α)− E∇(4) ln f(Xi;ψ, α)
∣∣∣ = op(1), (A.3)

E∇(4) ln f(Xi;ψ, α) is continuous in ψ∈ Θψ ∩N . (A.4)

Equation (A.1) follows from Proposition A(a)(b) and Assumption 2(d). Equation (A.2) is a simple

consequence of Assumption 2(d). Equations (A.3) and (A.4) follow from Assumption 2(c) and

Lemma 2.4 of Newey and McFadden (1994).

Expanding Ln(ψ, α) four times around (ψ∗, α), noting that ∇λLn(ψ∗, α) = 0, comparing the

expansion with the right hand side of (8), and applying (A.1)–(A.3) gives

Rn(ψ, α) = Op(n
1/2)

q∑
i=1

q∑
j=1

q∑
k=1

λiλjλk +Op(n)

(
q∑
i=1

||η − η∗||2λi + ||η − η∗||3
)

(A.5)

+Op(n)

q∑
i=1

q∑
j=1

q∑
k=1

(
||η − η∗||4 + ||η − η∗||3|λi|+ ||η − η∗||2|λiλj |+ ||η − η∗|||λiλjλk|

)
(A.6)

+
1

4!

q∑
i=1

q∑
j=1

q∑
k=1

q∑
`=1

{∇λiλjλkλ`Ln(ψ†, α)−∇λiλjλkλ`Ln(ψ∗, α)}λiλjλkλ`. (A.7)

with ψ† being between ψ and ψ∗. Because ||tn(ψ, α)||2 = n||η − η∗||2 + n
∑q

i=1

∑i
j=1 α

2(1 −
α)2|λiλj |2, the right hand side of (A.5) and the terms in (A.6) are bounded by Op(1)(||tn(ψ, α)||+
||tn(ψ, α)||2)(||η− η∗||+ ||λ||). In view of (A.3) and (A.4), (A.7) is bounded by ||tn(ψ, α)||2[d(ψ†) +
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op(1)] with d(ψ†)→ 0 as ψ† → ψ∗, where a function d(ψ†) corresponds to n−1E[∇λiλjλkλ`Ln(ψ†, α)−
∇λiλjλkλ`Ln(ψ∗, α)]. Therefore, Rn(ψ, α) = (1 + ||tn(ψ, α)||)2[d(ψ†) + op(1) + Op(||ψ − ψ∗||)], and

part (a) follows.

For part (b), note that E∇λλ′ l(X;ψ∗, α) = α(1 − α)E[∇θθ′f(X; γ∗, θ∗)/f(X; γ∗, θ∗)] = 0 from

(7). Therefore, E[∇̃ζ l(X;ψ∗, α)] = 0, and part (b) follows from the Lindeberg–Lévy central limit

theorem and the finiteness of I.

For part (c), we first provide the formula of In. Partition In as

In =

(
Inη Inηv
I ′nηv Inv

)
, Inη : (p+ q)× (p+ q), Inηv : (p+ q)× qλ, Inv : qλ × qλ.

Inη is given by Inη = −n−1∇ηη′Ln(ψ∗, α). For Inηv, define Aij = n−1∇ηλiλjLn(ψ∗, α), so that the

fourth term on the right of (8) is written as

(n/2)
∑q

i=1

∑q
j=1(η − η∗)′Aijλiλj = n

∑q
i=1

∑i
j=1 cij(η − η∗)′Aijλiλj , where the cij ’s are defined

when we introduce ∇̃ζ l(X;ψ, α) in (9). Then, by defining

Inηv = −(c11A11, . . . , cqqAqq, c12A12, . . . , cq−1,qAq−1,q)/α(1 − α), the fourth term on the right of

(8) equals −n(η − η∗)′Inηv[α(1 − α)v(λ)]. For Inv, define Bijk` = n−1(8/4!)∇λiλjλkλ`Ln(ψ∗, α) so

that the fifth term on the right of (8) is written as (n/8)
∑q

i=1

∑q
j=1

∑q
k=1

∑q
`=1Bijk`λiλjλkλ` =

(n/2)
∑q

i=1

∑i
j=1

∑q
k=1

∑k
`=1 cijck`Bijk`λiλjλkλ`. Define Inv such that the (ij, k`)’s element of Inv

is −cijck`Bijk`/α2(1−α)2, where the ij’s run over {(1, 1), . . . , (q, q), (1, 2), . . . , (q−1, q)}. Then, the

fifth term on the right of (8) equals −(n/2)[α(1 − α)v(λ)]′Inv[α(1 − α)v(λ)]. With this definition

of In, the expansion (8) is written as (12) in terms of tn(ψ, α).

We complete the proof of part (c) by showing that In →p I. Inη →p Iη holds trivially.

For Inηv, it follows from Proposition A(b), Assumption 2(c), and the law of large numbers that

Aij →p −E[∇ηl(X;ψ∗, α)∇λiλj l(X;ψ∗, α)], giving Inηv →p E[∇ηl(X,ψ∗, α)∇̃v(λ)′ l(X,ψ
∗, α)/α(1−

α)] = Iηv. For Inv, Proposition A(c), Assumption 2(c), and the law of large numbers imply that∑q
i=1

∑q
j=1

∑q
k=1

∑q
`=1Bijk`λiλjλkλ`

→p −
∑q

i=1

∑q
j=1

∑q
k=1

∑q
`=1E[∇λiλj l(X;ψ∗, α)∇λkλ` l(X;ψ∗, α)]λiλjλkλ`, where the factor (8/4!) =

1/3 in Bijk` and the three derivatives on the right hand side of Proposition A(c) cancel each other.

Therefore, we have Inv →p E[∇̃v(λ)l(X,ψ
∗, α)∇̃v(λ)′ l(X,ψ

∗, α)

/α2(1− α)2] = Iv, and In →p I follows. �
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A.3 Proof of Proposition 3

We suppress the subscript α from ψ̂α, η̂α, and λ̂α. The proof of part (a) closely follows the proof

of Theorem 1 of Andrews (1999) (A99, hereafter). Let Tn := I1/2
n tn(ψ̂, α). Then, in view of (12),

op(1) ≤ Ln(ψ̂, α)− Ln(ψ∗, α)

= T ′nI1/2
n Zn −

1

2
||Tn||2 +Rn(ψ̂, α)

= Op(||Tn||)−
1

2
||Tn||2 + (1 + ||I−1/2

n Tn||)2op(1)

= ||Tn||Op(1)− 1

2
||Tn||2 + op(||Tn||) + op(||Tn||2) + op(1),

(A.8)

where the third equality holds because I1/2
n Zn = Op(1) and Rn(ψ̂, α) = op((1 + ||I−1/2

n Tn||)2) from

Propositions 1 and 2 and Assumption 3. Rearranging this equation gives ||Tn||2 ≤ 2||Tn||Op(1) +

op(1). Denote the Op(1) term by ςn. Then, (||Tn|| − ςn)2 ≤ ς2
n + op(1) = Op(1), and taking square

roots gives ||Tn|| ≤ Op(1). In conjunction with In →p I, we obtain tn(ψ̂, α) = Op(1), giving part

(a).

Part (b) follows from Corollary 1(c) of A99. (BT , D`T (θ0),JT , ZT ) and (J , Z) in A99 cor-

respond to our (n1/2,
∑n

i=1 ∇̃ζ l(Xi;ψ
∗, α), In, Zn) and (I, Z). Furthermore, (HJ −1

∗ H ′)−1 in the

statement of Corollary 1(c) of A99 corresponds to our Iλ.η because ψ in A99 does not exist in our

setting. We verify that the conditions of Corollary 1(c) of A99 hold, namely, Assumptions 2-5, 7,

and 8 of A99 hold. Assumption 2 holds because Assumption 2* of A99 holds by our Proposition

2(a). Assumption 3 holds by our Proposition 2(b)(c) and our Assumption 3. Assumption 5 follows

from Assumption 5* and Lemma 3 of A99 with bn = n1/2 because (Θη − η∗) × v(Θλ) is locally

equal to a cone Λ. Assumption 7(a) does not apply to our problem, and Assumptions 7(b) and 8

hold from our definition of Λ.

For part (c), note that (6) implies that ∇(γ,θ)f(x; γ∗, θ∗) is identical to ∇ηf(x;ψ∗, α). Therefore,

a standard analysis gives 2{L0,n(γ̂0, θ̂0)−L0,n(γ∗, θ∗)} →d G
′
ηI−1
η Gη, where Gη is the same random

variable as that in part (b). Hence, part (c) follows from subtracting 2{L0,n(γ̂0, θ̂0)− L0,n(γ∗, θ∗)}
from 2{Ln(ψ̂α, α)− Ln(ψ∗, α)} and using Ln(ψ∗, α) = L0,n(γ∗, θ∗). Part (d) follows from part (c).

�

A.4 Proof of Proposition 4

We prove part (a) by adjusting the proof of Proposition 2(a) to take into account Assumption 4(a).

Define a nonsingular matrix Q̃ :=
(

Q
[0 B]

)
. Then, under Assumption 4, we obtain the following
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expression from (12):

Ln(ψ, α)− Ln(ψ∗, α)

= (tn(ψ, α))′Q̃−1Q̃Gn −
1

2
tn(ψ, α)′Q̃−1Q̃InQ̃′(Q̃′)−1tn(ψ, α) +Rn(ψ, α)

= (Qtn(ψ, α))′QGn −
1

2
(Qtn(ψ, α))′(QInQ′)Qtn(ψ, α) +Rn(ψ, α)

=
1

2
Z ′Q,n(QInQ′)ZQ,n −

1

2
[Qtn(ψ)− ZQ,n]′(QInQ′)[Qtn(ψ)− ZQ,n] +Rn(ψ, α),

where ZQ,n := (QInQ′)−1QGn, and the second equality follows from Q̃Gn =
(
QGn

0

)
, (Q̃−1)′tn(ψ, α) =(

Qtn(ψ,α)

(BB′)−1Bn1/2(η−η∗)

)
, and Q̃′IQ̃ =

(
QIQ′ 0

0 0

)
. Write Rn(ψ, α) in (A.5)-(A.7) as

Rn(ψ, α) = R1n +R2n +R3n + (1 + ||n1/2(η − η∗)||)2Op(||η − η∗||+ ||λ||),

where R1n, R2n, and R3n correspond to the first term in the right hand side of (A.5), the fourth

term in (A.6), and (A.7), respectively, and are given by

R1n = O(1)
∑q

j=1 λjv(λ)′
∑n

i=1∇λj∇̃v(λ)l(Xi;ψ
∗, α),

R2n = O(1)
∑q

j=1 λjv(λ)′
∑n

i=1∇λjη′∇̃v(λ)l(Xi;ψ
∗, α)(η − η∗), and

R3n = O(1)v(λ)′
∑n

i=1 ∇̃v(λ)∇̃v(λ)′ [l(Xi;ψ
†, α)− l(Xi;ψ

∗, α)]v(λ).

Define P =
(
B⊥
B

)
and B− = B′(BB′)−1; then, P−1 is given by P−1 = [(B⊥)′

...B−]. For R1n,

note that it follows from Assumption 4(a) that

v(λ)′∇λj∇̃v(λ)l(Xi;ψ
∗, α) = v(λ)′P−1P∇λj∇̃v(λ)l(Xi;ψ

∗, α)

= (B⊥v(λ))′B⊥∇λj∇̃v(λ)l(Xi;ψ
∗, α).

Hence, R1n = n1/2B⊥v(λ)Op(||λ||) holds. A similar argument in view of (A.3) and (A.4) gives

R2n = n1/2(η − η∗)′n1/2B⊥v(λ)Op(||λ||) and R3n = n1/2B⊥v(λ)′[d(ψ†) + op(1)]n1/2B⊥v(λ), where

d(ψ†) is defined similarly to d(ψ†) in the proof of Proposition 2. Therefore, Rn(ψ, α) = (1 +

||Qtn(ψ, α)||)2

[d(ψ†) + op(1) +Op(||ψ − ψ∗||)], giving part (a).

Part (b) follows from applying the proof of Proposition 3(a) to (19). Parts (c)-(e) follow from

repeating the proof of Proposition 3(b)-(d). �

A.5 Proof of Proposition 5

The proof is based on Theorem 2(b) of Andrews (2001). Observe that, for each λ ∈ Θλ(ε2), the

log-likelihood function Ln(ξ, λ, α) can be approximated around (ξ, α) = (ξ∗, 0) using the partial

derivative w.r.t ξ and the right partial derivative w.r.t. α as (compare it with equation (3.3) of
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Andrews (2001, p. 694))

Ln(ξ, λ, α)− Ln(ξ∗, λ, 0) =
1

2
Zn(λ)′Jn(λ)Zn(λ)

− 1

2
[tn(ξ, α)− Zn(λ)]′Jn(λ)[tn(ξ, α)− Zn(λ)] +Rn(ξ, λ, α),

(A.9)

where Rn(ξ, λ, α) is a remainder term, and Jn(λ), Zn(λ), and tn(ξ, α) are defined as

Jn(λ) :=
1

n

n∑
i=1

s(Xi;λ)s(Xi;λ)′, Zn(λ) := Jn(λ)−1n−1/2
n∑
i=1

s(Xi;λ),

tn(ξ, α) :=

(
n1/2(ξ − ξ∗)

n1/2α

)
,

(A.10)

with s(Xi;λ) defined in (21). (θ, π) and (BT , D`T (θ0, π),JTπ, ZTπ) in Andrews (2001) correspond

to our ((ξ′, α)′, λ) and (n1/2,
∑n

i=1 s(Xi;λ),Jn(λ), Zn(λ)).

We prove the stated result by applying Theorem 2(b) of Andrews (2001) to (A.9). (β, δ, π) and

(BT , Gπ,Jπ, Zπ, Zβπ) in Andrews (2001, pp. 697-699) correspond to our (α, ξ, λ) and

(n1/2, G(λ),J (λ), Z(λ), Zα(λ)), where Z(λ) := J (λ)−1G(λ), Zα(λ) := Jα.ξ(λ)−1Gα.ξ(λ), and ψ

in Andrews (2001, pp. 697-699) does not exist in our setting. The stated result then follows

because sξ(x) is identical to the score of the one-component model and λ̂′βπ(HJ −1
∗π H

′)−1λ̂βπ in

Theorem 2(b) of Andrews (2001) is distributed as (max{0,Jα.ξ(λ)−1/2Gα.ξ(λ)})2. We proceed to

verify the assumptions of Theorem 2(b) of Andrews (2001) (hereafter, A-Assumptions 22∗ , 3-5,

7, and 8). A-Assumption 22∗(a)(b) follow from our Assumption 5(a)(b). A-Assumption 22∗(c)

holds because our Assumptions 1 and 5(c) and the uniform law of large numbers imply that

supλ∈Θλ(ε2) ||Jn(λ)−J (λ)|| →p 0 and J (λ) is continuous. A-Assumption 3 follows from Proposition

B(a), supλ∈Θλ(ε2) ||Jn(λ) − J (λ)|| →p 0, and our Assumption 5(c). A-Assumption 4 follows from

Lemma 1 of Andrews (2001) because, for each λ ∈ Θλ(ε2), (ξ̃(λ), α̃(λ)) = arg max(ξ,α)∈Θξ×[0,1/2] Ln(ξ, λ, α)

converges to (ξ∗, 0) in probability from the standard consistency proof. A-Assumption 5 holds be-

cause (i) the set [0, 1] equals a nonnegative half-line locally around 0, and (ii) Θξ − ξ∗ is locally

equal to Rp+q. A-Assumption 7(a) is not relevant for our problem. A-Assumptions 7(b) and 8

follow from our proof of A-Assumption 5. �

A.6 Proof of Proposition 6

The proof is similar to the proof of Lemma 6 of Cho and White (2007). For brevity, we drop γ from

f(x; γ, θ) so that ξ = θ2, assume λ is scalar, and let f∗i and ∇f∗i denote f(Xi; θ
∗) and its derivative,

respectively. Define the leading term in the approximation (A.9) of Ln(ξ, λ, α) − Ln(ξ∗, λ, 0) as

Dn(ξ, α, λ) := (1/2)Zn(λ)′Jn(λ)Zn(λ) − (1/2)[tn(ξ, α) − Zn(λ)]′Jn(λ)[tn(ξ, α) − Zn(λ)]; then, the

stated result follows if we show that the maximum of Dn(ξ, α, λ) over (ξ, α, λ) is the same as the

maximum of (13) over ψα up to an op(1) term when λ is small. Note that Assumption 5 is implied
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by Assumption 2 and 3 when λ is small.

We proceed to obtain an approximation ofDn(ξ, α, λ) when λ is small. Expanding∇αl(x; ξ∗, λ, 0)

around λ = 0 twice gives

∇αl(x; ξ∗, λ, 0) =
∇θf(x; θ∗)

f(x; θ∗)
λ+

1

2

∇θθf(x; θ∗)

f(x; θ∗)
λ2 + r(x;λ†)λ2, (A.11)

where r(x;λ†) := (1/2)([∇θθf(x; θ∗ + λ†) − ∇θθf(x; θ∗)]/f(x; θ∗) with λ† ∈ [0, λ]. Substituting

(A.11) into tn(ξ, α)′JnZn(λ) and tn(ξ, α)′Jn(λ)tn(ξ, α) and rearranging terms gives

tn(ξ, α)′JnZn(λ) = t̃n(ξ, α)′G̃n + rn(λ†)n1/2αλ2,

tn(ξ, α)′Jn(λ)tn(ξ, α) = t̃n(ξ, α)′Ĩnt̃n(ξ, α) +An(λ†)O(||t̃n(ξ, α)||2),
(A.12)

where t̃n(ξ, α) := (n1/2(ξ + αλ− ξ∗), n1/2αλ2)′, G̃n := n−1/2
∑n

i=1 gi and Ĩn := n−1
∑n

i=1 gig
′
i with

gi := (∇θf∗i /f∗i ,∇θθf∗i /2f∗i )′, rn(λ†) := n−1/2
∑n

i=1 r(Xi;λ
†), andAn(λ†) := n−1

∑n
i=1 r(Xi, λ

†)[∇θf∗i /f∗i +

∇θθf∗i /2f∗i + r(Xi, λ
†)]. Note that lim supn→∞ Pr(|An(λ†)| > δ) → 0 as λ† → 0 for any δ > 0 and

rn(λ) converges to a stochastic process r(λ) that is continuous in λ. Moreover, r(0)=0 because

E[r(Xi;λ
†)] = 0 for any λ† and r(Xi; 0) = 0.

Substituting (A.12) into Dn(ξ, α, λ) and defining Z̃n := Ĩ−1
n G̃n, we obtain Dn(ξ, α, λ) =

(1/2)Z̃ ′nĨnZ̃n−(1/2)[t̃n(ξ, α)−Z̃n]′Ĩn[t̃n(ξ, α)−Z̃n]+Rn(λ), where lim supn→∞ Pr(sup||λ||≤κ |Rn(λ)| >
δ(1 + ||t̃n(ξ, α)||)2)→ 0 as κ→ 0. Finally, observe that G̃n is equal to Gn defined in (11). There-

fore, part (a) follows from comparing Dn(ξ, α, λ) with (13). Part (b) follows from part (a) and

Proposition 5. �

A.7 Proof of Proposition 8

We first prove that ψ̂hτ −ψh∗ = op(1) for τ ∈ (0, 1). Because ψ`∗ /∈ N ∗h for any ` 6= h, ψh∗ is the only

parameter value in N ∗h that generates the true density. Consequently, ψ̂hτ − ψh∗ = op(1) follows

from a standard consistency proof.

Next, Lhn(ψh, τ) − Lhn(ψh∗, τ) admits the same expansion (12) as Ln(ψ, α) − Ln(ψ∗, α) with

(tn(ψ, α), Gn, In, Rn(ψ, α)) on the right of (12) replaced with (thn(ψh, τ), Ghn, Ihn , Rhn(ψh, τ)). Hence,

part (a) follows from repeating the proof of Proposition 2. Part (b) is proven by extending the

proof of Proposition 3 to derive the joint asymptotic distribution of (LRτn,11, . . . , LR
τ
n,1m0

)′, and

part (c) follows immediately. �

A.8 Proof of Proposition 9

The proof is essentially the same as the proof of Propositions 5 and 6, except for analyzing the

joint asymptotic distribution of m0 statistics using Proposition B(b), and thus is omitted. �
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A.9 Proof of Proposition 10

We suppress (τ0) from φh(k)(τ0) and τk(τ0). Let ωhn := (t̂hnλ)′Ihnλ.η t̂hnλ be the sample counterpart of

(t̂hλ)′Ihλ.η t̂hλ such that the local LRT statistic for testing H0,1h satisfies 2{Ln(ψ̂hτ , τ) − L0,n(ϕ̂0)} =

ωhn + op(1).

We first show EM
h(1)
n = ωhn + op(1). Because φh∗ is the only value of φh that gives the true

density if ϑ ∈ Ω∗h and τ ∈ (0, 1), φh(1) is also a reparameterized local MLE in a neighborhood

of φh∗. Therefore, in view of Proposition 8 and its proof, we have φh(1) − φh∗ = Op(n
−1/4) and

2{Lhn(φh(1), τ0)− L0,n(ϕ̂0)} = ωhn + op(1). Consequently, we have EM
h(1)
n = ωhn + op(1).

We proceed to show EM
h(k)
n = ωhn+op(1). Because φh(1)−φh∗ = Op(n

−1/4) and τ (1)− τ0 = 0, it

follows from Proposition C and induction that φh(K)−φh∗ = Op(n
−1/4) and τ (K)− τ0 = Op(n

−1/4)

for all finite K. Because an EM step never decreases the likelihood value (Dempster et al., 1977), we

have Lhn(φh(K), τ (K)) ≥ Lhn(φh(1), τ0). Let φ̃h be the maximizer of Lhn(φh, τ (K)) in an arbitrary small

closed neighborhood of φh∗, then we have Lhn(φ̃h, τ (K)) ≥ Lhn(φh(K), τ (K)) from the consistency

of φh(K). Therefore, 2{Lhn(φh(K), τ (K)) − L0,n(ϕ̂0)} = ωhn + op(1) holds because Lhn(φ̃h, τ (K)) ≥
Lhn(φh(K), τ (K)) ≥ Lhn(φh(1), τ0) and both 2{Lhn(φh(1), τ0)−L0,n(ϕ̂0)} and 2{Lhn(φ̃h, τ (K))−L0,n(ϕ̂0)}
can be written as ωhn + op(1) in view of Proposition 8 and its proof. Hence, EM

h(K)
n = ωhn + op(1)

holds for all h, and the stated result then follows from the definition of EM
(K)
n . �

B Auxiliary results and their proofs

Proposition A. Suppose f(x;ψ, α) is given by (4). Then, for i, j, k, ` = 1, 2, ..., q,

(a) ∇λif(x;ψ∗, α) = 0, ∇λi ln f(x;ψ∗, α) = 0, ∇ηλi ln f(x;ψ∗, α) = 0,

(b) E[∇λiλj ln f∗] = 0, E[∇λiλjλk ln f∗] = 0, E[∇ηλiλj ln f∗] = −E[∇η ln f∗∇λkλ` ln f∗],

(c) E[∇λiλjλkλ` ln f∗] = −E[∇λiλj ln f∗∇λkλ` ln f∗

+∇λiλk ln f∗∇λjλ` ln f∗ +∇λiλ` ln f∗∇λjλk ln f∗],

where ∇(k) ln f∗ = ∇(k) ln f(X;ψ∗, α) for k = 1, 2, 3, 4.

Proof. A direct calculation gives part (a). For parts (b) and (c), observe that
∫
∇λi ln f(x;ψ, α)f(x;ψ, α)dx =

0 holds for any ψ in the interior of Θψ, and differentiating this equation w.r.t. λj gives∫
{∇λiλj ln f(x;ψ, α) +∇λi ln f(x;ψ, α)∇λj ln f(x;ψ, α)}f(x;ψ, α)dx = 0. (B.1)

Evaluating (B.1) at ψ = ψ∗ in conjunction with part (a) gives the first equation in part (b).

Differentiating (B.1) w.r.t. λk or η and evaluating at ψ = ψ∗ give the latter two equations in

part (b). Part (c) follows from differentiating (B.1) w.r.t. λk and λ` and evaluating at ψ = ψ∗ in

conjunction with parts (a)(b).
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Proposition B. (a) Suppose Assumptions 1 and 5 hold, and let Zn(λ) defined by (A.10) in the

proof of Proposition 5. Then Zn(λ) ⇒ Z(λ) as a stochastic process indexed by λ ∈ Θλ(ε2), where

{Z(λ) : λ ∈ Θλ(ε2)} is a mean zero Rq-valued Gaussian process that has bounded continuous sample

paths with probability one and that satisfies E[Z(λ)Z(λ)′] = J (λ)−1. (b) Suppose Assumptions 6

and 8 hold, and define Z̃n(λ̃) := J̃ (λ̃)−1n−1/2
∑n

i=1 s̃i(λ̃), where J̃ (λ̃) and s̃i(λ̃) are defined in

Section 4.2. Then Z̃n(λ̃) ⇒ Z̃(λ̃) as a stochastic process indexed by λ̃ ∈ Θ̃λ(ε2), where Z̃(λ̃) is a

mean zero R(m0−1+p+m0q)-valued Gaussian process that has bounded continuous sample paths with

probability one and that satisfies E[Z̃(λ̃)Z̃(λ̃)′] = J̃ (λ̃)−1.

Proof. Part (a) follows from Theorem 10.2 of Pollard (1990) if (i) Θλ(ε2) is totally bounded, (ii)

the finite dimensional distributions of Zn(·) converge to those of Z(·), and (iii) {Zn(·) : n ≥ 1} is

stochastically equicontinuous. Condition (i) holds because Θθ is compact in the Euclidean space.

Condition (ii) follows from Assumption 5(b)(c) and the multivariate CLT. Condition (iii) can be

verified by our Assumption 5(b)(c) and Theorem 2 of Andrews (1994) because ∇ξl(·; ξ∗, λ, 0) and

∇αl(·; ξ∗, λ, 0) are Lipschitz functions indexed by a finite dimensional parameter λ by Assumption

5(b). Part (b) is proven similarly.

Proposition C. Suppose Assumptions 6-9 hold. If φh(k)(τ0)−φh∗ = Op(n
−1/4) and τ (k)(τ0)−τ0 =

Op(n
−1/4), then (a) τ (k+1)(τ0)− τ0 = Op(n

−1/4) and (b) φh(k+1)(τ0)− φh∗ = Op(n
−1/4).

Proof. We suppress (τ0) from φh(k)(τ0) and τ (k)(τ0). The proof of part (a) uses the arguments of

the proof of Lemma 3 of Li and Chen (2010). Let fi(γ, θ
h) and fi(φ

h, τ) denote f(Xi; γ, θ
h) and

f(Xi;φ
h, τ), respectively. Applying a Taylor expansion to

∑n
i=1w

h(k)
i gives

n∑
i=1

w
h(k)
i = τ (k)βh(k)

n∑
i=1

fi(γ
(k), θh(k))

fi(φh(k), τ (k))

= τ (k)βh(k)
n∑
i=1

fi(γ
∗, θh∗0 )

fi(φh∗, τ0)
+Op(n)(φh(k) − φh∗) +Op(n)(τ (k) − τ0).

(B.2)

Because fi(φ
h∗, τ) does not depend on τ , it follows from Assumption 9(a) and E[fi(γ

∗, θh∗0 )/fi(φ
h∗, τ0)] =

1 that the right hand side equals τ (k)βh(k)n(1+Op(n
−1/2))+Op(n

3/4) = τ (k)βh(k)n(1+Op(n
−1/4)).

Similarly,
∑n

i=1w
h+1(k)
i = (1 − τ (k))βh(k)n(1 + Op(n

−1/4)). Therefore, we have τ (k+1) = τ (k) +

Op(n
−1/4) = τ0 +Op(n

−1/4), giving part (a).

We proceed to show part (b). β(k+1) = β∗+op(1) follows from a similar argument to (B.2). Note

that γ(k+1) maximizes Qn(γ) := n−1
∑n

i=1

∑m0+1
j=1 w

j(k)
i ln fi(γ, θ

j(k)). Using a similar argument to

(B.2) in conjunction with Assumption 9(b) and |wj(k)
i | ≤ 1, we have supγ∈Θγ |Qn(γ)−Q(γ)| = op(1),

where Q(γ) :=
∑m0

j=1 α
j∗
0 E

j∗[ln fi(γ, θ
j∗
0 )] and Ej∗ denotes the expectation taken under f(x; γ∗, θj∗0 ),

and γ(k+1) →p γ
∗ follows. Given the consistency of γ(k+1), a similar argument gives θj(k+1) →p

arg maxθ E
j∗ ln f(Xi; γ

∗, θ) = θj∗0 for j = 1, . . . , h and θj(k+1) →p θ
j−1∗
0 for j = h + 1, . . . ,m0.

This proves φh(k+1) →p φ
h∗. Giving the consistency of φh(k+1), part (b) follows from repeating the

argument in the proof of Proposition 3(a).
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