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Abstract

This paper considers likelihood-based testing of the null hypothesis of my components against
the alternative of mg + 1 components in a finite mixture model. The number of components is
an important parameter in the applications of finite mixture models. Still, testing the number
of components has been a long-standing challenging problem because of its non-regularity.

We develop a framework that facilitates the analysis of the likelihood function of finite
mixture models and derive the asymptotic distribution of the likelihood ratio test statistic for
testing the null hypothesis of mg components against the alternative of my + 1 components.
Furthermore, building on this framework, we propose a likelihood-based testing procedure of
the number of components. The proposed test, extending the EM approach of Li et al. (2009),
does not use a penalty term and is implementable even when the likelihood ratio test is difficult

to implement because of non-regularity and computational complexity.

Keywords and phrases: asymptotic distribution; modified EM test; likelihood ratio test; local MLE;

number of components; reparameterization.

1 Introduction

Finite mixture models provide flexible ways to account for unobserved population heterogeneity.
Because of their flexibility, finite mixture models have seen numerous applications in diverse fields
such as biological, physical, and social sciences. For example, finite mixtures are often used to

control unobserved individual-specific effects in labor economics (Heckman and Singer, 1984; Keane
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and Wolpin, 1997; Cameron and Heckman, 1998), health economics (Deb and Trivedi, 2002), and
marketing (Kamakura and Russell, 1989; Andrews and Currim, 2003). Comprehensive theoretical
accounts and examples of applications have been provided by several authors, including Lindsay
(1995), Titterington et al. (1985), and McLachlan and Peel (2000).

This paper considers likelihood-based testing of the null hypothesis of my components against
the alternative of mg + 1 components in a finite mixture model. The number of components is an
important parameter in finite mixture models. In economics applications, the number of compo-
nents often represents the number of unobservable types or abilities. In many other applications,
the number of components signifies the number of clusters or latent classes in the data.

Testing the number of components in finite mixture models has been a long-standing challeng-
ing problem because of its non-regularity. When testing the null of my components against the
alternative of mg + 1 components, the true mg-component density can be described with many
elements of the parameter space in the (mg + 1)-component alternative model. These elements
are characterized by the union of the two parameter subsets: A, where two components have the
same mixing parameter that takes component-specific values; and B, where one of the components
has zero mixing proportion. In both null parameter sets, the regularity conditions for a standard
asymptotic analysis fail because of such problems as parameter non-identification, singular Fisher
information matrix, and true parameter being on the parameter space boundary. When the pa-
rameter space is compact, the asymptotic distribution of the likelihood ratio test (LRT) statistic
has been derived as a supremum of the square of a Gaussian process indexed by the closure of
the convex cone of directional score functions (Dacunha-Castelle and Gassiat, 1999; Liu and Shao,
2003); however, it is difficult to implement these symbolic results.

This paper makes three main contributions. First, we develop a framework that facilitates the
analysis of the likelihood function of finite mixture models. In the null parameter space A discussed
above, the standard quadratic expansion of the log-likelihood function is not applicable because of
the singular Fisher information matrix. The existing works handle this problem by resorting to non-
standard approaches and tedious manipulations (see, for example, Zhu and Zhang (2004); Cho and
White (2007)). We develop an orthogonal parameterization that extracts the direction in which the
Fisher information matrix is singular. Under this reparameterization, the log-likelihood function
is locally approximated by a quadratic form of squares and cross-products of the reparameterized
parameters, leading to a simple characterization of the asymptotic distribution of the LRT statistic.

Second, building on this framework and the results from Andrews (1999, 2001), we derive the
asymptotic distribution of the LRT statistic for testing the null hypothesis of mg components for a
general mg > 1 in a mixture model with a multidimensional mixing parameter and a structural pa-
rameter. Under the null parameter set A, the asymptotic distribution is shown to be the maximum

of mgy random variables, each of which is a projection of a Gaussian random vector on a cone. Both

'For some specific models, the asymptotic distribution of the LRT statistic has been derived. See, for example,
Chernoff and Lander (1995); Lemdani and Pons (1997); Chen and Chen (2003); Garel (2001).



the LRT statistic under the null parameter set B and the (unrestricted) LRT statistic are shown to
converge in distribution to the maximum of my random variables, each of which is the supremum
of the square of a Gaussian process over the support of the mixing parameter. In contrast to the
existing symbolic results, the covariance structure of the Gaussian processes is explicitly presented.

Implementing the LRT has, however, practical difficulties: (i) in some mixture models that
are popular in applications (e.g., Weibull duration models), the Fisher information for the null
parameter space B is not finite (Li et al., 2009), and the regularity conditions in Dacunha-Castelle
and Gassiat (1999) and Liu and Shao (2003) are violated; (ii) the asymptotic distribution depends
on the choice of the support of the parameter space, and (iii) simulating the supremum of a Gaussian
process is computationally challenging unless the dimension of the parameter space is small, because
of the curse of dimensionality.

As our third contribution, we develop a likelihood-based testing procedure of the null hypothesis
of my components against the alternative of mg+ 1 components that circumvents these difficulties
associated with the null parameter space B. The proposed modified EM test statistic has the
same asymptotic distribution as the LRT statistic for testing the null parameter space A, and its
asymptotic distribution can be simulated without facing the curse of dimensionality. Furthermore,
the modified EM test is implementable even if the Fisher information for the null parameter space
B is not finite.

Our modified EM test extends the EM approach pioneered by Li et al. (2009) (henceforth, LCM).
In contrast to the original EM approach by LCM, the modified EM test does not use a penalty term
to bound the mixing proportion away from 0 and 1. This feature is practically appealing because
the choice of the penalty term has an important influence on the finite sample performance of the
EM test. Even though a data-driven formula for the penalty term was obtained via simulations
for Poisson, binomial, normal, and exponential distributions by Chen and Li (2011b), developing
a formula for general mixture models is challenging. Simulations show that the modified EM test
has good finite sample size, and power properties comparable to those of the original EM test.

There exist many works on likelihood-based tests of the number of components that either focus
on testing homogeneity (i.e., mg = 1) or assume a scalar mixing parameter, but these existing tests
are not applicable to testing the null hypothesis of mg > 2 components in a general mixture model
with a vector mixing parameter and a structural parameter. Assuming a scalar mixing parameter,
Chen et al. (2001, 2004) developed a modified LRT for the null hypothesis of mo = 1 and mg = 2;
LCM developed the EM test for testing mo = 1; Chen and Chen (2001) and Cho and White
(2007) derived the asymptotic distribution of the LRT statistic and quasi-LRT statistic for testing
mo = 1, respectively; Li and Chen (2010) and Chen and Li (2011a) constructed EM tests for
testing mo > 2. For models with a multidimensional mixing parameter, Zhu and Zhang (2004)
analyzed the asymptotics of LRT and Niu et al. (2011) focused on an EM test for testing mo = 1.
Except for Zhu and Zhang (2004) and Cho and White (2007), none of the works discussed above

accommodates a structural parameter.



The remainder of this paper is organized as follows. Section 2 introduces finite mixture models
and describes examples. Section 3 derives the asymptotic distribution of the LRT statistic of
homogeneity as a precursor for the test of general mg components. Section 4 establishes the
asymptotic distribution of the LRT statistic of the null hypothesis of my components against the
alternative of mg + 1 components. Section 5 introduces the modified EM test and determines its
asymptotic distribution. Section 6 reports the simulation results. The appendix contains proofs
of results given in the paper, and auxiliary results. All limits below are taken as n — oo unless
stated otherwise. Let := denote “equals by definition.” For a k x 1 vector a and a function f(a),
let V,f(a) denote the k x 1 vector of the derivative (0/0a)f(a), and let V4 f(a) denote the k x k
vector of the derivative (0/0add’) f(a).

2 Finite mixture models and examples

2.1 Finite mixture models

Given a family of parametric densities {f(x;v,0) : v € ©, C RP,0 € ©g C R?} for a random

variable X € R", we consider an m-component finite mixture density of the form
m
> o flas,0), (1)
j=1

where the a/’s are mixing probabilities that satisfy o/ € [0, 1] and Py ol =1,07 = (61,....60)
is a mixing parameter that characterizes the j-th component, and v = (y1,...,7p) is a structural
parameter that is common to all the components. Here, m is understood as the smallest number
such that the data density admits representation (1). In specification (1), each observation may be
viewed as a sample from one of the m latent classes, or “types.” This specification includes a finite
mixture of conditional distributions, in which a component distribution is given by f(z1, z2;7,6’) =
fxilwa;y, 07) f (2).

We are interested in testing the number of components in a finite mixture model, specifically,
in testing

Hy: m=mg against Hsq: m=mg+ 1.

2.2 Examples

Example 1 (Duration model with mixed proportional hazard). Heckman and Singer (1984) pro-
posed a discrete mizture distribution for estimating parametric duration models with unobserved
heterogeneity. Consider a finite mizture proportional hazard model of duration Y € Ry condi-
tional on observed heterogeneity X € R, where the hazard rate of the jth component distribution
is specified as % = exp(69) k1 (; 0)) ko (y; 9%), where 67 = (67, (63), ((9%)’)', ki(x;63) cap-
tures the part of the hazard that is systematically related to observed variable x, and ko(y;03) is



the baseline hazard. Then, the model is written as Z;nzl a™f(ylx; 00) f(z), where f(ylz;07) =
exp(0]) k1 (x; 03) ko (y; 03) exp[— exp(6] ) k1 (z; 63) I ko(s;03)ds] is the conditional density of y given
x implied by the hazard exp(@{)k‘l(x; 0%)]422(:1/; 9%)

3 Likelihood ratio test of Hy: m =1 against Hy : m = 2

Before developing the LRT of my components, we analyze a simpler case of testing the null hy-
pothesis Hy : m = 1 against H4 : m = 2 when the data are from Hj.

We consider a random sample of n independent observations X1, ..., X, from the true density
f(x;~*,0%). Here, the superscript * denotes the true population value. Consider a two-component

mixture density function

flaso,v, 01, 0%) = af (2;7,0") + (1 — @) f (237, 6), (2)

where (a,7,0%,0%) € © :=[0,1] x ©, x ©2. The two-component model (2) gives rise to the true

density f(z;7*,0%) if the parameter («, 7, 8!, 0?) lies in a subset of the parameter space
r* .= {(04,7,91,92) €O0: ' =0*=0"andy=~"; ora(l —a)=0and v = v*}.

Let (&,7%,0',62) denote the maximum likelihood estimator (MLE) that maximizes the log-
likelihood function > ; In f (Xi;,7,0',0%). The following proposition shows that the MLE is

consistent under the standard condition.?

Assumption 1. (a) If (v,0) # (v*,0%), then f(X;7,0) # f(X;~*,0%) with a nonzero probability.
(b) ©g and ©, are compact. (c)In f(X;7,0) is continuous at each (y,0) € © x O with probability
one.

(d) E[sup(, g)co. xo, | In f(Xi;7,0)]] < oco.

Proposition 1. Suppose that Assumption 1 holds. Then,
we have inf(, g1 g2)cr= (&, 9, él, 9“2) — (a7, 0%, 6%)]| —p 0.

As in Cho and White (2007), we partition the null hypothesis Hy : m = 1 into two sub-
hypotheses:
Ho1:0' =6 and Hp:a(l—a)=0.

Under Hyi, « is not identified, and furthermore, the Fisher information matrix for the other param-
eters becomes singular. Under Hpg, « is on the boundary of the parameter space, and either §' or
62 is not identified. In the following, we analyze the asymptotic distribution of the LRT statistics
for testing Hy; and Hyg in turn, and combining these results, derive the asymptotic distribution of
the LRT statistics for testing Hy.?

2 Alternatively, we can use the sufficient condition in Redner (1981).
3 This approach is used by Cho and White (2007) to analyze the quasi-LRT of Ho : m = 1 in a model with a



3.1 Reparameterization

We first develop a reparameterization that substantially simplifies the analysis of the LRT statistic
for testing Hg;. One difficult problem in the analysis of finite mixture models is that the Fisher
information matrix is singular. Under the true parameter value (v*,6*,6*) at a € (0, 1), the first

derivative of the log-density
l(z;0,7,0",60%) :=In (af (2;7,0") + (1 — @) f(2;7,6%))
with respect to (w.r.t.) ! is a linear function of the first derivative of I(x; v, 8, 6%) w.r.t. 62

Vol(z;a,7*,0%,0%) = aVgf(x;y*,0%)/ f(z;7%,0%) and
Vol(x;a,v*,0%,0%) = (1 — a)Vo f(z;~",0%) ) f(x; 7", 07).

In addition, the first derivative of I(z;a,,0',6%) w.r.t. a evaluated at (v*,6*,6%) is identically
equal to zero. Consequently, the Fisher information matrix is rank deficient by 1+dim(#), and
the log-likelihood function is not amenable to the standard analysis using a second-order Taylor
expansion.

We handle the singular Fisher information problem via a reparameterization. Our approach
generalizes that of Rotnitzky et al. (2000), who derive the asymptotics of the LRT statistic when
the Fisher information matrix is rank deficient by 1. A key insight is that by a particular repa-
rameterization, we can determine the direction in which the Fisher information matrix is singular.

Consider the following one-to-one reparameterization:

A ol — 62 0"\ [ v+(1—a)
<V>._<O¢91+(1—04)02>’ o that <92>_< v —al )’ )

where v = (v1,1v2,...,14) and A = (A1, A2, ..., Ag)" are ¢ X 1 reparameterized parameter vectors.

Collect the reparameterized parameters except for a into one vector as
1/) = (’Y/a Vl) )‘/)/ € e’dh

where Oy = {p : v € O, v+ (1 —a)\ € Op and v — aX € Op}. The parameter 1) and the
parameter space ©, depend on «, although we do not explicitly indicate their dependence for
notational brevity. In the reparameterized model, the null hypothesis of Hy; : 8! = 62 is written as
Hpp : A= (0,...,0). We denote the true value of ¢ by ¥* = ((v*)’, (0*),0,...,0)".

Under the reparameterization (3), the density and its logarithm are expressed as

flx;,a) = af(z;y,v+ (1 —a)A) + (1 —a) f(z;7,v — ad), Uz, ) =In[f(z;9,a)].  (4)

scalar mixing parameter. Their asymptotic analysis is very complex, however, and can only handle the case with a
scalar mixing parameter. Cho and White (2007) do not analyze testing Ho : m = mg for mg > 2, either.




Evaluated at the true parameter value, the first derivative of the reparameterized log-density (4)

w.r.t. A becomes zero:

Val(z; 9", o) = [(1 = a)aVy f(z;7",0%) — a(l = )V f (277, 07)]/ f(25:97,07) = 0. (5)

On the other hand, the first derivative of (4) w.r.t. v and v under the true parameter value is a

mean-zero non-degenerate random vector:

Val(z; 9", a) = Vo f (@597, 0%) ) f (277, 6%),

(6)
Vol(z; 9", a) = Vo f(x; ", 0%) ) f(z;97,07).

Because Vl(x;9*, ) = 0, the information matrix for the reparameterized model is singular, and
the standard quadratic approximation of the log-likelihood function fails. Nonetheless, we may
characterize the asymptotic distribution of the LRT statistic using the second derivative of I(x; 1, a)

w.r.t. A in place of its score:

Voo f(x:7*,0%)
fz;y*,0%)

When « # {0,1} and Vg f(x;7*,0%)/ f(x;7*,0%) # 0 with positive probability, the elements of

Vawvl(z;9*, a) are mean-zero random variables and serve as the scores.

Vanl(z; 9", o) = a(l — a)

(7)

3.2 Approximation of the log-likelihood function in quadratic form

In this section, we analyze the asymptotic behavior of the log-likelihood function. Let L, (¢, «) :=
o U(Xi; 4, o) denote the reparameterized log-likelihood function. Define n := (v/,7/)" and n* :=
((v*), (6%)) so that ¢ = (', N) and ¥* = ((n*)’,0,...,0). Fix the value of @ € (0,1). Then,

L, (1, a) has a quartic expansion around (¢*, a) as

L 0= 1Y Vo L (6%, @) (5 — 17)

Ln(wa Oé) - Ln(d}*v a) = VnLn(%Z)*»Oé)(n - 77*) + E

q

+ 5 DD Voo L@, ) Xidj + o SN =17 Voo, Ln (7, @) A )
’ 145=1

1j=1 i

9 9 q9 q
+ % Z Z Z Z vAi)‘j)‘kAan(qb*’ a))\z)\])\k)\l + Rn(¢a Oé),

where R, (1), «) is a remainder term whose stochastic order is established later.

We introduce some notations to simplify (8). Define ¢y := g(q+ 1)/2. For A € RY, collect the



elements of vech(A)\') into a ¢\ x 1 vector:

/

U(/\) = (UH, e ,qu,’UlQ, Ce ,Ulq, V23, .. ,U2q, Ce ,Uqflvq)
o 2 2 /
= (AL A2 A, A G A2 s, Ao g A1)

Note that the elements of v(\) must satisfy the restriction v; > 0 and wvijuy = vigvy for all
i < j <k <1 We rewrite the right hand side of (8) as a quadratic function of n and v(\).
Combine 7 and v(A) into a (p + ¢+ ¢) x 1 vector:

¢:= (', o(N))"
Let %CZ(XZ';T/J, a) be a (p+ ¢+ gx) x 1 vector defined by
6Ql(){zv Y, Oé) = (VT]'Z<XZ7 ¥, Ck), 6v()\)’l()(u (UR a)/<a(1 - (X)))/, (9)

with 6v(/\)/l(Xi; w, a) = (CnV)\l)\lli, e ,quV)\q,\qli, 012V,\1)\2li, ey Cq—l,qv)\q_ﬂqui): where Cjk =
1/2if j = k and ¢, = 1if j # k, and V), l; denotes V) 5, (X5, ). The coefficients c;;’s
are necessary because of the coefficient (1/2!) in front of the third term on the right hand side of

(8) and because the V., li’s with j # k appear twice in the expansion owing to Vx, = V.,

Define
n'/2(n —n*)
tn (¥, ) := . 10
¥,) ( n'2a(1 — a)v(N) (10)
Define the normalized score and its variance as
G, = n~1/2 Z%CZ(XZ'; Y ) and T := E[%Cl(Xi;¢*, a)%cll(Xi;qb*, a)l, (11)
i=1

respectively, where ﬁcl (Xi; 9", a) satisfies

N Vo f(Xi3v™,07) ) f(Xisy™, 07)
Vo) f(Xis v, 0%) ) f(Xis ™, 07)

with ev(g)f(Xi;”y*, 0*) defined similarly to ev(/\)l(Xi; 1, «). Note that neither G,, nor Z depends

on o. With these notations, (8) can be written as a quadratic expansion in terms of ¢, (¢, a):

Lo(¢,a) — Ly(¢*, a) =ty (¢, ) Gy, — %tn(@b, @) Ltn (Y, @) + Ry (¥, @), (12)

where Z,, corresponds to the negative of the sample Hessian, which converges to Z in probability.
For brevity, the formula of Z,, is provided in the proof of Proposition 2. We introduce the following

sufficient condition for expanding the log-likelihood function four times:



Assumption 2. (a)y* and 6% are in the interior of ©4x0y. (b) For every x, f(x;7,0) is four times
continuously differentiable in a neighborhood of (v*,0 ). (c) For a € (0,1), E'supyey IVE) In f(X;9, )| <
oo for a neighborhood N of v* and for k = 1,....4, where V) denotes the kth derivative w.r.t.

Y. (d) For a € (0,1), E||[V® f(X;9% a)/f(X;9* a)||? < oo for k=1,2,3.

The following proposition establishes the asymptotic behavior of Ry, (1, &), Z,,, and G,,.

Proposition 2. Suppose that Assumption 2 holds. Then, for each oo € (0,1), we have (a) for
any 6 > 0, imsup,, . Pr(supyece,:|jy—y+|j<x [Bn (¥, a)| > 0(1 + [t (2h, @)|)?) — 0 as k — 0. (b)
Gp =4 G~ N(0,I), (¢) I, —p T.

3.3 The asymptotic distribution of the LRT statistics for testing Hy;

In this section, we derive the asymptotics of the LRT statistic for testing Hpi, building on the

representation (12) and Proposition 2. Let us introduce an assumption on the rank of Z.
Assumption 3. 7 is finite and positive definite.

In view of Vuy f(z,y)/f(x,y) = VayIn f(z,y) + Vo In f(z,y)VyIn f(x,y), Assumption 3 holds
if the covariance matrix of (Vs gy In f(X;;v%,0%),
(vech(Vgg In f(X;59%,0%) + Vo ln f(Xi;7%,0%) Ve In f(X;;7*,60%))) is finite and nonsingular.
Define Z,, := I, 'G,,, and rewrite (12) as

Ln(1h,0) = Lal",0) = 5 20T %0 = 3 [tn(6,0) = Zu) Tultalh, ) = Za] + Rulth,0). (13)

Let ©, be the parameter space of n = (7/,7/), and let ©) be the parameter space of X so that
Oy = (= (1, N) s 1 €Oy A€ By,

The set of feasible values of ¢, (1, «) is given by the shifted and rescaled parameter space for
(n,v(\)) defined as A, = n'/2(6, — n*) x n'/2a(l — a)v(O),), where v(A) := {z € R : z =
v(\) for some A € A C R}. Because A,,/n'/? is locally approximated by a cone A := RPF9 x (RY)
(see Andrews (1999) for the definition of “locally approximated by a cone”), the supremum of the
left hand side of (13) is approximated as follows (Andrews, 1999, Lemma 2, Theorem 3):

sup 2{Ln(th,@) — Lo(6*,0)} = Z4TuZ — inf(t — Z,)'Tu(t — Zo) + 0,(1)
we(—)w teA (14)
=4 2'T2 — inf(t - 2)'I(t - Z) = V'TE,
S

where Z ~ N(0,Z7') and £ is a version of the projection of a Gaussian random vector Z onto the
cone A w.r.t. the norm (#'Zt)'/? defined by

g(d) = inf g(t),  9(t) = (t— 2)'T(t - 2), (15)



Here, ¢ is not necessarily unique because A is not necessarily convex. The equality (14) uses
the orthogonality condition #Z(t — Z) = 0; see Andrews (1999, p. 1361) or Lindsay (1995, p.
98). Combining (14) with the asymptotic representation of the log-likelihood function of the one-
component model, we obtain the asymptotic distribution of the LRT statistic.

We collect some notations before providing a formal proposition. Partition Z and G as

Z G
Z = K , G = K , Zn,Gn:(p—l-q)Xl, Z)\,G)\:Q)\Xl.
Z Gy

Define 1, = E(GnG%), Iy = E(GAG%), Ly = Iﬁ\’?’ and Z) := E(G)\Gl)\) Note that Z) =
I;}YG)\J], where G/\-ﬂ =Gy — I)\HI;IGH and IA-’? =D — I)\nl.nilzn)\ = V&I‘(Gn')\) = (V&I‘(Z/\»*l.
Similar to £ in (15), define £y by

~

ar(ty) = tjg& aA(tr),  galta) = (tx — Zx) Dy (ta — Zy), (16)

where Ay := v(R?).

The following proposition derives the convergence rate of the MLE and the asymptotic distribu-
tion of the LRT statistic. Let ¢q = (7, )’ denote the MLE that maximizes L, (¢, a) for a given
a. Let (5o, éo) denote the one-component MLE that maximizes the one-component log-likelihood
function Lo (7,0) := > In f(X;;7,0). For ¢; € (0,1/2), define the LRT statistic for testing Ho;
as LRy 1(€1) = maXaele; 1—¢] 2{Ln(1&a, a) — Lo n(H0, ég)}. As shown in the following proposition,

the asymptotic null distribution of the LRT statistic is invariant to a.

Proposition 3. Suppose Assumptions 1, 2, and 3 hold. Then, for each o € (0,1), we have (a)
o —1* = Op(n™Y2) and Ay = Op(n™Y4), (b) 2{Ln(Ya, @) — Ln(¥*, )} —a E\Inntr + GHZL Gy,
(¢) 2{Ly(ta, @) — Lon(30,00)} —a t5Ianix, and (d) LRy 1(e1) —a ThIxntx.

When ¢=1, we have v(A) = A\?, and the cone A becomes convex. Then, £, is uniquely defined
as ty = arginfyso(A — Z2))2(Var(Zy))™' = Z\I{Zy > 0}, and f’)\I)\,ntA,\ ~ (max{N(0,1),0})2.
Furthermore, it follows from Corollary 1(b) of Andrews (1999) that

n20(A) = by, 020 —n%) =a I, Gy — I, T (17)

Hence, under the null hypothesis, the MLE of n has a non-standard asymptotic distribution. This
is also true when ¢ > 2.

In a mixture regression model with an intercept and dummy explanatory variables, Assumption
3 fails because some “second-derivative” scores, V1, 1(X;; 9%, a)’s, are perfectly correlated with the
other “second-derivative” scores. The following assumption relaxes Assumption 3 to accommodate

such cases.

Assumption 4. (a) rank(Z) = p+q+q\ —r with 1 < r < qy, and there exists an r X g\ matriz B
of rank r such that B%v(A)l(X;w*,a) =0 and BV(k)ﬁv(A)l(X;w*,a) =0 for k = 1,2 hold almost

10



surely. (b) Let B+ be an (q\—1) x qx matriz such that B-B' = 0 and B+(B*) = I, _,, and define

Q [ frre O (18)
(p+a+gr—r) X (p+q+qx) 0 Bt

Then, the matriz QZQ' is finite and positive definite.

The matrix B satisfies the property in Assumption 4(b) when its rows form the basis of the or-
thogonal complement of the column space of B’. Under Assumption 4, E[%v()\)l(Xi; »*, a)%v(A)/l(Xi; V*, a)]
can be rank deficient by 7, but the non-degenerate linear combinations BLﬁv( V(X5 9%, a) are not
perfectly correlated with V,I(X;;¢*, ). Furthermore, the derivatives of B%U(A)Z(X; ¥*, ) do not
provide information for identifying the parameters. As we later illustrate through examples, As-
sumptions 3 and 4 can be verified for various popular mixture models by computing the first and
the second derivatives of the log-likelihood function. When neither Assumption 3 nor Assumption
4 holds, the log-likelihood function needs to be expanded further, up to the sixth or the eighth
order, to obtain a valid approximation.

Under Assumption 4, we obtain the following expression from (12) (see the proof of Proposition

4 for the derivation):

L (), @) = Lp(¥", @) = (Qtn (1), @) QG — %(@tnw, ) (QZ,Q)Qtn (v, @) + Ru(, ), (19)

where R, (1), @) is the remainder term defined in (12). The following proposition extends Proposition
3 under Assumption 4. Define Zg := [Zy,,, Z(,,] = (QZ,Q")'QG, where Zg) is (gr—r) x 1. Define
tox by tox € arginf, en, (BHty — Zon)'Zor,(Bty — Zgy) and Q := (B1igy) Tox,B1tga, where
Ty is defined similarly to Zy , using the submatrices of QZQ'.

Proposition 4. Suppose Assumptions 1, 2, and 4 hold. Then, for each a € (0,1), we have (a) for
any € > 0, limsup,, o Pr(supyee,:|jp—y+||<x [ (¥, )| > (1 + [|Qtn (¥, @)|)?) = 0 as k — 0, (b)
o — 1" = Op(n™12) and Brv(A\,) = Op(n™2), (¢) 2{Ln (0, @) — Ln(¢*, @)} —aq Q + G, T,Gy,
(@) 24 Lo(as @) = Lou(30,00)} —a Q, and (¢) LRy n(e1) —a Q.

In Proposition 4, the exact form of @ is model-specific. In the following, we provide some
examples, paying close attention to Assumptions 3 and 4. The formula of V,\)I(Xi; 9, ) is easily
derived using the relation Vo, f(z,y)/f(z,y) = VzIn f(z,y)VyIn f(z,y) + Vay In f(z,y).

Example 1 (continued). (i) Consider the Weibull duration model with the conditional density
fylz;67,7) = 2721 exp (Hj + iz — exp(67 + %m)yﬂ?) for j = 1,2, where 7 is scalar-valued.
From (6) and (7), the derivatives of the log-density are given by V,I(y|z;v*, a) = 1 — exp(6* +
(1) 2)y2, Vo l(yla; %, o) = 2V,l(ylz; 9%, @), Va,l(ylz; %, o) = 1/75 + Vol(ylz; %, o) Iny, and
Vanl(|z; v*, a) = a(l — ) {[Vl(y|lz; v*, a)]? — exp(0* + ~viz)y'2 }. Hence, by inspection, Assump-
tion 8 holds. In view of (17), one should not use the standard asymptotic normal inference on o

when the number of components is over-specified.
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(ii) Consider another Weibull duration model with the conditional density f(y|x;67,~) =
vy Lexp(6] + @)z — exp(6] + 0)x)y"). Then, we have V,,1(y|z;*, a) = 1 — exp(8f + 05z)y7",
Vipl(ylz; ¢, o) = 2V, l(y|z; 9%, a), Val(yle; ™, a) = 1/7* + Vi, l(ylz; ¢, @) Iny, and

Vol (ylz; v, a) a(l — a){[Vu,l(ylz; ¥*, a)]* — exp(6f + 052)y7" } /2
VAQAQZ(IU\UC;W,@) = 1’2V)\1)\1l(y’1';1/}*,04)/2 . (20)
V)\l)\2l(y|$;’¢*,04) xv)\1)\1l(y’$;¢*aa)

/2
/2

When X is neither a constant nor a dummy variable, T is of full rank and Assumption 3 holds.
(iii) Suppose X is a dummy variable in model (ii). We consider a parameterization such that
x1 and xo are dummy variables each taking the value 0 or 1 and satisfying x1 + o = 1.* Let
the density be f(y|z;~y,07) = vy~ exp(@{xl + 9%1‘2 — exp(@{:z:l + G%xg)yV). Because r1x0 = 0, we
have Vi, x,(ylz;v*, ) = 0, and Assumption 3 fails. Assumption 4 holds with B = (0,0,1) and

B+ =(}99), and we may apply Proposition 4 with

n Vol (Vi X5 0%, ) nt2(n —n*)
QG =n"2Y " | X0V (Y X 9%, 0)/20(1 —a) | and Qta(th,0) = [ n'2a(1-a)r} |,
EUA X Voo l(Yil X ¢, a) 2a(1 — @) n'2a(l - a)A3

where V2, L(Yi]| Xs; 0%, ) and V,\, (Y| Xi; 9%, «) are defined in (20).
Assumption 3 does not hold for normal regression model with unknown variance.

Example 2 (Normal mixtures). Consider a mizture of normal regressions with a common variance
af(y; 0" +w'B,0%) + (1 —a) f(y; 0> +w'B,0?), where f(y; p,0%) = (1/a)p((y—p)/0) and ¢(z) is the
standard normal density. Here, the structural parameter is v = (8',02)". Because Vount (s 1, %) =
2V 2 f (y; i, 02) holds, Vxl(y|z;¢*, a) is perfectly correlated with ¥V ,21(y|z;*, «), and Assumption
4 1s violated. Similarly, Assumption 4 is violated when the variance is component-specific. Cho and
White (2007), Chen and Li (2009), Chen et al. (2012), and Kasahara and Shimotsu (2012) analyze

likelihood-based test of the number of components in normal mizture models.

3.4 The asymptotic distribution of the LRT statistic for testing H,

We now examine the LRT statistic for testing Hos : a(1 — ) = 0. We focus on the null hypothesis
of a = 0 below because, by symmetry, the analysis for & = 1 is the same. Because A is not identified
when Hyg is true, we follow Andrews (2001, p. 694) and derive the limit of the LRT statistic for each
Ain ©y(e2) = {A € O, : ||A]| > €2} for some ez > 0 and then take its supremum over A € ©,(€2).
To simplify the asymptotic representation and regularity conditions, we use the parameter
A = 01 — 02 defined in (3) and reparameterize (6',6%) to (X, 6?). Define £ := (v, (0%))" € O¢ so that

4This parameterization gives a simpler representation of QG and Qt, (1, @) than that with a constant term and
one dummy variable.
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the model parameters are (, \, ), and define the reparameterized log-density as l(xz;&,\, o) =
In(af(x;7,0% + X) + (1 — ) f(x;7,6?)). Collect the partial derivative of I(z;&, A, ) w.r.t € and its

right partial derivative w.r.t. a evaluated at (£*, A,0) as
V('y’ﬂ’)’f(x; v, 0*)
Sg(l’) Vgl(l‘;f*,)\,O) f(:c’y* 0*)
TA) = = = gV  nx ) 21
s(@; ) ( sa(x;N) ) ( Val(z; €%, ), 0) [y, 0" + A) — f(ay",07) (1)
f(@sy*,0%)
Define J (A) := E[s(X;; A\)s(X;; A)'], and define its submatrices as J¢ := E[s¢(X;)s¢(X3)'], Tea(A) =
Els¢(Xi)8a(Xi; M)y Tag(N) = Tea(N), and Jo(A) := Elsq(X;;A)?]. Let {G(\) = Gz Ga(N) 1 A €
Ox(e2)} be a mean zero R4+ _yalued Gaussian process such that E[G(A\)G(\)'] = J(\), where
G is (p+q) <1 and independent of A, and G4 () is 1 x1. Define Gy (M) := Ga()\)—jag()\)%_l()\)Gg
and Joe(A) := Ja(X) — jag()\)jf_ljga()\) = E[Ga¢(N)?. Define tkie LRT statistic for testing Hoo
as LRy a(€2) == 2{max(e x.a)c0, x0 (e2)x[0,1/2] Ln(§; A, @) — Lo.n(50,00)}-

Assumption 5. (a) v* and 6% are in the interior of ©, x Og. (b) f(x;,8) is twice continuously
differentiable on ©,xOy. (c) J(N) satisfies 0 < infyeq, (&) Pmin(T (V) < SUDP)co, (e0) Pmax(T (N)) <
00, where pmin(A) and pmax(A) are the smallest and the largest eigenvalues of matriz A, respectively.

Proposition 5. Suppose Assumptions 1 and 5 hold. Then,
LRy, 2(€2) =4 SUD\c@, (o) (max{0, To.e(\)"/2Gae(A)})2.
A necessary condition for Assumption 5(c) is Supyce, (&) E[Val(Xi; €7, A, 0)]? < co. This condi-

tion is violated in many models including the following Weibull duration model. Furthermore, LCM

€2

and Chen and Li (2009) show that a mixture of exponentials and a mixture of normals, respectively,
have the same infinite variance problem. The asymptotic distribution of the LRT statistic in such
cases remains an open question. In Section 4, we develop a test of Hy that does not rely on this

assumption.

Example 1 (continued). Consider the Weibull duration model (ii) with the density function
flylz;y,607) = vyt exp[@{ + H%x — exp(G{ + Q%x)gﬂ] for j = 1,2. The score w.r.t. o at (£*,\,0)
is given by Val(y|z; £, A, 0) = exp{\1 + Aoz — [exp(6] + A1 + (03 + A2)x) — exp(0] + 032)]y"} — 1.
The conditional variance of Vo I(Y|X;6%,X,0) given X is

A Ao X .
_1+% if M1+ XX > —1n2,

E [(Val(Y[X;€%,X,0))%X] = .
00 if M+ XX < —1In2.

Hence, the score has an infinite variance when Pr(A; + A2 X < —1In2) > 0.

3.5 The asymptotic distribution of the LRT statistic for testing H,

In this section, we complete the analysis of the LRT statistic for testing Hp : (8* — %) (1 — a)=0
by analyzing the asymptotic behavior of L, (&, A\, a) when A is small. Define the complement of
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Ox(e2) as Oy(e2) = {A € Oy : ||M| < €2}, and define the LRT statistic when A € ©O,(e2) as
LR, 2(e2) := 2{Sup(§,>\,a)€@5X@A(EQ)X[O,I/Q} Ln(&, X, @) — Lon(30,00)}. Define the LRT statistic for
testing Ho as LRy, := 2{Ln(&,%,0",6%) — Lon(50,60)}-

Proposition 6. (a) Suppose Assumptions 1, 2, and 3 hold. Then, LRy, 2(e2) = LRy, 1(€1)+ Ry (€2),
where limsup,,_, . Pr(|Rn(e2)| > 0) — 0 as e2 — 0 for any § > 0. (b) Suppose Assumptions 1, 2,
3, and 5 hold. Then LR, — 4 sup)ce, (max{0, TacN)TV2G 0 e(N)})2.

Proposition 6(b) shows that the asymptotic distribution of the LRT statistic for testing Hj is
the supremum of the square of a Gaussian process over ©), thus generalizing the results of Chen
and Chen (2001) and Cho and White (2007, 2010) to the case with a vector mixing parameter.
Here, both the compactness of the parameter space Gy and the finiteness of Fisher information
under Hyo are crucial.

Proposition 6 does not apply to testing the homogeneity in the normal mixture with a common
variance because neither Assumption 3 nor Assumption 4 holds (see Example 2). Chen and Chen
(2003) and Cho and White (2007) derive the asymptotic distribution of the LRT statistic in such

a case.

4 Likelihood ratio test of Hy: m = mg against Hy: m =my+ 1

In this section, we derive the asymptotic distribution of the LRT statistic for testing mg against
mgo + 1 components for any mg > 1. When mg > 2, there are many ways to generate the mg-
component true model from the (mp+1)-component model. We develop a partition of the parameter
space, where each subset corresponds to a specific way of generating the true model. We then derive
the asymptotic distribution of the LRT statistic for each subset, and characterize the asymptotic
distribution of the LRT statistic by their maximum.

Consider the mixture pdf with mgy components fo(x;¢p) = ZT:O1 agf(a:;’yo,ﬁg), where g =
(10, 94)s g i= (a7 € B4 = {(al,. ;a0 1l > O,Z;@fl ol € (0,1)},
and Jo = ((63)',...,(05°)) € Oy, := 5 with ©g C R% Here, the subscript “0” signifies the

parameter of the my—component model. The parameter oy;" is omitted from g and is determined

by ag® =1 — Z;”:“fl o). We define O, := G4, X O, x Oy, .
We assume that a random sample Xy, ..., X, of size n is generated from this mg-component
mixture density with the true parameter value of = ((ag)’, (v*), (9%)), where o* > 0 for j =

1,...,mg:

folw;0p) == > o) (w75, 007) (22)
j=1

Finite mixture models are identified only up to label switching. Thus, for identification, we assume

that 6}* < ... < 07" using the lexicographic order.
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We are interested in testing the number of components in a finite mixture model:
Hy: m=mg against Hsq: m=mg+ 1.

Let the density of an (mgy + 1)-component mixture model be

mot+l A
f(x5p) = Z o (37, 607), (23)

j=1
where p := (o/,7,9"), a:= (a!,...,a™) with g™+l = 1->710 o, and 9 = ((0Y), ..., (M0 €
Oy = @?OH. Define the set of admissible values of @ by O, := {(al,...,a™) : ol >0, Z;”zol al €
[0,1]}, and let ©, := O, x O, x Oy. Define a subset of ©, that excludes a on the boundary of O,
as Oyt 1= {p € O, : a >0, > o/ € (0,1)}. Define the set of the values of ¢ that gives rise to
the true density (22) as T* := {p: f(X; ) = fo(X; ¢§) with probability one}.

Define the unrestricted ((mg + 1)-component) and the restricted (mgp-component) MLE as

¢ =arg max Ly(¢) and ¢ =arg max Lgn(vo), (24)
906@99 <p0€@¢>0

respectively, where Ly () := > | In f(X;;¢) and Lo, (¢o) := > iy In fo(Xi; o). As the following
proposition shows, the unrestricted MLE is consistent in the sense that the distance between ¢ and
T* tends to 0 in probability. Its proof is essentially the same as the proof of Proposition 1 and

hence is omitted. Assumption 6 extends Assumption 1 to the (mg + 1)-component model.

Assumption 6. (a) If o ¢ T*, then f(X;p) # fo(X; ) with a nonzero probability. (b) Assump-
tion 1(b)-(d) hold.

Proposition 7. Suppose Assumption 6 holds. Then, we have inf,cv= [|[¢ — || =5 0.

The model (23) generates the true density (22) in two different cases: (i) two components have
the same mixing parameter so that " = ¢+ = 9}* for some h, and (ii) one component has zero
mixing proportion so that o = 0 for some h. Accordingly, we define the subsets of the parameter
space O, corresponding to (i) and (ii) as, for h =1,...,my,

11, = {go € Opy " + " = aof* and 0" = 9" = ),
ol = aé* and ¢/ = 98* for j < h;

o) =™ and 9 = 61" for j > h+1; 4 :7*}’
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and for h=1,...,mg+ 1,

T;h::{we@wzah:(); aj:ag*andﬁj:9g*forj<h;

ol = aé_l* and 67 = 0%_1* for j > h; v = ’Y*} .

Because one can always permute the component labels on the (a7, 67)’s, we define 7, to be the set
such that the equalities in braces hold for some permutations of the component labels. Define the
union of the Yy, ’s as 17 := {7, U--- U], }, T5:= {5 U---UT5 . 1}; then, T* is expressed
as T* =7T7UTs.

Similar to the case of the test of homogeneity, we partition the null hypothesis Hy. Define
Hop = U Hoqp and Hop = UZLO#HO,%; where

*
1mo

Hoqp: 0" <o <01 <gh =" < ght2 <. < gmot]

and
H072h : Oéh =0

so that Hy = Hy U Hos. The inequality constraints are imposed on the 7’s for identification.
In the following, we analyze the LRT statistics of Hyi, Hp2, and Hy in turn.

4.1 Reparameterization and the LRT statistics for testing H;

In this section, we analyze the behavior of the LRT statistic for testing Ho1 = U;"° Ho 13- Similar
to the case of the test of homogeneity, we approximate the log-likelihood function by expanding it
around the true parameter value. Unlike in the homogeneous case, however, the true mg-component
density (22) can be described by many different elements of the parameter space of the (mgy + 1)-
component model (23). A key observation here is that if we assume al a1 > 0, only 17, is
compatible with Hy 1j, because Hy 1; requires that the hth largest ¢/ and the (h + 1)th largest ¢/
take the same value. Therefore, if we assume o/ > 0 for all j’s, the LRT statistic for testing Ho; is
obtained by maximizing the log-likelihood function locally in a neighborhood of Y7, for each h and
then taking the maximum of the maximized values. Furthermore, the local quadratic approximation
of the log-likelihood function around Y7, is structurally identical to the approximation we derived
in Section 3 in testing Hp; in the test of homogeneity.

Consider a sufficiently small neighborhood of T7;, such that Ol < ... < @1 < gl phtl < pht2 <
... < ™o+ holds, and introduce the following one-to-one reparameterization from (al, ..., o™, 6" h+1)
to (B, ..., ™01 7, v, \) similar to (3):

h
gh=al 4ot 7= Y=Y —I(-lahﬂ’ Ai=0" — oMt =10t (1 — )Rt
T e (R N (25)
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so that 0" = v + (1 — 7)\ and #"*! = v — 7. In the reparameterized model, the null restriction
6" = 9" implied by Hy 15, holds if and only if A = 0.

For h < myg, collect the reparameterized model parameters other than 7 and A into
= (B, BT AL (O (0 (00 (et
and denote its true value by”
"= (g T (V) (07 (0 (067) (0T (057)) (26)

We also define 9" := ((n"), XY, ¢"* = ((n™*)’,0,...,0)’, and define the parameter space O
similarly to ©,.

Define the density of X, f(x;¢), in (23) in terms of the reparameterized parameters as

fh(a:;wh,T) = gh [Tf(z;v, v+ (1 =7)A)+ (1 —7)f(z;7,v — TA)]

h—1 mo
+Y B fy, )+ > By, 6,
j=1 j=h+1

with g™ =1 — Z;n:ol_ 1Bi. As in (5), the derivative of the reparameterized density w.r.t. A at

Yh* is zero by Vi f(z; 9", 1) = BM(1 — 7)7f(z;7%,00) — (1 — 7) f (257, 08%)] = 0, whereas its

derivative w.r.t. v and v at ¥* are proportional to Z;@l aé*vwf(x; ¥*, 96*) and Vg f(z;7*, 08%).
Define the reparameterized log-likelihood function by

Lhw" 1) => I"X;;9" 1), where "(z;9",7) = In f"(2;9", 7). (27)
=1

Then, L (4", 7) — L (y"*, 7) admits the same expansion (12) as L, (1, ) — L, (*, ) with
(tn(1, @), Gp, Iy, Rn(1), 7)) on the right of (12) replaced with (¢t"(y", 1), Gh, I Rh (4", 7)), where

n»—n?

hy,h ”1/2(77h— ") h —1/2 —~ h R
th(W",7) = , Gr=aT Y Vel (X", ), (28)
i=1

h
n'2r(1 = 1)v(\)

where ¢" = ((n"),v(\)"), and echlh(Xi;wh*,7'> is defined similarly to egl(Xi;w*,a) in (9) and

5When h = mo, we need to redefine o as o = (a2,...,Qmg+1)" by dropping a;i from a and redefine 17h and nh*
accordingly; however, the essence of our argument remains unchanged.
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takes the form %Chlh(Xi; Y T) = (sl S0 i Spis (Sg(g)i)/)/> where
F(Xa77,05") = f(Xi7",65")
Sei 1= : /fO(Xi;SOS)v
F(Xin, 0577 = F(Xi™, 057)

mo
Syi =Y o}V f(Xiy*, 007) ) fo(Xis ),
=1

b Vo f(Xi;v*, 08%)
Sg; = : /fO(Xi§ ©0)s
g Vo f(Xi;v*,05°%)

sty = 8 Vo) F(Xi; 7,067/ fo(Xi; #)-

T" is a matrix that converges to " := E[ﬁchlh(Xi; Phr T)(%Chlh(Xi; Y 7))'] in probability.

For 7 € (0,1) and h = 1,...,mq, define the local MLE of ¢" by ¢ = ((5"),\;) =
Arg MaXyne \rs L (", 7), where N is a closed neighborhood of Y™ such that ¢ is in its in-
terior and Y** ¢ N for any k # h. Because ||0)° — 0k*|| > 0 for any j # k, it is possible to
construct such N;’s by making them sufficiently small. Define the local LRT statistic for test-
ing Ho1p as LR} ) = 2L, (!, 7) — Lon(o)}. For e € (0,1/2), let Ou(er) == {a € O, :

al,...,a™ € [e1,1 — €]}, and define the LRT statistic for testing Hp; subject to a € O,(e1) as

LRTE(Q) ‘= MaXpea,,ae0q (e1) 2{Ln(p) — LO,TL(@O)}'
The following proposition derives the asymptotic distribution of these LRT statistics. Collect
the unique elements of the %Chlh(Xi; Y, 7)’s into s1; and s,; defined as sy; := (sl s’w-, sy;) and
mo

Spi 1= ((311)(0)1.)’, . (sv(e)i)')’. Define 711 := E|[s1;s};], define 7y, Z,1, and Z,, similarly, and define
Zv1 = Tpw — L1 Ty Tho. Let

é)\‘n = ((Gi.n)/) L) (Gi\n%)/)/ ~ N(O7Iv.1)7 (30)

be an R™09—valued random vector, and disﬁne Zf_n = Var(Gﬁ_n) and Z} == (I;\Z.n)_lGﬁ.n. Similar
to £y in the test of homogeneity, define % by g(h) = infy ep, g"(t)), where gi(t)) == (t\ —
Z f)’Iﬁ\L-n (tx—Z f\L) Assumption 7 corresponds to Assumptions 2 and 3 in the homogeneous case.

Assumption 7. For h = 1,...,mq, the following holds: (a) v* and 08 are in the interior of 0,
and Og. (b) For every z, In f(x;7,0) is four times continuously differentiable in a neighborhood of
(v*,04%). (c) For T € [0,1] and a neighborhood N™ of ", E supnepm |VE) In (X", 7)| < o0
fork=1,...,4. (d) For t € [0,1], B||V® (X" 1)/ (X; 9", 7)||? < 0o for k =1,2,3. (e)
7:= [%ﬁ %Z} is finite and positive definite.

Proposition 8. Suppose Assumptions 6 and 7 hold. Then, for h = 1,...,mqg and for each
T € (0,1), (a) i — 0" = Op(n~V?) and \r = Op(n~Y4). (b) (LRLy,...,LR,1,) —a

n,1lmg
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[(f%\)’I}\.ntE, . (fmo)’ImOfTO} (c) LR} (€1) —a max{(fi)’l')l\.nf%\, ey (tAt\nO)'I;\ngtAt\no} if e < minj o).
Proposition 8 can be applied for testing mg > 2 in normal mixtures with a common variance.

Example 2. (continued) Consider testing Hy : m = my in miztures of normal regressions with
a common variance f(x;p) = Z;”:OH o fly; 07 + w'B,0%). When mo > 2, Assumption 7(e)
holds in general because V21" (x; 9", 1) = > ad*V oo f (y; 07 + w'B*, 0**), which is not per-
fectly correlated with the ¥, f(y;07* + w'B,0%*)’s. Then, applying Proposition 8(c), we have
LR (e1) —a max{(£1)%, ..., (€m0%)2}, where "t := max{¢",0} and ¢h .= E[(Z!)27YV2 2] for
h=1,....mg
On the other hand, when the variance is component-specific so that f(x;p) = ZWE’H af(y; «9]

w'B,62), Assumption 7(e) is violated because V1" (z; 9" 1) = V2 f(y; 01* + w' 5*, 05*)

= (1/2)V uuf(y, 9?* + w' B, 93*)

4.2 Testing the null hypotheses Hy, and H,

As in Sections 3.4 and 3.5, we consider a testing procedure for the null hypotheses Hps and
Hy. For h € {1,...,mg}, introduce the reparameterized parameter \* := " — 0"+ and col-
lect all the parameters except for A\ and o’ into &* € 9?. Let lh(a:;fh,)\h,ah) denote the
reparameterized log-density, and let L(¢" ' ol) = > IM(X;; €7, AP o) denote the repa-
rameterized log-likelihood function. Define the LRT statistic for testing Hog as LI 5(e2) =
2{maxp—1,__m, MAX¢h ek A€} (e2) 0t €[0,1/2] LI (eh NP al) — Lo (po) }, where ©%(e2) == {\" € O, :
[[A"]| > e} for some e > 0.

As in (21), collect the partial derivative of I"(z;&" A" o) w.r.t. " and its right partial deriva-

tive w.r.t. o/ evaluated at (£"*, A", 0) as

lh . ¢chx )\h 0
sh(:v;)\h) — Ve (3375 AN ) '
Vahlh(a:;ﬁh*,)\h,O)

Note that s"(X;; A\?) is written as s"(X; A\") = (s;z,sm,sgz,sm()\h)) , where sq;, sy, and sgp; are
defined in (29) and sb,(\") == [f(Xi 7%, 08 + A) — (X, 08/ fo(Xi; 5). Collect the unique
elemejnts of the s"(X;; A\")’s int0~§i~(5\) = (3/11‘13%1(/\1) 857 (A))', where s1; 1= (84, 85 Sg;)
and A = (A\L,..., \™)" Define J(N) := E[5(N&(N)], i1 = Elsus),), T\ = Els1ish(\")
Th ") = Ju(v) and F () = B(s,(M)2]. Let {G(3) = (G, GHN)..... GFo(xm))' : A
Ox(e2) := O (ea) x - - x O (e2)} be a mean zero Gaussian process such that E[GNGAN)] =T\
where Gy is (mg — 1 +p—|—moq) x 1 and independent of X\, and GZ(A\") is 1 x 1. Define GI | (\") :=
GEA") = T3 (AT G and T3 (V") = T (A") = T3 (W T 7 Tl (W) = E[(GE,(A")?).

The following propositions derive the asymptotic distribution of the LRT statistics for testing

B
€
),

Hys and Hy. Assumption 8 corresponds to Assumption 5 in the homogeneous case. Define o/ (es) :=
SUP)\he@h (ep) (max{0, Jg4 (\")H/2GE 1 (A")})2.
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Assumption 8. For h = 1,...,myq, the following holds: (a) v* and 0}* are in the interior of
0, x Og. (b) f(x;7,0) is twice continuously differentiable on ©., x ©g. (c) J(N) satisfies 0 <

inf:\e@))\(ez) ,Omln(j()\)) < Supj\eék(@) pmax(j()\)) < 00.

1m0

Proposition 9. Suppose Assumptions 6 and 8 hold. Then, (a) LR'S(€2) —q max{o!(e2),..., 0™ (e2)}.
(b) Suppose Assumptions 6, 7, and 8 hold. Then, 2{L,(¢) — Lo.n($0)} —4 max{o'(0),..., 0™ (0)}.

Proposition 9(b) shows that the LRT statistic converges in distribution to the maximum of
mg random variables, each of which is the supremum of the square of a Gaussian process over ©,
and corresponds to the null hypothesis that one component density (for example, f(z;~7*,04*)) has
redundancy.

We may obtain the p-value for testing Hpi by drawing GA.n from the multivariate normal
distribution in (30) and computing the (f’/{)’Iﬁnf’/{’s across different draws of G ,. To obtain the
p-value for testing Ho, we need to simulate supyncgpn (max{0, 72, (\")~1/2GE (A")})2. This involves
taking a supremum of a stochastic process over @})f and is computationally challenging when the
dimension of A is high.® On the other hand, simulating the distribution of LR, 1(e1) does not
involve taking the supremum over unidentified parameters and is thus less costly than simulating
the distribution of the LRT statistic in general.

5 Modified EM test

In this section, we develop a test of Hy : m = mg against Hq : m = mg + 1 by extending the
EM approach pioneered by LCM. The proposed modified EM statistic has the same asymptotic
distribution as the LRT statistic for testing Hy, and as discussed in the introduction, it has several
advantages over the LRT test.

We first develop a (local) modified EM test static for testing Ho 1y, : 0" = 0", Because any of
the Y7,’s is compatible with the true density f(z;¢f), we need a device to restrict our estimator
to be in a neighborhood of T7;. To this end, we construct mq closed subsets {D7, ..., D, } of the
parameter space Oy such that 93* € int(Dy,) and 0’5* ¢ Dj for any k # h. In practice, we may

consider, for h =1,...,my,
Di:={0€0y: v 1" <o <} (31)

where 6 denotes the first element of 0, b%* and b™°* are the lower and upper bounds of the support
of 1, and b for h =1,...,mg— 1 lies in the open segment (08{, 06‘;1*) with 08{ denoting the first

element of Of*. When 0 = 0/17* we use the other elements of § to construct additional cutoff

SFor instance, for ¢ = 3, if we choose 100 discrete grid points for each element of A to approximate ©%, we need
to maximize over (100)® = 1000000 points for each draw.
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points. For h = 1,...,my, define a restricted parameter space

. 196@19:9jGD;‘forj:L...,h—l;
h:: . .
Gh,HhHEDZ; ¢/ € Dj_y for j=h+2,...,mp+1

Let Q, and Dy, be consistent estimates of 2y and Dy, which can be obtained from the MLE of the
mo-component model.

We test Hp 1, by estimating an (mg + 1)-component model under the restriction ¥ € Qh. For
example, when we test a two—component model with 1 = #? against a three-component model, the
restriction becomes 01,62 € Dy and 83 € D,. Because @y is consistent, with probability approaching
one, Y7, N (Qp x ©, x ©,) is nonempty while Y7, N (Qp x O, X O) is an empty set for all £ # h.
Therefore, if we maximize Ly (c,,7) under the restriction {a’ }T:Of“ 1'> 0 and 9 € Qp, the resulting
estimator approaches a neighborhood of Y7, when the true density is f(x; ¢p).

In implementing a modified EM test, we consider another reparameterization similar to (25),

Bl i=alh+ ol 7= ST TN ot ,

alt + afhtl
(51, ... ,ﬁh_l, Bh‘H e Bmo_l)’ = (al, e ah_l, ah+2, co,amy (32)
B = (61, . ,Bmo_l)’, B* = (a(l)*, . ,aomofl*)’.

Let ¢" := (8',7/,9") with its true value ¢"* := ((8*), (v*), (08", ...,
(O8), (OF*)', ..., (637°%)) so that the model parameter is (¢", 7) and the reparameterized density
is (X5 0" 7). Let LE (¢, 7) := 31 In f*(X;; 0", 7) denote the log-likelihood function.

Let 7 be a finite set of numbers from (0, 0.5]. For each 79 € 7, compute

¢"V(15) := arg max L (¢", 7). (33)
¢)h:19€Qh

Note that ¢"1)(7y) maximizes the log-likelihood function without a penalty term. In the original
EM approach by LCM, ¢ (79) maximizes a penalized log-likelihood function with a penalty term
p(7) that tends to —oo as T approaches to 0 or 1.

Let 7 (79) = 79. Starting from ("W (7y), 7 (7)), we update ¢" and 7 by a generalized EM
algorithm. Henceforth, we suppress (79) from ¢"*)(7) and 7 (79). Suppose we have ¢"*) and
() calculated. For i =1,...,n and j=1,...,mp+ 1, define the weights for an E-step as

i) BOFXA® 00 ) (X ¢ E) R for j =1, h—1,
: BIIE) £( Xy ®) 9IR)) ) £( X35 "R 7 R)) for j=h+2,... mg+1,

nky  TRBIE) F(X 4B 0h ) hiky (1= 70N BRI £(XG: (k) ght1(k))
P f(Xi; ot ®) 7Ry 7 i a F(Xi; ¢MR), ()
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In an M-step, update 7 and 8 by

k1) E:L 1 wh(k)
S w k:) Y W h—i—l(k)
n*lzi_lw i) for j=1,...,h—1,
pitkt1) . J -1 ST ( hik) | w;;ﬂ(k)) . for j=h,
nty wfﬂ(k) forj=h+1,...,mg,

and update v and 9 by

n mo+1
A1) .= arg max Z Z w] lnf (Xi;7,07F)) &
v€0y =1 j=1
i (h+1) —argmax{Zw In f(X kH),H)}, j=1,...,mo+ 1.
0€By i—1

We update v and ¥ sequentially to reduce computational burden. Note that Y&+ g not restricted
to be in Qh.
For each 79 € 7 and k, define

MR (79) =2 {Lﬁ(qﬁh(k) (70), 7™ (70)) — LO,n(‘ﬁO)} :

Finally, with a pre-specified number K, define the modified local EM test statistic by taking the

maximum of M2 (10) over 19 € T as
EM?5) .= max {MZ(K) (10) : 70 € T} .

There are mg modified local EM test statistics. If Hy : m = myg is correct, then each EMh(K)

h(K),

will have the same asymptotic size. On the other hand, different EM,,"" ’’s have different powers

under the alternative depending on the true parameter value. We define the modified EM-test

statistic by taking the maximum of my modified local EM test statistics:
EMX) .= max {EM}L(K),EMfL(K), . ,EM;”o(m} .

We introduce the following additional regularity condition to derive the asymptotic distribution of
the modified EM test statistic.

Assumption 9. (a) E[f(Xi;y*,Hg*)/f(Xi;¢h*,0.5)]2 < oo forj=1,....mo+1. (b) For a
neighborhood N of ¢"* and for an arbitrary small €, > 0, we have
Esupgh ryentxefer,1—e) ‘Vd,h [f(Xi;v,Gj)/f(Xi;gbh,T)H < oo forj=1,...,mg+ 1.
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The following proposition shows that, for any finite K, the modified EM test statistic is asymp-
totically equivalent to the LRT statistic for testing Hp;.

Proposition 10. Suppose that Assumptions 6, 7, and 9 hold. For any fixed finite K, as n — oo,
{EMAN, —a ()T e, and

M) g mac { )T . 0y T}

where the (fﬁ)’l’fnfﬁ s are given in Proposition 8.

One can use simulations or parametric bootstrap to obtain the p-values of the modified EM
test. The consistency of the parametric bootstrap follows from the standard argument because the
distribution of (tA’/\l)’Ifnfg is continuous in ¢".

The modified EM test statistic has the same asymptotic distribution for any finite K, even
though it does not use a penalty term. The intuition behind this result is as follows. Note that, given
70, ¢V (10) maximizes the log-likelihood function. When the data are from the mg-component
model, updating 7 changes 7 only by an o,(1) amount, because the log-likelihood function is

invariant to 7 € (0,1) up to an negligible term as shown in (13) and (14).

6 Simulation results

This section examines the finite sample performance of the modified EM test for Hy : mg = 2
against Hy : mg = 3 by Monte Carlo simulation using the Weibull model in Example 1(ii) on page
12, where X ~ N(0,1). Note that as illustrated in Example 1 in Section 3.4, neither the LRT
statistic for testing Hps nor the LRT statistic for testing Hg is applicable here because the Fisher
information is not finite.

We obtain the critical values for the test statistics by simulation using the result of Proposition
8(c). We set T = {0.5} and consider K = 1, K = 3, and K = 5. We set Dy by (5.1) with
b = kO + (1 — /@)Hgfl* for h=1,...,mg—1 and x = 0.9. The sizes and powers are computed
from 2000 simulated samples.

Table 1 reports the type I errors of the modified EM test. The data are generated from the
Weibull model in Example 1(ii) on page 12 under §* = (—1, 1), % = (1,1), and v = 1 with a« = 0.5
or o = 0.8. Across different values of K, the modified EM test has a good size when n > 1000 if
a = 0.5 and when n = 2000 if a = 0.8. The type I errors increase with K. Comparing the upper
panel with the lower panel, we notice that the modified EM test has a better size when the mixing
proportions are equal across components at e = 0.5 than when they are unequal at o = 0.8.

The first two panels of Table 2 report the powers of the modified EM test when the data
are generated from the Weibull model in Example 1(ii) on page 12 with three components under
0l = (—1,-1),0% = (0,0), 0% = (1,1), and v = 1 with (a},a?,a3) = (1/3,1/3,1/3) or (a},a?,a?3) =
(0.4,0.4,0.2). The power of the modified EM test increases with sample size. The power also
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increases with K but not substantially. In view of this result, we recommend using K = 1 or
K = 3. Comparing the first panel with the second panel, the modified EM test has a stronger
power when the mixing proportions are equal across components than when they are unequal
across components. The last two panels of Table 2 indicate that it is harder to correctly reject the
null hypothesis when the values of the coefficients of X are close to each other across components.

We also examine the performance of the original EM test that applies EM steps to a penalized
log-likelihood function PL!(¢",7) = LI (¢",7) + p(7), where the penalty term p(7) takes the form
p(7) = Cln(2min{r,1 — 7}), as in LCM. The tuning parameter C' in the penalty term affects
the finite sample performance of the EM test. We experiment with three values, C' = 1, C' = 2,
and C = 5, because no data-driven formula is available for this model. Following LCM, we set
T =4{0.1,0.3,0.5} and K = 3. The type I error and powers are examined using the same model
as in Tables 1 and 2. The results are reported in Tables 3 and 4. In terms of the type I error, the
modified EM test with K = 1 and the original EM test with C' = 5 perform similarly. The EM test
with C =1 and C' = 2 is oversized. In terms of power, the EM test with C = 5 performs slightly
better than the modified EM test with K = 1.

Overall, the performance of the modified EM test and original EM test are similar, although
the original EM test is slightly more powerful than the modified EM test. The modified EM test
provides a useful alternative to the EM test in applications where it is difficult to find an appropriate
value of C for the model at hand.
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Table 1: Type I errors (in %) of the modified EM test of Hy : mo = 2 against Hy : mg = 3

nominal level | 10% 5% 1% | 10% 5% 1% | 10% 5% 1%
K=1 K=3 K=5
' =(-1,-1),0% = (1,1),y=1, a = 0.50
n = 500 137 7.0 1.8 | 14.8 83 2.0 15.2 8.7 2.1
n = 1000 10.2 54 1.0 | 104 59 1.1 | 107 6.2 1.1
n = 2000 9.8 5.0 1.5 ] 10.1 5.3 1.5 | 10.2 54 1.5
' =(-1,-1),0%=(1,1),y=1,a = 0.80
n = 500 20.7 12.7 3.9 | 222 13.7 43| 228 142 4.8
n = 1000 14.7 83 2.7 151 88 28| 154 9.0 2.9
n = 2000 13.2 6.9 22| 135 7.1 24| 13.8 72 2.5

Note: Based on 2000 simulated samples. Critical values are obtained by randomly drawing 5000 statistics
at the true parameter value. We set £ = 0.9 and 7 = {0.5}.

Table 2: Powers (in %) of the modified EM test of Hy : mo = 2 against Ha : mg = 3

nominal level | 10% 5% 1% | 10% 5% 1% | 10% 5% 1%
K=1 K=3 K=5
0T = (—1,—1), 02 = (0,0), 3 = (1,1), y = 1, (al,02,a®) = (1/3,1/3,1/3)
n = 500 949 898 756 | 953 90.3 765 955 90.7 76.9
n = 1000 99.9 996 983 | 999 996 984 | 99.9 99.6 985
n = 2000 100.0 100.0 100.0 | 100.0 100.0 100.0 | 100.0 100.0 100.0
9T = (—1,—1), 02 = (0,0), 02 = (1,1), y = 1, (o, 02, a®) = (0.4,0.4,0.2)
n = 500 852 773 576 | 86.6 789 605 87.2 796 61.6
n = 1000 98.0 965 90.1| 984 972 906 | 985 977 91.1
n = 2000 100.0 100.0  99.7 | 100.0 100.0  99.7 | 100.0 100.0  99.7
0 = (—1,-05), 02 =(0,0), ©® = (L05), 7 =1, (a, 0% a’) = (1/3,1/3,1/3)
n = 500 28 299 112 441 308 120 449 314 124
n = 1000 64.0 534 291 | 643 539 296 | 644 543  30.3
n = 2000 915 856 685 | 915 858 687 | 91.6 858 68.7
9T = (—0.5,—1), 62 = (0,0), 83 = (0.5,1), v = 1, (', a2, a%) = (1/3,1/3,1/3)
n=500 793 69.0 422 | 794 695 428 ] 798 70.3 433
n = 1000 95.9 923 805 | 96.0 924 80.8 | 96.1 925  80.9
n = 2000 1000 99.9  99.1 [ 100.0  99.9  99.2 | 100.0  99.9  99.3

Note: Based on 2000 simulated samples. Critical values are obtained by randomly drawing 5000 statistics
at the pseudo-true parameter value. We set x = 0.9 and 7 = {0.5}.
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Table 3: Type I errors (in %) of the original EM test of Hy : my = 2 against Hg : mg = 3

nominal level | 10% 5% 1% | 10% 5% 1% | 10% 5% 1%
C=1 cC=2 C=5
' =(-1,-1),0%>=(1,1),y=1,a = 0.50
n = 500 19.7 10.8 2.9 | 15.9 88 2.1 | 13.7 7.5 1.8
n = 1000 14.3 81 1.8 11.2 6.8 1.6 9.5 5.7 1.1
n = 2000 137 76 15108 57 15| 98 51 1.3
' =(-1,-1),0% =(1,1),y=1, a = 0.80
n = 500 242 149 49| 21.3 128 44| 194 11.8 3.8
n = 1000 176 10.2 3.5 | 15.2 8.8 2.8 13.6 78 2.6
n = 2000 16.6 9.3 29| 14.0 7.5 251 12.0 6.4 2.2

Note: Based on 2000 simulated samples. Critical values are obtained by randomly drawing 5000 statistics
at the true parameter value. We set k = 0.9, K =3, and 7 = {0.1,0.3,0.5}.

Table 4: Powers (in %) of the original EM test of Hp : mo = 2 against Hq : mg = 3

nominal level 10% 5% 1% 10% 5% 1% 10% 5% 1%
C=1 C=2 C=5
0l = (—1,-1), 2 = (0,0), 03 = (1,1), y =1, (al,a?,0®) = (1/3,1/3,1/3)
n = 500 955 922 788 955 91.7 784 950 91.1 778
n = 1000 100.0  99.8 98.8 | 100.0 99.7 98.7 | 99.9 99.7 985
n = 2000 100.0 100.0 100.0 | 100.0 100.0 100.0 | 100.0 100.0 100.0
01 = (—1,-1), 02 = (0,0), 62 = (1,1), y = 1, (o', a?,a?) = (0.4,0.4,0.2)
n = 500 91.0 839 66.6| 89.6 829 645 875 799 62.1
n = 1000 99.2 986 952 | 992 985 944 | 987 97.8 93.0
n = 2000 100.0 100.0 100.0 | 100.0 100.0 100.0 | 100.0 100.0 100.0
01 = (—1,-0.5), 62 = (0,0), 03 = (1,0.5), v = 1, (o', a?,0?) = (1/3,1/3,1/3)
n = 500 491 346 13.2 | 472 327 128 456 31.6 123
n = 1000 67.8 56.6 326 | 66.8 559 321 | 66.6 555 31.6
n = 2000 934 87.0 70.7| 928 8.7 703 | 927 865 70.3
01 = (—0.5,—1), 82 = (0,0), 03 = (0.5,1), v = 1, (a!,a?,a’) = (1/3,1/3,1/3)
n = 500 80.0 69.7 425 788 69.0 421 781 682 414
n = 1000 96.0 925 80.8| 95.7 922 804 | 95.7 922 80.3
n = 2000 100.0 999 99.2 | 100.0 999  99.1 | 100.0 99.9  99.1

Note: Based on 2000 simulated samples. Critical values are obtained by randomly drawing 5000 statistics
at the pseudo-true parameter value. We set k = 0.9, K =3, and 7 = {0.1,0.3,0.5}.
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A Proofs

A.1 Proof of Proposition 1

Observe that 1/n times the log-likelihood function converges uniformly to E[ln f(X;; o, ~, 01, 02)]

in view of

SUD(a,,01,02) | In[af (X5, O+ (1—a) f(X;7,0%)]] < sup(,¢) | In f(X;7,0)| and that E[ln f(X;; o, 7, 0, 6%)]
is maximized when (a, v, 0%, 6%) € I'*. Consequently, the proof follows a standard argument such as
Theorem 2.1 of Newey and McFadden (1994) with an adjustment for the fact that the maximizer

of E[ln f(X;;a,,0%,6%)] is a set, not a singleton. [

A.2 Proof of Proposition 2

To prove part (a), we first show that

vﬂ)\j Ln(’gb*, a) =0, v)\i>\j>\k Ln(w*7 a) = Op(n1/2)7 (Al)
Viona In (", ) = Op(n), Vg Ln(¥*, a) = Op(n), (A.2)

and that for a neighborhood N of 1*,

sup  |[n VWL, (1, 0) — EVW In f(X;;9, )| = 0p(1), (A.3)
PYEO NN
EV®In f(X;;1, @) is continuous in & Oy NN (A4)

Equation (A.1) follows from Proposition A(a)(b) and Assumption 2(d). Equation (A.2) is a simple
consequence of Assumption 2(d). Equations (A.3) and (A.4) follow from Assumption 2(c) and
Lemma 2.4 of Newey and McFadden (1994).

Expanding L, (¢, «) four times around (1*, «), noting that VL, (¢¥*,«) = 0, comparing the
expansion with the right hand side of (8), and applying (A.1)—(A.3) gives

q q
Ry(¥,0) = Op(n?) 3 "3 "N " Midjdk + Op(n (Zun P+ [l —n ||3> (A.5)
i=1 j=1 k=1 =1
q q
) D N> (=011 + [l = n* 1Pl + 1m = 0 (PN ]+ I = 0 [[IAAA]) (A.6)
=1 j=1 k=1
1 q q q q
+0 DY Vo La(®h, @) = Vo aoa La (8%, @)}k A (A7)
i=1 j=1 k=1 (=1

with T being between v and ¢*. Because ||t (¢, )|> = nl|ln — n*|2 + n 4 12] L1 -
@)?|\;A;]2, the right hand side of (A.5) and the terms in (A.6) are bounded by O, (1)(||tn (3, @)|| +
1t (0, )IP) ([l = n* ]+ [[Al]). In view of (A.3) and (A.4), (A.7) is bounded by |[ta (v, a)|[*[d(41) +
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0,(1)] with d(T) — 0as ! — 1*, where a function d(¢)") corresponds to " E[V v L, (¢, a)—
Voo L (0%, @)]. Therefore, Ba(1h,0) = (1+ |[ta(t6, @) 2[d(1) + 0p(1) + Op(|[ — 6*[])], and
part (a) follows.

For part (b), note that EV \xI(X;9*, a) = a(l — a)E[Ve f(X;7%,0%)/ f(X;~*,6%)] = 0 from
(7). Therefore, E[V:I(X;1* a)] = 0, and part (b) follows from the Lindeberg-Lévy central limit
theorem and the finiteness of 7.

For part (c), we first provide the formula of Z,,. Partition Z, as

T 7,
In: ( I/nTI 17.”71) ) 5 Inn:(p+Q)X (p+Q)a Innv:(p+Q)XQ)\a Inv:Q)\XQ)\'
nv

nnu

Ty is given by Z,,, = —n*lvm,Ln(w*, a). For Z,,,, define A;; = n*lvajLn(«/ﬁ,a), so that the
fourth term on the right of (8) is written as

(n/2)>°%, Z?Zl(n — ") ANy =nd> L, 22‘21 cij(n —n*) AijAi\;, where the ¢;;’s are defined
when we introduce V¢I(X;9, «) in (9). Then, by defining

Tomw = —(c11411, ..., CqqAqq: 12412, . .., Cg—1,4Aq—1,4) /(1 — ), the fourth term on the right of
(8) equals —n(n — %)Ly [a(1 — a)v(N)]. For Iy, define Byjre = n=(8/4) Vi x, a0 Ln(¥%, @) s0
that the fifth term on the right of (8) is written as (n/8) Y7, 23‘:1 S >t BijreNidj ke =
(n/2)31, 23':1 P Z’ZZI CijCheBijreNiNj Mg Ae. Define Z,,, such that the (ij, k¢)’s element of Z,,
is —cijcreBijre/*(1—a)?, where the ij’s run over {(1,1),...,(g,q), (1,2),...,(¢—1,¢)}. Then, the
fifth term on the right of (8) equals —(n/2)[a(1 — @)v(X)]'Zpy[a(1l — a)v(A)]. With this definition
of Z,,, the expansion (8) is written as (12) in terms of ¢, (¢, a).

We complete the proof of part (c) by showing that Z,, —, Z. I,, —, Z, holds trivially.
For Z,,,, it follows from Proposition A(b), Assumption 2(c), and the law of large numbers that
Aij —p =BV l(X;59%, )V \, (X597, o)), giving Ly, —p E[VI(X, 97, a)%v()\)/l(X, V¥, a)/a(l-
a)] = Z,,. For I,,, Proposition A(c), Assumption 2(c), and the law of large numbers imply that
Dot 2o Xk 2o Bijkehidj Ak
—p— > ;1-:1 Doto1 2otm1 BV U(X5 0%, a) Vo L(X 9%, )] \idj Ak Ae, where the factor (8/4!) =
1/3 in Bjje and the three derivatives on the right hand side of Proposition A(c) cancel each other.
Therefore, we have Z,,, = E[%v(/\)l(X, >, a)%U(A)/l(X, P, )

/a?(1 — a)?] =7, and Z,, —, Z follows. [J
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A.3 Proof of Proposition 3

We suppress the subscript a from @Z;a, Mo, and Aa. The proof of part (a) closely follows the proof
of Theorem 1 of Andrews (1999) (A99, hereafter). Let T, := I,l/ztn(zﬁ, «). Then, in view of (12),

0p(1) < Lun(t, @) = Ln (4", a)

=TT 2, — STl + Rl )
1 B (A.8)
= O(ITall) = STl + (1 + 112, T oy (1)

1
= ITl10p(1) = SIITull* + 0p(1Tall) + 0p (I Tall*) + 0p(1),

where the third equality holds because 1/%7, = 0,(1) and R, (¥, o) = 0,((1 + ||Igl/2Tn| )?) from
Propositions 1 and 2 and Assumption 3. Rearranging this equation gives ||T),||? < 2||T,,]|Op(1) +
0p(1). Denote the Op(1) term by ¢,. Then, (||T,|| — sn)? < 2 + 0,(1) = O,(1), and taking square
roots gives ||Ty|| < O,(1). In conjunction with Z, —, Z, we obtain ,(¢),a) = O,(1), giving part
(a).

Part (b) follows from Corollary 1(c) of A99. (Bp, Dlr(0y), Jr, Zr) and (J,Z) in A99 cor-
respond to our (n'/2, 377 ﬁcl(Xi;w*,a),In,Zn) and (Z,Z). Furthermore, (HJ,'H')~! in the
statement of Corollary 1(c) of A99 corresponds to our Z) , because ¢ in A99 does not exist in our
setting. We verify that the conditions of Corollary 1(c) of A99 hold, namely, Assumptions 2-5, 7,
and 8 of A99 hold. Assumption 2 holds because Assumption 2* of A99 holds by our Proposition
2(a). Assumption 3 holds by our Proposition 2(b)(c) and our Assumption 3. Assumption 5 follows
from Assumption 5* and Lemma 3 of A99 with b, = n'/2 because (0, — n*) x v(0,) is locally
equal to a cone A. Assumption 7(a) does not apply to our problem, and Assumptions 7(b) and 8
hold from our definition of A.

For part (c), note that (6) implies that V. g) f(z; 7", 0) is identical to V,, f (z; ¥*, a). Therefore,
a standard analysis gives 2{ Lo..(30,00) — Lo.n (7", 60%)} =4 G%In_lGn, where G, is the same random
variable as that in part (b). Hence, part (c) follows from subtracting 2{ Lo (%0, 60) — Lon(7*,60%)}
from 2{ Ly, (Y, @) — Ln(*, @)} and using Ly, (1*, @) = Lo (v*,6*). Part (d) follows from part (c).
O

A.4 Proof of Proposition 4

We prove part (a) by adjusting the proof of Proposition 2(a) to take into account Assumption 4(a).

Define a nonsingular matrix Q := ([OQB]). Then, under Assumption 4, we obtain the following
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expression from (12):

Ln(wa Oé) - Ln(ﬂl*, Oé)
= (100, 0))/ Q7 QG — 10 (,0) QT QT (@) (0, 0) + Rl
= (@n(,0)Y QG — 3 (Qtn(,0)) (QT,Q)Qtn(¥, @) + Ru(v0)

1

1
= izég,n(QInQ,)ZQ,n - §[Qtn(¢)) - ZQ,n],(QInQ/)[Qtn(¢) - ZQ,n] + Rn(ib, a),
where Zg ., := (QZ,Q") "' QG,, and the second equality follows from QG,, = (an ) (Q Ytn(h,a) =
((BB,)f?fgﬁﬁ’/‘”;)(H*)), and Q'TQ = (9ZQ 0). Write Ry(1h, ) in (A.5)-(A.T) as

Ry(¥, ) = Rip + Ron + Ran + (14 |[n*/?(n = n*))?Op(Iln — 771 + [1Al]),

where Ry, Ran, and Rs, correspond to the first term in the right hand side of (A.5), the fourth
term in (A.6), and (A.7), respectively, and are given by
Rip = O(1) S0_, \jo(N) Yoy Vi, Vool (X 9%, a),
Ron = O(1) X0 Aju(N) o7y Vi Vool Xis 9%, @) (n — ), and
Rap, = O(1)o(\) 301 Vo Ve L 9T, @) — 1(X5 9%, @)]u(N).

Define P = (BBL) and B~ = B/(BB’)~!; then, P! is given by P~! = [(B1)":B~]. For Ry,
note that it follows from Assumption 4(a) that

VAV, Vyl(Xi3 97, @) = v(A) PTLPV Vo) l(Xi3 97, a)
= (BJ_'U<)\))/BJ'V)\].6U()\)Z(XZ';1/}*704).

Hence, Ry, = n'/2BYv(\)O,(||A|]) holds. A similar argument in view of (A.3) and (A.4) gives
Ron = n'2(n — n*)'n'2BLu(N)O,(]|A]]) and Rz, = n'/2BLu(\)[d(¥1) 4 0,(1)]n'/2BLu()), where
d(") is defined similarly to d(¢!) in the proof of Proposition 2. Therefore, R,(¢,a) = (1 +
1Qtn(1 0))?
(A1) + 0p(1) + Oyl — 411}, giving part (a).

Part (b) follows from applying the proof of Proposition 3(a) to (19). Parts (c)-(e) follow from
repeating the proof of Proposition 3(b)-(d). O

A.5 Proof of Proposition 5

The proof is based on Theorem 2(b) of Andrews (2001). Observe that, for each A € ©y(ez2), the
log-likelihood function L, (&, A\, ) can be approximated around (£, ) = (£*,0) using the partial

derivative w.r.t £ and the right partial derivative w.r.t. a as (compare it with equation (3.3) of
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Andrews (2001, p. 694))

La(6:20) = La(€,1,0) = 5200 Ta(N) Zn(Y)

1 (A.9)
= 5[tal& @) = Zu(W TNt (€ @) = Zu(N)] + Ba(€, X, ),
where R, (&, A\, ) is a remainder term, and J, (), Z,()), and ¢, (£, @) are defined as
Tn(A) := % Z s(Xi; Ns(Xi; N, Za(A) == Tn(V) " In1/2 Z s(Xis M),
/(e - h A0
n _
tn(gva) = ( n1/2a ) )

with s(X;; A) defined in (21). (0, 7) and (Br, Dlr (6o, ), Jrr, Z1=) in Andrews (2001) correspond
to our ((¢,@),A) and (n'/2, 370 | s(Xi; A), Tn(N), Zn(N)).

We prove the stated result by applying Theorem 2(b) of Andrews (2001) to (A.9). (8,4, ) and
(Br,Gry TIxs Zx, Zgr) in Andrews (2001, pp. 697-699) correspond to our (a,&, ) and
(n'2,G(N), T(N), Z(\), Za(N)), where Z(N\) := TN T'GN), Za(A) i= JaeN) " Gag(N), and ¢
in Andrews (2001, pp. 697-699) does not exist in our setting. The stated result then follows
because s¢(x) is identical to the score of the one-component model and j‘lﬁw(H JLH )*15\[3# in
Theorem 2(b) of Andrews (2001) is distributed as (max{0, Jo.¢(A)"V/2G4.¢(N)})?2. We proceed to
verify the assumptions of Theorem 2(b) of Andrews (2001) (hereafter, A-Assumptions 22", 3-5,
7, and 8). A-Assumption 22" (a)(b) follow from our Assumption 5(a)(b). A-Assumption 22 (c)
holds because our Assumptions 1 and 5(c) and the uniform law of large numbers imply that
SUPAeO, (e) |[Tn(A) =T (A)|| =p 0 and J(A) is continuous. A-Assumption 3 follows from Proposition
B(a), subyco, (e) [|Tn(A) = T(N)]| —p 0, and our Assumption 5(c). A-Assumption 4 follows from
Lemma 1 of Andrews (2001) because, for each A € ©x(e2), (£(A), @(A)) = arg max¢ o), x[0,1/2) Ln(§: As )
converges to (£*,0) in probability from the standard consistency proof. A-Assumption 5 holds be-
cause (i) the set [0,1] equals a nonnegative half-line locally around 0, and (ii) ©¢ — £* is locally
equal to RPT?. A-Assumption 7(a) is not relevant for our problem. A-Assumptions 7(b) and 8

follow from our proof of A-Assumption 5. [

A.6 Proof of Proposition 6

The proof is similar to the proof of Lemma 6 of Cho and White (2007). For brevity, we drop 7 from
f(z;7,0) so that £ = 62, assume ) is scalar, and let f; and V£ denote f(X;;0*) and its derivative,
respectively. Define the leading term in the approximation (A.9) of L, (&, A\, ) — L, (€%, \,0) as
Da(€, 0,1 = (1/2)Za(N) Ta(N) Z0(N) = (1/2D)tn(&,2) — ZuN) Ta(Mftn(E @) — Zu(N); then, the
stated result follows if we show that the maximum of D, (&, a, A) over (&, a, A) is the same as the

maximum of (13) over ¢, up to an 0,(1) term when A is small. Note that Assumption 5 is implied
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by Assumption 2 and 3 when A is small.
We proceed to obtain an approximation of Dy, (&, o, A) when A is small. Expanding V,I(x;£*, A, 0)

around A = 0 twice gives

V@f(:L’ 9*) }V@gf(x,e*)
f@0) T2 f(07)

where r(x; A1) == (1/2)([Voof(z;0* + \1) — Vo f(z;0%)]/f(x;6*) with AT € [0,)\]. Substituting
(A.11) into (&, @) TnZn(N) and t, (&, @)’ Tn(N)tn (€, @) and rearranging terms gives

Val(z;€5,X,0) = A2 (2 AN, (A.11)

(€, 0) TnZn(N) = tn(€,0)' G + (A0 2ar?,

) - ) ) (A.12)
tn (&, 0) TuNtn(€, @) = (&, @) Tuta (€, @) + An(ANO(|[Ea (€, @)I?),
where £,(&, ) := (nV/2(€ + aX — €%),n12aX?), G :=n" V23" g and Z,, := n~t 07| gig} with
gi = (Vo7 /17, Voo 7 1217)  ra(NT) =072 300 v (Xu)\T) and An(AT) :=n7! 3T (X3, D[V fF/ £+

Vool /2fF + (X, A)]. Note that limsup,,_,., Pr(]A,(AT)| > §) — 0 as AT — 0 for any § > 0 and
rn(A) converges to a stochastic process r(\) that is continuous in A\. Moreover, r(0)=0 because
E[r(X;; A1) = 0 for any AT and »(X;;0) = 0.

Substituting (A.12) into D, (€, a,\) and defining Z, = Z;'G,, we obtain D,(£,a,\) =
(1/2)Z! T Zy—(1/2) [En (€, @)= Z) Ty [t (€, ) — Zp)+ Ry (N), where lim sup,, , . Pr(supy < [Bn(A)] >
S(1 + ||£n(€,@)|])?) — 0 as k — 0. Finally, observe that Gy, is equal to G, defined in (11). There-
fore, part (a) follows from comparing D, (&, a, ) with (13). Part (b) follows from part (a) and
Proposition 5. [

A.7 Proof of Proposition 8

We first prove that ¢ —yh* = op(1) for 7 € (0,1). Because ¢** ¢ N for any ¢ # h, ¢"* is the only
parameter value in N}' that generates the true density. Consequently, 1[141 — " = 0,(1) follows
from a standard consistency proof.

Next, L!(y" 1) — LF(p"*,7) admits the same expansion (12) as L, (1, ) — L,(¢*, a) with
(tn (), @), G, I, Rn(1h, @) on the right of (12) replaced with (t? (", 7), GI T, R (4" 7)). Hence,
part (a) follows from repeating the proof of Proposition 2. Part (b) is proven by extending the
proof of Proposition 3 to derive the joint asymptotic distribution of (LR;H, ...,LRT ), and

n,1mg

part (c) follows immediately. OJ

A.8 Proof of Proposition 9

The proof is essentially the same as the proof of Propositions 5 and 6, except for analyzing the

joint asymptotic distribution of mg statistics using Proposition B(b), and thus is omitted. [J
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A.9 Proof of Proposition 10

We suppress (79) from ¢"*)(79) and 7%(7p). Let wh := (fﬁA)’Ifl‘)\.an/\ be the sample counterpart of
(f&)’ﬂf’nfﬁ such that the local LRT statistic for testing Hy 1y, satisfies 2{ L, (4", 7) — Lon(0)} =
wh +0,(1).

We first show EMZ(U = wh + op(1). Because &™* is the only value of ¢" that gives the true
density if ¥ € Qf and 7 € (0,1), #"1) is also a reparameterized local MLE in a neighborhood
of ¢"*. Therefore, in view of Proposition 8 and its proof, we have ¢'1) — ¢h* = Op(nfl/ 4) and
2{L (¢, 75) — Lon($0)} = wl + 0,(1). Consequently, we have EMAY = wh +0,(1).

We proceed to show EMA*) = wh +0,(1). Because ¢"(V) — ¢h* = O, (n=1/4) and () — 7y = 0, it
follows from Proposition C and induction that ¢"5) — ¢"* = O, (n=1/%) and 75) — 15 = O, (n=1/%)
for all finite K. Because an EM step never decreases the likelihood value (Dempster et al., 1977), we
have L (") 7)) > Lh("(M) 75). Let ¢ be the maximizer of L (¢", 75)) in an arbitrary small
closed neighborhood of ¢™*, then we have LZ(éh,T(K)) > L (¢"F) 7K)) from the consistency
of ¢E). Therefore, 2{L(¢" ) 7)) — Lg,.(40)} = wl + 0p(1) holds because L!(¢", 7(K)) >
L (¢ 7UD) > LR (¢hM) 75) and both 2{ LA (¢"D), 70) = Lon (o)} and 2{ L (¢", 70)) = Lo 1 (20)}
can be written as w” 4+ 0,(1) in view of Proposition 8 and its proof. Hence, EMAE) — wh + 0,(1)
holds for all h, and the stated result then follows from the definition of EMgLK). O

B Auxiliary results and their proofs
Proposition A. Suppose f(x;v, ) is given by (4). Then, fori,j k.0 =1,2,...,q,

(a) Vi f(z;¢*,a) =0, VyInf(z;9",a) =0, Vi, Inf(a;9*a) =0,
(0) B[V, Inf =0, ENyaxnInf]=0, E[VynInf]=—E[V,nfVy, ],
(¢) EVaaaaInf]=—E[VyyInf*Vy,,Inf

Vo I Vo, In f*+ Vi, In f*Vy o, In f7],

where V&) In f* = V) In f(X5v* a) for k=1,2,3,4.

Proof. A direct calculation gives part (a). For parts (b) and (c), observe that [V, In f(z; ¢, @) f(z; ¢, a)dx =
0 holds for any % in the interior of ©,, and differentiating this equation w.r.t. A; gives

/{VAiAj In f(z;9, ) + V, In f(z;9, )V, In f(2;9, @) }f (259, a)dx = 0. (B.1)

Evaluating (B.1) at ¢ = 9* in conjunction with part (a) gives the first equation in part (b).
Differentiating (B.1) w.r.t. Ay or n and evaluating at ¢ = * give the latter two equations in
part (b). Part (c¢) follows from differentiating (B.1) w.r.t. Ay and A, and evaluating at ¢ = ¢* in
conjunction with parts (a)(b). O
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Proposition B. (a) Suppose Assumptions 1 and 5 hold, and let Z,(\) defined by (A.10) in the
proof of Proposition 5. Then Z,(\) = Z(\) as a stochastic process indexed by A € ©x(e2), where
{Z(N) : A € ©yx(e2)} is a mean zero RY-valued Gaussian process that has bounded continuous sample
paths with probability one and that satisfies E[Z(A\)Z(\)'] = J(\)™L. (b) Suppose Assumptions 6
and 8 hold, and define Z,(\) := J(A\) "'~ Y230 5(N), where J(N) and 3;(\) are defined in
Section 4.2. Then Z,(\) = Z(\) as a stochastic process indezed by X € Ox(ez), where Z(\) is a
mean zero R(M0—1++moq) yqlyed Gaussian process that has bounded continuous sample paths with
probability one and that satisfies E[Z(N)Z(N)] = T (M)~ .

Proof. Part (a) follows from Theorem 10.2 of Pollard (1990) if (i) ©x(e2) is totally bounded, (ii)
the finite dimensional distributions of Z,(-) converge to those of Z(-), and (iii) {Z,(-) : n > 1} is
stochastically equicontinuous. Condition (i) holds because Oy is compact in the Euclidean space.
Condition (ii) follows from Assumption 5(b)(c) and the multivariate CLT. Condition (iii) can be
verified by our Assumption 5(b)(c) and Theorem 2 of Andrews (1994) because V¢l(+;£*,X,0) and
Val(+5 €%, X, 0) are Lipschitz functions indexed by a finite dimensional parameter A by Assumption
5(b). Part (b) is proven similarly. O

Proposition C. Suppose Assumptions 6-9 hold. If $"*) (1g) — ¢ = Op(n_1/4) and %) (10) — 10 =
Opfn~Y14), then (a) T4 () = 70 = O, (n~/4) and (b) ¢+ (r0) = " = O, (n~14).

Proof. We suppress (79) from ¢"*)(7q) and 7(¥)(ry). The proof of part (a) uses the arguments of

the proof of Lemma 3 of Li and Chen (2010). Let fi(v,60") and fi(¢",7) denote f(X;;~,6") and

f(X;; 0", 7), respectively. Applying a Taylor expansion to Yoy w?(k) gives

- W) _ (k) gh(k) fi(
; B Z e
(v
i

() ghtk Z s qﬁh* 70) Op(n)(¢"*) = ¢"*) + Op(n) () — 79).

,y(k eh(k

(B.2)

Because f;(¢"*, 7) does not depend on 7, it follows from Assumption 9(a) and E[fi(v*, 05*)/ fi(¢"*, 70)] =
1 that the right hand side equals 7*) 3"F)n(14-0,(n=1/2)) + O, (n3/*) = 7 hE)n (1 + 0, (n~1/4)).
Similarly, Y, fw?H(k) = (1 — 7N MEIn(1 4 O,(n=1/*)). Therefore, we have 71 = 7(k) 1
O, (n~14) = 19 4+ Op(n~/*), giving part (a).

We proceed to show part (b). 3++1) = g*40,(1) follows from a similar argument to (B.2). Note
that v**1) maximizes Q,(v) :=n"' 31, ZmOH J(k) In fi(v,6’%)). Using a similar argument to
(B.2) in conjunction with Assumption 9(b) and |wi ] <1, we have sup,cg_ |@n(7)—Q (V)| = 0p(1),
where Q(7) := >0 0‘0 *E7*[In f;(, 9]*)] and E7* denotes the expectation taken under f(z;~*,65"),
and 1) . +* follows. Given the consistency of v(*+1) a similar argument gives §7++1) —
arg maxg E7* In f(X;;7*,0) = 6?6* for j = 1,...,h and 7+ — 96_1* for j = h+1,...,mo.
This proves ¢"*+1) —  ¢"*. Giving the consistency of ¢"**1) part (b) follows from repeating the

argument in the proof of Proposition 3(a). O
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