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Abstract. This paper derives su¢ cient conditions for nonparametric transforma-

tion models to be identi�ed and develops estimators of the identi�ed components.

Our nonparametric identi�cation result is global, and is derived under conditions

that are substantially weaker than full independence. In particular, we show that

a completeness assumption combined with conditional independence with respect

to one of the regressors su¢ ces for the model to be identi�ed. The identi�cation

result is also constructive in the sense that it yields explicit expressions of the

functions of interest. We show how natural estimators can be developed from

these expressions, and analyze their theoretical properties. Importantly, it is

demonstrated that the proposed estimator of the unknown transformation function

converges at the parametric rate.
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1. Introduction

A variety of structural econometric models comes in form of a transformation

model containing unknown functions. One important class are duration models that

have been widely applied to study duration data in labor economics (Keifer, 1988),

IO (Mata and Portugal, 1994), insurance (Abbring, Chiappori, and Zavadil, 2007),

and �nance (Engle, 2000; Lo, MacKinlay, and Zhang, 2002), among others. Another

class are hedonic models studied by Ekeland, Heckman, and Nesheim (2004) and

Heckman, Matzkin, and Nesheim (2005). A yet di¤erent example are models of

binary choice in which the underlying random utilities à la Hausman andWise (1978)

are additively separable in the stochastic term as well as the unobserved attributes

of the alternatives. Further examples of nonseparable econometric models that fall

in the transformation model framework can be found in a survey by Matzkin (2007).

The present paper focuses on the following two questions. First, under what con-

ditions is the transformation model nonparametrically identi�ed? And second, how

can we estimate the identi�ed components from data? Regarding the �rst question,

our main result is to show that transformation models are nonparametrically globally

identi�ed under conditions that are signi�cantly weaker than full independence. Our

identi�cation strategy is constructive in a sense that we obtain explicit expressions

of the relevant components of the model in terms of primitives such as the joint dis-

tribution of the observables. This in turn allows us to develop simple nonparametric

estimators of the identi�ed components which we analyze. This analysis leads to

the second main result of the paper, which is to show that our nonparametric es-

timator of the transformation function attains parametric convergence rate. This

in turn implies that for the estimation of the regression function, we can treat the

transformation function as known.

We now discuss how our identi�cation result relates to the existing literature. It

is well-known that in nonparametric linear models Y = g(X)+ �, the unknown func-

tion g can be identi�ed from E(�jZ) = 0 w.p.1 if the conditional distribution of the
endogenous regressor X given the instrument Z is complete (see Darolles, Florens,
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and Renault, 2002; Blundell and Powell, 2003; Newey and Powell, 2003; Hall and

Horowitz, 2005; Severini and Tripathi, 2006; d�Haultfoeuille, 2011, amongst others).

Recently, Fève and Florens (2010) extended the completeness condition to identify

('; �) in a semi-parametric transformation model '(Y ) = W + �0X + �, in which

' is strictly monotonic and E[�jX;Z] = 0. Using the inverse problems techniques,
they established identi�ability of the model without imposing any independence as-

sumptions.

In this paper, we show that a similar completeness condition� when combined with

conditional independence� is su¢ cient for identi�cation of T , g and F�jX in a non-

parametric transformation model Y = T (g(X) + �), where T is strictly monotonic.

Speci�cally, we work in a framework in which X can be decomposed into an ex-

ogenous subvector X1 such that � ? X1 j X�1, and an endogenous subvector X�1

whose conditional distribution given Z is complete. Our main assumption is that

E(�jZ) = 0 w.p.1.
Even though the nonparametric transformation model is nonlinear in g and F�jX ,

we obtain identi�cation results that are global. We note that by letting � � (T; g)
we can write the model as a special case of a nonlinear nonparametric instrumental

variable model E[�(Y;X; �)jZ] = 0 w.p.1 where �(Y;X; �) � T�1(Y ) � g(X). For

such models, Chernozhukov, Imbens, and Newey (2007) propose an extension of the

completeness condition that guarantees � to be locally nonparametrically identi�ed.

It is worth pointing out that their results are local in nature, and that nothing is

being said about the identi�ability of F�jX .

Our identi�cation results are close in spirit to those obtained by Ridder (1990),

Ekeland, Heckman, and Nesheim (2004), and Jacho-Chávez, Lewbel, and Linton

(2010). Using the independence of � and X, Ridder (1990) establishes the nonpara-

metric identi�ability of (�; g; F�) in a Generalized Accelerated Failure-Time (GAFT)

model �(�) = g(X) + �, where � is the duration, �0 > 0 and F� is the distribution

of the unobserved heterogeneity term �. Letting T � ln ���1, this result is related
to that of Ekeland, Heckman, and Nesheim (2004) who show that assuming � ? X
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is su¢ cient to establish nonparametric identi�ability (up to unknown constants) of

T , g and F� in a nonparametric transformation model of the kind studied here.1 A

similar result has been obtained by Jacho-Chávez, Lewbel, and Linton (2010).

We extend the identi�cation results of Ridder (1990), Ekeland, Heckman, and

Nesheim (2004), and Jacho-Chávez, Lewbel, and Linton (2010) in two important

directions: �rst, we prove nonparametric identi�cation of the function T even when

the regressorX contains an endogenous component; and second, we show that if there

exists nonparametric instrumental variables Z such that the conditional distribution

of X�1 given Z is complete, then the conditional moment conditions E(�jZ) = 0

w.p.1 are su¢ cient as well as necessary to identify g nonparametrically.2 It is worth

pointing out that our identi�cation strategy allows to nonparametrically identify the

transformation T even if the completeness assumption fails; the latter is only used

to identify g and F�jX .

The results of this paper are also related to the literature on nonparametric identi-

�cation under monotonicity assumptions surveyed in Matzkin (2007). For example,

Matzkin (2003) provides conditions under which in models of the form Y = m(X; �)

with m strictly monotone, the independence assumption � ? X is su¢ cient to glob-

ally identify m and F� (see also Chesher, 2003, for additional local results). In a

1In the same paper, the authors derive an additional result that relaxes the independence as-

sumption and replaces it with E(�jX) = 0 w.p.1. They show that the latter is su¢ cient to identify

general parametric speci�cations for T (y; �) and g(x; �) where � and � are �nite dimensional para-

meters. Once T (y; �) and g(x; �) are speci�ed, the results derived by Komunjer (2008) can be used

to further check whether global GMM identi�cation of � and � holds.
2The results also extend those of Hoderlein (2009) who considers identi�cation and estimation

of semiparametric endogenous binary choice models in which T (X) = �0X. As shown in Hoderlein

(2009), the slope parameter � can then be identi�ed as the mean ratio of derivatives of two functions

of the instrument Z.
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sense, our result shows that the independence condition can be substantially re-

laxed, if a certain form of separability between Y , X and � holds, namely, if we have

T�1(Y ) = g(X) + �.3

Our estimation strategy for T is closely related to the work of Horowitz (1996)

who shows that in the special case where g(X) = �0X, the transformation function T

is identi�ed as an integral function over relevant derivatives of the cumulative distri-

bution function (cdf) of Y given X. Horowitz (1996) then uses this result to develop
p
n-consistent, asymptotically normal, nonparametric estimators of T and F� when

g(X) = �0X.4 We obtain a similar expression of T in the general nonparametric

case, which allows us to develop natural two-step estimator: First, we obtain non-

parametric kernel estimators of the conditional cdf ; second, plugging this estimator

into the expression of T as a functional of this cdf, an estimator of T is obtained.

The resulting estimator of T involves integrating over (some transformation of) the

conditional cdf, and this integration leads to parametric convergence rates of the

estimator despite the fact that the �rst-step estimator converges with nonparametric

rate akin to two-step semiparametric estimators (see, e.g., Newey and McFadden,

1994).

Once T has been estimated, estimation of the regression function g (x) can be done

by nonparametric IV with T̂�1 (Y ) replacing the true but unknown dependent vari-

able, T�1 (Y ). Speci�cally, we adjust the estimator of Blundell, Chen, and Kristensen

(2007) to allow for pre-estimated dependent variables thereby yielding a feasible es-

timator of g (x). Given the parametric convergence rate of T̂ , our nonparametric IV

estimator of g (x) converges with the same rate as if we knew T and as such we su¤er

no loss of e¢ ciency from T being unknown.

In the context of semi-parametric transformation models, '(Y ) = W + �0X +

�, Fève and Florens (2010) proposed a sequential approach to estimate ' and �

3See also the discussion on page 24 in Blundell and Powell (2003).
4Estimators of � have been available since Han (1987).
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using regularization. Their estimator is based on the conditional moment restriction

E[�jX;Z] = 0 alone, however its rate of convergence is slower than
p
n.

In the special case where the transformation T is �nitely parameterized, Linton,

Sperlich, and van Keilegom (2008) construct a mean square distance from indepen-

dence estimator for the transformation parameter. Jacho-Chávez, Lewbel, and Lin-

ton (2010) have developed alternative, fully nonparametric estimators of the trans-

formation model considered, but these estimators of the transformation function do

not obtain parametric rate, and do not allow for endogeneous regressors. Finally,

it is worth pointing out that the general sieve estimation methods developed in Ai

and Chen (2003) and Chernozhukov, Imbens, and Newey (2007) should in principle

be applicable to the transformation model yielding consistent estimators for (T; g)

simultaneously. However, a full theoretical analysis of these general estimators in

the case of the transformation model has not been made and it is unclear whether

the nonparametric components of the sieve estimators will attain parametric rate.

The remainder of the paper is organized as follows. Section 2 introduces the trans-

formation model and recalls basic de�nitions. In Section 3, we derive necessary and

su¢ cient conditions for the model to be nonparametrically identi�ed. Our identi�-

cation strategy is constructive in a sense that it leads to a natural estimator for T ;

identi�cation of g and F�jX is derived once the transformation is known. In Section

4 we propose estimators of T , g and F�jX and analyze their asymptotic properties.

The last section concludes. All of our proofs are relegated to an Appendix.

2. Model

We start by introducing the model and the assumptions. We consider a nonpara-

metric transformation model of the form

(1) Y = T (g(X) + �) ;

where Y belongs to Y � R, X = (X1; : : : ; Xdx) belongs to X � Rdx, and � is

in E � R. The variables Y and X are observed, while � remains latent. The
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transformation T and the regression function g in (1) are unknown real functions;

additional restrictions on T and g will be imposed below.

Hereafter we maintain the following assumptions.

Assumption A1. Let X be the support of X.5 Then, for a.e. x 2 X , the conditional
distribution F�jX(�; x) of � given X = x is absolutely continuous with a continuous

density f�jX(�; x).

Assumption A1 states that for almost every realization x 2 X ofX, the conditional
density of � given X = x exists and is continuous. Let Ex � R denote the support
of � given X = x; then,

R
Ex f�jX(t; x)dt = 1 and f�jX(�; x) > 0 on Ex. In particular,

Assumption A1 implies that the random variable � � g(X) + � is continuously

distributed with density f�(d) =
R
X f�jX(d � g(x); x)dF (x) where F (�) denotes the

cdf of X. The following assumption ensures that the support of � is a connected

subset of R (i.e. an interval).

Assumption A2. The support D of g(X) + � is connected in R.

Put di¤erently, Assumption A2 requires that the closure of the set fd 2 R : f�(d) >
0g be connected in R. For example, this excludes the situations in whichX is a scalar

binary variable, and the supports E0 and E1 of � given X are disjoint intervals. We

are now ready to put further restrictions on the transformation T : D ! R in (1).

Assumption A3. T is continuously di¤erentiable on D, T 0(d) > 0 for every d 2 D,
and 0 2 Y = T (D).

We restrict our attention to the transformations T in (1) that are smooth and

strictly increasing from D onto Y. Without loss of generality, we assume that 0 2
T (D), i.e. 0 belongs to the support of Y . Assumptions A1, A2 and A3 guarantee
that the conditional distribution FY jX(�; x) of Y givenX = x is absolutely continuous

5Following the usual convention, the support of a random variable is de�ned as the smallest

closed set whose complement has probability zero.
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with a continuous density fY jX(�; x). Moreover, the support Y of Y is a connected

subset of R.

We now further restrict the dependence between � and X. For this, let X1 denote

the �rst component of X; whenever dx > 1, we denote by X�1 the remaining sub-

vector of X, i.e. X�1 � (X2; : : : ; Xdx). The supports of X1 and X�1 are denoted X1
and X�1, respectively. We make the following assumption:

Assumption A4. � ? X1 j X�1.

Assumption A4 states that � is independent of at least one component of X, given

the remaining components of X; we may, with no loss of generality, assume that this

conditionally exogenous component is X1. Put in words, the property in A4 says

that the variable X1 is excluded from the conditional distribution of � given X. This

is why we call exclusion restriction the conditional independence assumption in A4.

Assumption A5. The random variable X1 is continuously distributed on X1 � R.

According to Assumption A5, the �rst component X1 of each observable vector X

is continuous. Note that except for the continuity of the random variableX1, A5 does

not restrict its support X1. In particular, X1 need not be equal to R, and X1 may

well have bounded support. Perhaps more importantly, assumption A5 allows all the

other components X2; : : : ; Xdx to be either continuous or discrete with bounded or

unbounded supports. We now further restrict the regression function g : X ! R in

(1).

Assumption A6. For a.e. x 2 X , the partial derivative @g(x)=@x1 exists.

Similar to A5, Assumption A6 only restricts the behavior of the partial derivative

of g with respect to x1. Nothing is being said about the behavior of g with respect

to the remaining components x�1.

In addition to the restrictions on the joint distribution of � and X1 conditional on

X�1 stated in Assumption A4, we now restrict the joint distribution of � and X�1.
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For this, we shall assume that there exists a vector of instruments Z 2 Z � Rdz

with respect to which the distribution of X�1 is complete, and such that � is mean

independent of Z.

Assumption A7. For a.e. z 2 Z, E(�jZ = z) = 0 and the conditional distribution

of X�1 given Z = z is complete: for every function h : X�1 7! R such that E[h(X�1)]

exists and is �nite, E[h(X�1) j Z = z] = 0 implies h(x�1) = 0 for a.e. x�1 2 X�1.

Recall from A4 that � is assumed to be conditionally independent of X1 given X�1,

i.e. the �rst component of X is conditionally exogenous. The other components are

on the other hand allowed to be endogenous provided the completeness condition in

A7 holds.6

3. Identification

Following the related literature (e.g., Koopmans and Reiersøl, 1950; Brown, 1983;

Roehrig, 1988; Matzkin, 2003) we hereafter call structure a particular value of the

triplet (T; g; F�jX) in Equation (1), where T : D 7! R, g : X 7! R, and F�jX : R�X 7!
R. The model then simply corresponds to the set of all structures (T; g; F�jX) that

satisfy the restrictions given by Assumptions A1 through A7. Each structure in the

model induces a conditional distribution FY jX of the observables, and two structures

( ~T ; ~g; ~F~�jX) and (T; g; F�jX) are observationally equivalent if they generate the same

FY jX .

6Further discussion of the completeness condition can be found in Darolles, Florens, and Renault

(2002), Blundell and Powell (2003), Newey and Powell (2003), Hall and Horowitz (2005), Severini

and Tripathi (2006), and d�Haultfoeuille (2011), among others. For example, it is equivalent to

requiring that for every function h : X�1 ! R such that E[h(X�1)] = 0 and var[h(X�1)] > 0,

there exists a function k : Z ! R such that E[h(X�1)k(Z)] 6= 0 (see Lemma 2.1. in Severini and

Tripathi, 2006).
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We now address the identi�cation problem, namely: If (T; g; F�jX) is a structure

that generates FY jX , is it possible to �nd an alternative structure that is di¤er-

ent from but observationally equivalent to (T; g; F�jX)? More formally, the struc-

ture (T; g; F�jX) is globally identi�ed if any observationally equivalent structure

( ~T ; ~g; ~F~�jX) satis�es: for every t 2 R, every y 2 Y, and a.e. x 2 X ,

~�(y) = �(y); ~g(x) = g(x); and ~F~�jX(t; x) = F�jX(t; x);

where we have let � : Y ! R denote the inverse mapping T�1,

(2) �(y) = T�1 (y) :

The conditional independence property in Assumption A4 has strong implications

which we now derive. In what follows, let �(y; x) denote the conditional cdf of Y

given X,

�(y; x) � FY jX(y; x) = P (Y � yjX = x) :

Under Assumption A3, � is continuously di¤erentiable and strictly increasing on Y.
Note that in addition �(Y) = D. Equation (1) is equivalent to � = �(Y ) � g(X),

so by �0 > 0 and the conditional independence of � and X1 given X�1,

(3) �(y; x) = P (� � �(y)� g(x)jX = x) = F�jX (� (y)� g(x); x�1) ;

for all (y; x) 2 Y � X . The identi�cation problem can then be restated as follows:

Given �, to what extent is it possible to recover the functions �, g and F�jX which

for every y 2 Y and a.e. x 2 X satisfy Equation (3)?

For one thing, it is clear from Equation (1) that some normalization of the model is

needed; indeed, for any � > 0 and � 2 R, the transformation model (1) is equivalent
to Y = ~T (�g(X)+�+��) where ~T is de�ned by ~T (t) � T ((t� �)=�). We therefore

impose that any structure (T; g; F�jX) in (1) satis�es the normalization condition:

(4) T (0) = 0 and E(�) = 0; E[g(X)] = 1:

The main identi�cation result is as follows:
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Theorem 1. Let Assumptions A1 through A6 and the normalization condition (4)

hold. Assume in addition that the set A � fx 2 X : @�(y; x)=@x1 6= 0 for every y 2
Yg is nonempty. Then:

(i) T is globally identi�ed;

(ii) (g; F�jX) are globally identi�ed if and only if Assumption A7 holds.

The �rst part of Theorem 1 shows that under Assumptions A1-A6 and the ad-

ditional condition on the set A, the transformation T is globally identi�ed. The

requirement that A has nonempty interior can be thought of as a generalized rank

condition saying that X1 has a causal impact on Y . The intuition behind this con-

dition appears by taking derivatives w.r.t. x1 in Equation (3),

@�(y; x)

@x1
= �f�jX (� (y)� g(x); x�1)

@g(x)

@x1
:

Thus, the requirement has two parts: First, we need that for some x 2 X ,
@g(x)=@x1 6= 0; this requirement excludes the situations in which g is a constant

function. Second, we need that for the same value x, ft 2 R : t = �(y) � g(x); y 2
Yg � Ex; this assumption ensures that f�jX (� (y)� g(x); x�1) > 0 for every y 2 Y,
and is akin to Assumption 5a in Horowitz (1996). A simple primitive condition for

the second requirement is that Ex = R, for example. Rather than imposing speci�c
su¢ cient conditions on f�jX and g, we maintain the high-level condition that A is

nonempty.

The second part of Theorem 1 states that the completeness condition A7 is both

su¢ cient and necessary to nonparametrically identify the regression function g and

the distribution F�jX . Note that the result is global even though the model (1) is

nonlinear in g and F�jX .

While necessary to identify (g; F�jX), the completeness assumption A7 is not used

to identify the transformation T . In fact, the proof of Theorem 1 shows that under

A1-A6 and the normalization condition (4), the inverse transformation � = T�1 can
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be written as:

(5) �(y) =

R y
0
�y(u; x)[�1(u; �x)]

�1duR
R fY (y)

R y
0
�y(u; x)[�1(u; x)]�1dudy

; x 2 A:

Here, fY (y) denotes the unconditional density of Y , and we use subscripts to denote

partial derivatives.7 Key to the identi�cation of T is the conditional independence

assumption (A4) which in particular guarantees that the right hand side in Equation

(5) is not a function of x. Hence, evaluating this quantity at any x for which �1(y; x)

never vanishes allows to recover �. The expression in (5) also makes clear why

Theorem 1 needs to assume the set A of such x�s to be nonempty.

It is worth pointing out that the case of several conditionally exogenous variables

is a particular version of the setting above. Indeed, assume that the disturbance � in

the model (1) is known to be conditionally independent of Xi (1 � i � I) given the

remaining components of X. Since E(�) = 0, it then holds that w.p.1 E(�jXi) = 0.

Hence, it su¢ ces to include Xi in the vector of instruments Z.

As Equation (5) shows, our identi�cation strategy is constructive in a sense that

it leads for a closed form expression of � = T�1 as a function of the observables.

In the next section, we develop nonparametric estimators of � and g that builds on

this expression, and examine their properties.

4. Estimation

We use the identi�cation strategy of the previous section to derive explicit estima-

tors of (T; g; F�jX).

Suppose we have a random sample (Yi; Xi; Zi) (i = 1; : : : ; n) drawn from the

transformation model in Equation (1) and that Assumptions A1 to A7 hold. We

study the estimation of each of the identi�ed components of the model in turn: First,

we propose an estimator of the inverse transformation function � = T�1 under the

normalization (4). Next, given this estimator, we proceed to estimate the regression

function g and the conditional cdf of the error term F�jX .

7Speci�cally, g1(x) � @g(x)
@x1

, �y(y; x) � @�(y;x)
@y and �1(y; x) � @�(y;x)

@x1
.
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To develop our estimator of �, we rewrite the expression in Equation (5) as:

(6) �(y) =
S (y; x)

E [S (Y; x)]
;

where we have de�ned

(7) S (y; x) �
Z y

0

�y(u; x)

�1(u; x)
du and E[S (Y; x)] =

Z
R
S (y; x) fY (y) dy:

The estimation method that we propose is straightforward in principle: We �rst

obtain a nonparametric estimator of the conditional cdf �(y; x). We then plug this

estimator into Equation (7) to obtain an estimator of S and its moment which in

turn are substituted into Equation (6). This yields a nonparametric estimator of

�(y).

To be more speci�c, observe that the conditional cdf can be written as

� (y; x) =
p (y; x)

f (x)
; p (y; x) �

Z y

�1
fY;X (u; x) du; f (x) �

Z
R
fY;X (u; x) du;

where fY;X (y; x) is the joint pdf of (Y;X). Thus, a natural kernel-based estimator

of � (y; x) is

(8) �̂ (y; x) =
p̂ (y; x)

f̂ (x)
;

where

p̂ (y; x) =
1

n

nX
i=1

Khy (Yi � y)Khx (Xi � x) ; f̂ (x) =
1

n

nX
i=1

Khx (Xi � x) ;

with Khy (y) = K (y=hy) =hy, Khx (x) = K (x=hx) =h
dx
x and hx; hy > 0 being univari-

ate bandwidths. The functions K (y) and K (x) are given as K (y) =
R y
�1K (u) du

and K (x) =
Qdx
i=1K (xi) with K : R 7! R being a univariate kernel. Note that

we could allow for individual bandwidths for each variable in Xi but to keep the

notation simple we here use a common bandwidth across all regressors. Also note

that we could replace Khy (Yi � y) with the indicator function I fYi 6 yg if we were
only interested in estimating �(y; x) itself, but since we also need to estimate its

derivatives we here employ the above estimator since it is di¤erentiable.
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With this estimator of the conditional cdf at hand, we propose to estimate �(y)

by

�̂ (y) =

Z
X
w (x)

Ŝ (y; x)

Ê[Ŝ (Y; x)]
dx;

where w (x) is a weighting function with compact support X0 � X satisfyingZ
X0
w (x) dx = 1;

and

Ŝ (y; x) �
Z y

0

�̂y(u; x)

�̂1(u; x)
du and Ê[Ŝ (Y; x)] � 1

n

nX
i=1

Ŝ (Yi; x) :

The weighting function w serves to purposes: First, it is used to control for the usual

denominator problem present in many semiparametric estimators where we divide by

a nonparametric density estimator. In particular, we will require that infx2X0 f (x) >

0 and infy2Y0;x2X0 �1(y; x) > 0. Second, it allows us to improve on e¢ ciency of the

estimator by reweighting Ŝ (y; x) =Ê[Ŝ (Y; x)] as a function of x. There is a tension

between these two purposes since in order to obtain full e¢ ciency, we expect that

w needs to have full support which is ruled about by compact support assumption.

It should be possible to weaken this restriction though and allow the support X0 to
grow with sample size. This will however lead to more complicated conditions and

proofs and so we maintain the compact support assumption for simplicity.

We note that the proposed estimator is similar to the estimator of Horowitz (1996)

who considers the semiparametric model where the regression function is restricted

to g (x) = �0x. Assuming for simplicity that � is known such that V � �0X is

observed, the estimator of Horowitz (1996) can be written as:

~� (y) = �
Z
V
! (v)

Z y

0

Ĝy (u; v)

Ĝ1 (u; v)
dudv;

where Ĝ(y; v) is a kernel estimator of G(y; v) = P (Y � yjV = v) = FY jV (y; v), V is
the support of V , and ! (v) is a weighting function with compact support. As shown

in Horowitz (1996), due to the double-integration, ~� (y) is
p
n-consistent despite the

fact that it relies on �rst-step nonparametric estimators that converge with slower
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rate. Similarly, in our case we also integrate over both y and x, and as such we

expect that our proposed estimator �̂ (y) will be
p
n-consistent.

Once �̂ (y) has been obtained, the regression function and the conditional cdf of

the error term can be estimated using nonparametric IV techniques: First, suppose

that �(y) is known. Then, �(Y ) = g(X)+� with E[�jX1; Z] = 0 so the estimation of

g is a standard nonparametric IV regression problem. We can thus import techniques

from that part of the literature such as the kernel estimator of Hall and Horowitz

(2005) or the sieve estimator of Blundell, Chen, and Kristensen (2007). In this paper,

we focus on the sieve estimator for g (x) proposed in Blundell, Chen, and Kristensen

(2007), which takes the following form when �(y) is known:

(9) ~g = arg min
gn2Gn

nX
i=1

f~h (X1;i; Zi)� M̂ (X1;i; Zijgn)g2;

where ~h (x1; z) and M̂ (x1; zjgn) are �rst-step nonparametric estimators (such as a
kernel regression or a series estimators) of

(10)

h (x1; z) � E [� (Y ) jX1 = x1; Z = z] ; and M (x1; zjgn) � E [gn (X) jX1 = x1; Z = z] ;

and Gn is a sieve space. We have here left out the weighting function used in Blun-
dell, Chen, and Kristensen (2007) since this is only used to obtain e¢ ciency of the

parametric component of their model. With �(y) unknown, we propose to modify

the above nonparametric sieve IV estimator with the true but unknown dependent

variable, �(Y ), being replaced by generated ones, �̂ (Y ). This leads to the following

feasible version of the above sieve estimator:

(11) ĝ = arg min
gn2Gn

nX
i=1

fĥ (X1;i; Zi)� M̂ (X1;i; Zijgn)g2;

where ĥ (x1; z) is an estimator of E[�̂ (Y ) jX1 = x1; Z = z]; that is, the unknown

function � is replaced by its estimator �̂.

Finally, given �̂ (y) and ĝ (x), we can compute the corresponding residuals, �̂i =

�̂ (Yi)� ĝ (Xi), i = 1; :::; n. Standard nonparametric estimators of conditional cdf�s,
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such as the kernel one presented above, can now be employed with the residuals

replacing the actual, unobserved errors,

F̂�jX (t; x�1) =

Pn
i=1Khy (�̂i � t)Khx�1

(X�1;i � x�1)Pn
i=1Khx�1

(X�1;i � x�1)
;

We now proceed to analyze the asymptotic properties of the estimators. In order

to do so, we introduce additional assumptions on the model and the kernel function

used in the estimation. The kernelK used to de�ne our estimator of �(y) is assumed

to belong to the following class of kernel function:

Assumption A8. The univariate kernel K is di¤erentiable, and there exists con-

stants C; � > 0 such that

��K(i) (z)
�� � C jzj�� ;

��K(i) (z)�K(i) (z0)
�� � C jz � z0j ; i = 0; 1;

where K(i) (z) denotes the ith derivative. Furthermore,
R
RK (z) dz = 1,R

R z
jK (z) dz = 0, 1 � j � m� 1, and

R
R jzj

mK (z) dz <1.

The above class is fairly general and accommodate kernels with both bounded and

unbounded support. We do however require the kernel K to be di¤erentiable which

rules out uniform and Epanechnikov kernels. This is however only used for technical

reasons, and we expect the following results to also hold for non-di¤erentiable kernels.

We allow for both standard second-order kernels (m = 2) such as the Gaussian one,

and higher-order kernel (m > 2). The use of higher-order kernels in conjunction

with smoothness conditions on the densities in the model allow us to control for the

smoothing bias induced by the use of kernels. In general, the kernel has to be of

higher order, in order for �̂ (y) to be
p
n-consistent.

The smoothness conditions that we will impose on the density of data are as

follows:

Assumption A9. The joint density, fY;X (y; x) is bounded, m times di¤erentiable

w.r.t. (y; x) with bounded derivatives; its mth order partial derivatives are uniformly



NONPARAMETRIC TRANSFORMATION MODELS 17

continuous. Furthermore, supx2X ;y2Y k(x; y)k
b fY;X (y; x) < 1 for some constant

b > 0.

Note that the number of derivatives, m � 2, is assumed to match up with the order
of the kernel K. The requirement that supx;y k(x; y)k

b fY;X (y; x) <1 is implied by

E[jY jb] <1 and E[kXkb] <1.
As noted earlier the weighting function is used to control the denominator problem

of our estimator. More speci�cally, with X0 denoting the support of w, we require
that:

Assumption A10. The following bounds hold: infy2Y;x2X0 �1(y; x) > 0,

infx2X0 f (x) > 0 and supy2Y j�(y)j <1.

The lower bound condition on �1(y; x) is related to the set A introduced in Theo-

rem 1 and further restricts the behavior of �1(y; x). In particular, Assumption A10

implies that X0 � A and so A has non-empty interior. If in fact A has empty interior,

we cannot obtain
p
n-consistency.

The lower bounds imposed on �1(y; x) tand f (x) allows us to control the estima-

tion error Ŝ (y; x) � S (y; x) uniformly over (y; x) 2 Y � X0. The above condition
implicitly restricts the support of the weighting function to be compact, and Y

to have bounded support. We conjecture that the assumption could be weakened

to infy2Y0;x2X0 �1(y; x) > 0 for some (possibly bounded) interval Y0 � Y, thereby
allowing for unbounded support of Y . However, this would come at the price of

having to introduce trimming in the de�nition of our estimator Ê[Ŝ (Y; x)]. To avoid

more complicated estimators and proofs, we therefore maintain the above stronger

assumption.

Finally, we impose the following restrictions on the the rate with which the band-

width sequences hx = hx;n and hy = hy;n are allowed to shrink towards zero as

n!1:

Assumption A11.
p
nh2mx ! 0,

p
nh2my ! 0,

p
nhdx+2x = log (n) ! 1,

p
nhyh

dx+1
x = log (n)!1.
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Assumption A11 puts restrictions on the two bandwidths sequences ensuring that

the squared estimation error of the kernel estimators p̂ (y; x) and f̂ (x) and their

relevant derivatives all are of order oP (1=
p
n) uniformly over y 2 Y0 and x 2 X0. As

is standard for kernel estimators, there is a curse-of-dimensionality which appears

in the last two restrictions on hx: When the dimension of X, dx � 1, is large, we

in general need to use higher-order kernels in order for all four conditions to hold

simultaneously. For example, if hx / n�rx and hy / n�ry then Assumption A11

holds whenever

m >
dx + 2

2
and

1

4m
< rx; ry <

1

2(dx + 2)
:

To state the asymptotic distribution of the estimator, we collect data in Ui =

(Yi; Xi) and introduce the function �
w (Uijy) given by

(12) �w (Uijy) �  �w1
i (Uijy)� ' �w2 (Ui) ;

with �w1 (x) � w (x) =E [S (Y; x)], �w2 (x) � w (x) =E [S (Y; x)]2 and

 �w (Uijy) � �w (Xi)

Z y

Yi

Dp;0 (u;Xi) du+ I fYi � yg �w (Xi)Dp;y (Yi; Xi)(13)

+

Z y

Yi

@ [ �w (Xi)Dp;1 (u;Xi)]

@x1
du;

(14)

' �w (Ui) � � 
�w
(Ui)+

Z
X
�w (x) fS (Yi; x)� E [S (Y; x)]g dx; � 

�w
(Ui) � E

�
 �w (UijYj) jUi

�
:

The functions Dp;0 (y; x), Dp;y (y; x) and Dp;1 (y; x) are de�ned in Equation (27) in

Appendix. Under the above conditions, we then have the following asymptotic dis-

tribution of the proposed estimator:

Theorem 2. Let Assumptions A1 through A11 and the normalization condition (4)

hold. Then, the following functional weak convergence result holds for any compact

set [y1; y2] � Y:

p
n(�̂ (y)��(y))!d W (y) ; y1 � y � y2,
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where y ! W (y) is a zero-mean Gaussian process with covariance kernel 
 (y1; y2) =

E [�w (Uijy1) �w (Uijy2)].

As can be seen from the above expression, the function �w (Uijy) = � (Uijy; w;�)
is a known functional of w and �, and so the asymptotic covariance kernel can be

consistently estimated by


̂ (y1; y2) =
1

n

nX
i=1

�(Uijy1; w; �̂)�(Uijy2jw; �̂);

where �̂ is the kernel estimator given in Equation (8).

In principle, e¢ ciency of the estimator can be obtained by minimizing the asymp-

totic variance E[�wi (y)
2] as a functional of w. Given the complex expression of the

in�uence function �wi (y), this is a quite complicated problem though and so we leave

the derivation of the optimal weighting function for future research.

With Theorem 2 in hand, we are now able to develop the asymptotic properties

of the regression estimator proposed in Equation (11). To this end, we �rst extend

the conditions of Blundell, Chen, and Kristensen (2007) to a multivariate setting

to ensure that the infeasible estimator ~g in Equation (9) is well-behaved; these are

straightforward extensions and also rather technical and so have been relegated to

the Appendix. Next, we impose the following assumption:

Assumption A12. The support Y of Y is compact.

This condition is a slight strengthening of Assumption A12 with the latter implying

that Y is bounded. Su¢ cient conditions for the compact support assumption is

that g is bounded and � has compact support. When the function g in the model

(1) is bounded, then the completeness condition A7 can be replaced by a bounded

completeness condition: for every bounded functionm : X�1 ! R, E[m(X�1)jZ] = 0
w.p.1 impliesm(X�1) = 0 w.p.1. The bounded completeness condition is weaker than

the completeness condition (see, e.g., Blundell, Chen, and Kristensen, 2007, for a

discussion).
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The compactness of Y together with Theorem 2 implies that �̂ (y) converges uni-

formly over its support, supy2Y j�̂ (y)��(y) j = OP (1=
p
n). This in turn allows us

to show that the feasible estimator ĝ is asymptotically equivalent to ~g.

Theorem 3. Let Assumptions A1 through A12 and the normalization condition (4)

hold. Assume in addition that Assumptions A13 through A17 in the Appendix hold.

Then, the feasible sieve IV estimator ĝ satis�es

kĝ � gkX =

sZ
X
[ĝ (x)� g (x)]2 fX (x) dx = Op

�
k�r=dxn + �n

p
kn=n

�
;

where dx = dim (X), kn = dim (Gn), r � 1 is the degree of smoothness of g and �n
is the sieve measure of ill-posedness:

(15) �n � sup
gn2Gn:gn 6=0

p
Efgn(X)g2p

EfE[gn(X)jX1; Z]g2
.

The convergence rate depends on the sieve-measure of ill-posedness �n which in

turn depends on the decay rate of the singular values, which we denote f�kg, of the
conditional mean operator g 7! M (x1; zjg) de�ned in Equation (10); see Section 4
in Blundell, Chen, and Kristensen (2007) for a further discussion. If for example,

the singular values satisfy �k � k�s=dx, for some s > 0 then �n � const � k
s=dx
n and

we obtain kĝ � gkX = Op
�
n�r=[2(r+s)+dx]

�
.

The convergence rate stated in Theorem 3 is identical to the one for the infeasible

estimator, ~g, that assumes knowledge of T ; thus, there is no (asymptotic) loss from

not knowing T in the estimation of g. This is due to the fact that T̂ converges with

faster rate than ~g, and so it does not in�uence the feasible estimator ĝ. The above

result only gives the rate of convergence of the estimator. We conjecture that the

general results of Belloni, Chen, Chernozhukov, and Liao (2010) could be applied to

our problem to develop distributional results.

We conjecture that Theorem 3 remains true without the assumption of bounded,

compact support of Y . In particular, by inspection of the proof of Theorem 3,

we see that all that is needed for the result to hold is that jj�̂ (�) � �(�) jjY =
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oP
�
n�r=[2(r+s)+1]

�
, where k�kY is the L2-norm, k�k

2
Y =

R
Y �

2 (y) fY (y) dy. We expect

this to hold in great generality.

Finally, we note that with ĝ and �̂ converging uniformly, the estimator F̂�jX (t; x�1)

is clearly also consistent. However, the derivation of the asymptotic distribution of

F̂�jX (t; x�1) remains an open problem.

5. Conclusion

We conclude by discussing possible extensions of our identi�cation result. Assume

that instead of relying on the conditional independence between � and X1 given

X�1, we use the fact that there exists an instrument V , such that � and X1 are

conditionally independent given (X�1; V ), i.e. � ? X1 j (X�1; V ). This would

amount to considering the conditional distribution FY jX;V of Y given (X;V ) which

now satis�es:

FY jX;V (y; x; v) � �(y; x; v) = F�jX;V (�(y)� g(x); x�1; v)

Rede�ning X to be (X;V ), the above expression falls exactly in the framework

obtained in (16), with an additional restriction on the function g which now no

longer depends on the components of X corresponding to V . When the conditional

distribution of the rede�ned vector X�1 given Z is complete, we know that g is

identi�able. This identi�cation result holds even without restricting the way that g

depends on V ; a fortiori, the identi�cation result remains true when g is restricted.
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Appendix A. Sieve IV Assumptions

We here state the additional regularity conditions used to establish Theorem 3.

First, we need som additional notation: The �rst-step conditional mean estimators:

~h (x1; z) and M̂ (x1; zjgn) are assumed to take the form

~h (x1; z) = pJn(x1; z)
0(P 0P )�

nX
i=1

pJn(X1;i; Zi)� (Yi) ;

M̂ (x1; zjgn) = pJn(x1; z)
0(P 0P )�

nX
i=1

pJn(X1;i; Zi)gn (Xi) ;

where pJn(z1; z) = (p1(x1; z); :::; pJn(x1; z))
0 is a sieve basis of dimension Jn � 1, and

P = (pJn(X1;1; Z1); :::; p
Jn(X1;n; Zn))

0. Also let �rc(X ) � fg 2 �r(X ) : jjgjj�r � cg be
a Hölder ball (of radius c) of fucntions with smoothness r as introduced in Blundell,

Chen, and Kristensen (2007). We are then ready to state the regularity conditions

Assumption A13. (i) g 2 G � �rc(X ) for some r > 1=2; (ii) E[jjXjj2a] < 1 for

some a > r.

Assumption A14. The functions h (x1; z) � E[� (Y ) jX1 = x1; Z = z] and

M (x1; zjgn) � E[gn (X) jX1 = x1; Z = z] belong to H � �rmc (X1�Z), rm > 1=2, for

any gn 2 Gn.

Assumption A15. (i) the smallest and the largest eigenvalues of

E[pJn(X1; Z)p
Jn(X1; Z)

0] are bounded and bounded away from zero for each

J2n; (ii) pJn(x1; z) is either a cosine series or a B-spline basis of order 
b, with


b > rm > 1=2; (iii) the density of (X1; Z) is continuous, bounded and bounded

away from zero over its support X1�Z, which is a compact interval with non-empty
interior.

Assumption A16. There is a gn 2 Gn such that � 2n�E[E[g(X)�gn (X) jX1; Z]
2] �

const� jjg � gnjj2X .

Assumption A17. (i) kn ! 1, Jn=n ! 0; (ii) nJ�2rm=(1+dz)�1n ! 0 and

limn!1 (Jn=kn) = c0 > 1;
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Appendix B. Proofs

Proof of Theorem 1. Consider a structure (T; g; F�jX) that satis�es assumptions A1-

A6, and generates � (y; x) in the sense of:

(16) �(y; x) = F�jX(�(y)� g(x); x�1):

To establish the results of Theorem 1 we proceed in three steps. The �rst step

establishes the identi�cation of �. The second step shows that the completeness

assumption A7 is su¢ cient to identify g and F�jX . The third and �nal step shows

that the completeness condition is also necessary.

Step 1: Identification of �. Under assumptions A1, A3, A5 and A6, the

partial derivatives @�(y; x)=@y, @�(y; x)=@x1 exist. Di¤erentiating Equation (16) in

y and x1 gives:

@�(y; x)

@y
= �0(y)f�jX(�(y)� g(x); x�1)(17)

@�(y; x)

@x1
= �@g(x)

@x1
f�jX(�(y)� g(x); x�1)(18)

where �0 is the derivative of �, and f�jX (t; x�1) denotes the pdf of � givenX�1 = x�1.

Take any point �x 2 A with A de�ned in Theorem 1. Then for every y 2 Y, we
have:

(19) � �0(y)

@g(�x)=@x1
= s(y; �x) where s(y; �x) � @�(y; �x)=@y

@�(y; �x)=@x1
:

Note that s(y; �x) is nonzero and keeps a constant sign for all y 2 Y. Note in addition
that under Assumptions A2 and A3, Y is a connected subset of R (i.e. an interval)
that contains 0. Then, integrating (19) from 0 to any y 2 Y and using the fact that
�(0) = 0 we have:

�(y) = �@g(�x)
@x1

S(y; �x) where S(y; �x) �
Z y

0

s(t; �x)dt:
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Multiplying the above equation by the pdf fY (�) of Y and then integrating w.r.t. y,

we get:

1 = E[�(Y )] = �@g(�x)
@x1

Z
R
S(y; �x)fY (y)dy = �

@g(�x)

@x1
E[S(Y; �x)];

where we have used the fact that E[�(Y )] = E[g(X)] + E [�] = 1. Since �x 2 A,

@g(�x)=@x1 6= 0 and is �nite; hence, E[S(Y; �x)] 6= 0 and is �nite as well, so we can

write:

(20)
@g(�x)

@x1
= � 1

E[S(Y; �x)]
:

Combining (19) and (20) then gives for every y 2 Y:

(21) �(y) =
S(y; �x)

E[S(Y; �x)]
;

and the right-hand side of (21) does not depend on �x. Hence, � is identi�ed.

Step 2: Identification of g and F�jX. Now take any x 2 X such that

@g(x)=@x1 6= 0. For any such x, there exists a yx 2 Y such that �(yx) � g(x) 2 Ex,
i.e. such that f�jX(�(yx)�g(x); x�1) > 0. Taking again ratios in (17)-(18), it follows
that

@g(x)=@x1 = �
�0(yx)

s(yx; x)
where s(yx; x) =

@�(yx; x)=@y

@�(yx; x)=@x1
;

and with � as in (21). Now let � : X ! R be de�ned as:

�(x) �

8<: � �0(yx)
s(yx;x)

; if x 2 fx 2 X : @g(x)
@x1

6= 0g;
0; otherwise:

Then, we have that @g(x)=@x1 = �(x) for a.e. x 2 X . A particular solution �g : X !
R to this partial di¤erential equation is

(22) �g (x1; x2; : : : ; xdx) =

Z x1

c

�(u; x2; : : : ; xdx)du

where c 2 X1. Obviously, any solution to @g(x)=@x1 = �(x) must have the same

partial in x1 as �g in (22); it must therefore be of the form:

(23) g(x) = �g(x) + �(x�1)
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for some function � : X�1 ! R. Now let g be an arbitrary solution, and consider

E(�jZ) where � = �(Y )� g(X) with � as in (21) and g as in (23). Letting FY jZ and
FXjZ denote the conditional distributions of Y given Z and ofX given Z, respectively,

we have:

E(�jZ = z) =

Z
R
�(y)dFY jZ(y; z)�

Z
X
g(x)dFXjZ(x; z)

=

Z
R
�(y)dFY jZ(y; z)�

Z
X
[�g(x) + �(x�1)]dFXjZ(x; z)(24)

Now, consider a structure ( ~T ; ~g; ~F~�jX) that is observationally equivalent to (T; g; F�jX)

and has the same properties as (T; g; F�jX). It follows from (24) that for a.e. z 2 Z:

E(�jZ = z) = 0 = E(~�jZ = z)) E
h
�(X�1)� ~�(X�1)jZ = z

i
= 0;

where ~� = ~�(Y ) � ~g(X). Then, the completeness assumption A7 implies �(x�1) =
~�(x�1) for a.e. x�1 2 X�1. Combined with Equation (23), this implies that

g(x) = ~g(x); for a.e. x 2 X .

Thus g is identi�ed.

Since � and g are identi�ed, we have F�jX(�(y) � g(x); x�1) = ~F~�jX(�(y) �
g(x); x�1) for every y 2 Y and a.e. x 2 X . Now take any x 2 X ; then the previous
equality holds for any t = �(y) � g(x) 2 Ex. By continuity, the equality continues
to hold outside the support Ex, i.e. F�jX(t; x�1) = ~F~�jX(t; x�1) for every t 2 R. This
establishes the identi�cation of F�jX and completes the proof of su¢ ciency.

Step 3. Necessity. Finally, assume that the completeness condition is violated,

in the sense that there exists some function h : X�1 ! R that (i) does not vanish

a.e., but (ii) is such that E[h(X�1) j Z = z] = 0 for a.e. z 2 Z. Let (T; g; F�jX) be
a structure generating �, that satis�es Assumptions A1-A6 and the normalization

condition (4). De�ne ( ~T ; ~g; ~F~�jX) by

~�(y) � �(y); ~g(x) � g(x) + h(x�1); and ~F~�jX (t; x) � F~�jX (t+ h(x�1); x�1) ;



NONPARAMETRIC TRANSFORMATION MODELS 26

for every y 2 Y, every t 2 R, and a.e. x 2 X . Then, the structure ( ~T ; ~g; ~F~�jX)
satis�es the normalization condition (4), as well as assumptions A1-A6. Note that

assumption A6 only requires ~g to be smooth with respect to the �rst component

x1; hence, it is satis�ed even if the function h(x�1) is discontinuous. Since the

structure ( ~T ; ~g; ~F~�jX) is observationally equivalent to (T; g; F�jX), (T; g; F�jX) is not

identi�ed. �

Proof of Theorem 2. Write

�̂ (y)��(y) =

Z
X0
w (x)

(
Ŝ (y; x)

Ê[Ŝ (Y; x)]
� S (y; x)

E [S (Y; x)]

)
dx

=

Z
X0

w (x)

E [S (Y; x)]
fŜ (y; x)� S (y; x)gdx

�
Z
X0

w (x)

E [S (Y; x)]2
fÊ[Ŝ (Y; x)]� E [S (Y; x)]gdx

+O(jjŜ � Sjj21) +O(jjÊ[Ŝ]� E [S] jj21);

where k�k1 here and in the following denotes the supremum norm over the set Y�X0;
that is, kSk1 = sup(y;x)2Y�X0 kS (y; x)k. Applying in turn Lemmas 1 and 2,Z

X0

w (x)

E [S (Y; x)]
fŜ (y; x)� S (y; x)gdx

=

Z
X0

w (x)

E [S (Y; x)]
f5pS (y; x) [p̂� p] +5fS (y; x) [f̂ � f ]gdx+ oP

�
1=
p
n
�

=
1

n

nX
i=1

 �w2 (Uijy) + oP
�
1=
p
n
�
;

with  �w (Uijy) de�ned in Equation (13) and �w1 (x) � w (x) =E [S (Y; x)]. Next, from

Lemma 3, we obtainZ
X0

w (x)

E [S (Y; x)]2

n
Ê
h
Ŝ (Y; x)

i
� E [S (Y; x)]

o
dx =

1

n

nX
i=1

' �w2 (Ui) + oP
�
1=
p
n
�

where ' �w (Ui) is de�ned in Equation (14) and �w2 (x) � w (x) =E [S (Y; x)]2. Finally,

by Lemmas 1 and 4, jjŜ � Sjj21 = oP (1=
p
n) and jjÊ[Ŝ]�E [S] jj21 = oP (1=

p
n). In
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total, uniformly over Y,

p
n(�̂ (y)��(y)) = 1p

n

nX
i=1

�w (Uijy) + oP (1) ;

where �w (Uijy) is de�ned in Equation (12). Pointwise weak convergence now follows
by the CLT for i.i.d. sequences. This extends to weak functional convergence over

any compact set [y1; y2] � Y if we can show stochastic equicontinuity. However,

this follows from, for example, der Vaart and Wellner (1996) since y 7! �w (Uijy) is
continuous almost surely and has an L2-envelope, j�w (Uijy)j � ��

w
(Ui), y 2 [y1; y2],

with E[��w (Ui)
2] < 1. The envelope takes the form ��

w
(Ui) := � 

�w1 (Ui) + ' �w2 (Ui)

where

 �w (Ui) � �w (Xi)

Z y2

Yi

jDp;0 (u;Xi)j du+ �w (Xi) jDp;y (Yi; Xi)j

+

Z y2

Yi

����@ [ �w (Xi)Dp;1 (u;Xi)]

@x1

���� du:
�

Proof of Theorem 3. We �rst extend Theorem 2 of Blundell, Chen, and Kristensen

(2007) to allow for multiple regressors and IVs. To this end, we establish multivariate

versions of Claims 1-2 as stated in the proof of Theorem 2 in Blundell, Chen, and

Kristensen (2007). We do this without proof since these are standard results for sieve

estimators:

Claim 1: For any g 2 G, there is a gn 2 Gn satisfying kg � gnkX � const:�k
�r=dx
n .

Similarly, for any h 2 H, there is a hn 2 Hn such thatkh� hnkX1;Z � const: �
J
�rm=(1+dz)
n .

Claim 2:

(i) jj~h� hjjX1;Z = Op

�
J�rm=(1+dz)n +

p
Jn=n

�
;

(ii) sup
gn2Gn

jjM̂(�jgn)�M(�jgn)jjX1;Z = Op

�
J�rm=(1+dz)n +

p
Jn=n

�
:
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By inspection of the remaining arguments used in the proof of Theorem 2 in

Blundell, Chen, and Kristensen (2007), we see that these remain correct without

further modi�cations with multiple regressors and IVs. Thus, combining the above

Claims 1-2 with the remaining arguments of Theorem 2 in Blundell, Chen, and

Kristensen (2007), we conclude that the infeasible estimator ~g (assuming T known)

satis�es

jj~g � gjjX � jjg � gnjjX + �n �Op

�
J�rm=(1+dz)n +

p
Jn=n+ jjM(�jg � gn)jjX1;Z

�
.

Using Assumptions A16 and A17 together with the fact that jjg � gnjjX � const:�
k
�r=dx
n , we obtain

jj~g � gjjX = OP
�
k�r=dxn

�
+ �n �Op

�
J�rm=(1+dz)n +

p
Jn=n

�
= OP

�
k�r=dxn

�
+ �n �Op

�p
kn=n

�
:

Next, by inspection of the above proof for the convergence rate of the infeasible

estimator, observe that �(Y ) only enters the arguments in Claim 2(i) through ~h (z).

In particular, the above arguments remain correct with ~h (z) replaced by any other

estimator which satis�es Claim 2(i). By de�nition of ~h and ĥ and Theorem 2, jjĥ�
~hjjX1;Z � supy2Y j�̂ (y)��(y) j = OP (1=

p
n), and so Claim 2(i) remains intact when

replacing ~h by ĥ. And this yields exactly the feasible estimator, ĝ. �

Appendix C. Lemmas

In the following, we let � (y; x), p (y; x) and f (x) denote the true, data-generating

cdf, joint density and marginal density respectively. We de�ne the following func-

tionals for any functions dp (y; x) and df (x):

5pS (y; x) [dp] : =

Z y

0

Dp;0 (u; x) dp (u; x) du+

Z y

0

Dp;y (u; x) dpy (u; x) du(25)

+

Z y

0

Dp;1 (u; x) dp1 (u; x) du;

(26) 5fS (y; x) [df ] �
Z y

0

Df;0 (u; x) du� df (x) +

Z y

0

Df;1 (u; x) du� df1 (x) ;
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where dpy (y; x) = @dp (y; x) = (@y) and so forth, and

Dp;0 (y; x) �
�y (y; x) f1 (x)

�21 (y; x) f
2 (x)

; Dp;y (y; x) �
1

f (x) �1 (y; x)
;

Df;0 (y; x) �
p2y (y; x)

f (x) �1 (y; x)
� �y (y; x)
�21 (y; x)

�
2p (y; x)

f 3 (x)
f1 (x) +

p21 (y; x)

f (x)

�
;(27)

Df;1 (y; x) �
�y (y; x) p (y; x)

�21 (y; x) f
2 (x)

; Dp;1 (y; x) � �
�y (y; x)

f (x) �21 (y; x)
:

The �rst lemma then shows that these two functionals are the pathwise di¤erentials

of S (y; x) w.r.t. g and f respectively:

Lemma 1. Under Assumptions A1-A11: With 5pS (y; x) [dp] and 5fS (y; x) [df ]

de�ned in Equations (25)-(26), the following expansion holds uniformly over (y; x) 2
Y � X0:

Ŝ (y; x)� S (y; x) = 5pS (y; x) [p̂� p] +5fS (y; x) [f̂ � f ] + oP
�
1=
p
n
�
;

Proof of Lemma 1. Let �̂ = p̂=f̂ denote the kernel estimator. First, by a standard

Taylor expansion (where we suppress dependence on y and x)

�̂y

�̂1
� �y
�1
=
1

�1
f�̂y � �yg �

�y
�21
f�̂1 � �1g+O

�
j�̂y � �yj2

�
+O

�
j�̂1 � �1j2

�
;

where the derivatives w.r.t. y and x1 respectively are on the form

�y =
py
f
; �1 =

p1
f
� pf1

f 2
:

We then Taylor expand those w.r.t. p and f :

�̂y � �y =
1

f
fp̂y � pyg+

p2y
f
ff̂ � fg+O

�
jp̂y � pyj2

�
+O

�
jf̂ � f j2

�
;

and

�̂1 � �1 = � f1
f 2
fp̂� pg+ 1

f
fp̂1 � p1g+

�
2pf1
f 3

+
p21
f

�
ff̂ � fg � p

f 2
ff̂1 � f1g

+O
�
jp̂� pj2

�
+O

�
jp̂1 � p1j2

�
+O

�
jf̂ � f j2

�
+O

�
jf̂1 � f1j2

�
:
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Combining these expressions we now obtain

�̂y

�̂1
� �y
�1

=
�yf1
�21f

2
fp� p0g+

1

f�1
fp̂y � pyg+

p2y
f�1

ff̂ � fg � �y
f�21

fp̂1 � p1g

��y
�21

�
2p

f 3
f1 +

p21
f

�
ff̂ � fg+ �yp

�21f
2
ff̂1 � f1g+R

= Dp;0 fp̂� p0g+Dp;y fp̂y � p0;yg+Dp;1 fp̂1 � p0;1g

+Df;0ff̂ � f0g+Df;1ff̂1 � f0;1g+R;

where R is the remainder term satisfying

R = O
�
jp̂� pj2

�
+O

�
jp̂1 � p1j2

�
+O

�
jp̂y � pyj2

�
+O

�
jf̂ � f j2

�
+O

�
jf̂1 � f1j2

�
;

andDp;0, Dp;y, Dp;1, Df;0 andDf;1 are de�ned in Equation (27). Given the de�nitions

of 5pS (y; x) [dp] and 5fS (y; x) [df ], we now obtain

Ŝ (y; x)� S (y; x) = 5pS (y; x) [p̂� p] +5fS (y; x) [f̂ � f ] +R;

and what remains to be shown is that the remainder term R = oP (1=
p
n) uniformly

in (x; y) 2 X0�Y. By standard results for kernel density smoothers of i.i.d. data (see
e.g. Hansen (2008), Proof of Theorem 6) the following rates hold under Assumptions

A8 and A9:

jjp̂� pjj1 = OP (max (hx; hy)
m) +OP

 s
log (n)

nhdxx

!
;

jjp̂1 � p1jj1 = OP (max (hx; hy)
m) +OP

 s
log (n)

nhdx+1x

!
;

jjp̂y � pyjj1 = OP (max (hx; hy)
m) +OP

 s
log (n)

nhyhdxx

!
;(28)

jjf̂ � f jj1 = OP (h
m
x ) +OP

 s
log (n)

nhdxx

!
;

jjf̂1 � f1jj1 = OP (h
m
x ) +OP

 s
log (n)

nhdx+1x

!
:
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Now, under Assumption A11, we see that the squared estimation error of the kernel

estimators p̂ and f̂ and their relevant derivatives all are of order oP (1=
p
n). In

particular, sup(x;y)2X0�Y R = oP (1=
p
n) which completes the proof. �

Lemma 2. Under Assumptions A1-A11: For any weighting function �w with support

X0, the functionals 5pS (y; x) [dp] and 5fS (y; x) [df ] de�ned in Equations (25)-(26)

satisfy uniformly over y 2 Y:Z
X
�w (x) f5pS (y; x) [p̂� p] +5fS (y; x) [f̂ � f ]gdx = 1

n

nX
i=1

 �w (Uijy) + oP
�
1=
p
n
�
;

where  �w (Uijy) is de�ned in Equation (13).

Proof of Lemma 2. By de�nition,

5pS (y; x) [p̂] =

Z y

0

Dp;0 (u; x) p̂ (u; x) du+

Z y

0

Dp;y (u; x) p̂y (u; x) du

+

Z y

0

Dp;1 (u; x) p̂1 (u; x) du

= : 5(1)
p S (y; x) [p̂] +5(2)

p S (y; x) [p̂] +5(3)
p S (y; x) [p̂] :

Here, with x = (x1; x�1),

5(1)
p S (y; x) [p̂] =

1

n

nX
i=1

Khx (Xi � x)

Z y

0

Dp;0 (u; x)Khy fYi � ug du

=
1

n

nX
i=1

Khx (Xi � x)

�Z y

0

Dp;0 (u; x) I fYi � ug du+OP
�
hmy
��

=
1

n

nX
i=1

Khx (Xi � x)

�Z y

Yi

Dp;0 (u; x) du+OP
�
hmy
��
:

Similarly,

5(2)
p S (y; x) [p̂] =

1

n

nX
i=1

Khx (Xi � x)

Z y

0

Dp;y (u; x)Khy fYi � ug du

=
1

n

nX
i=1

Khx (Xi � x)
�
I fYi � ygDp;y (Yi; x) +OP

�
hmy
��
;
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and, writing Khx (Xi � x) = Khx (X1;i � x1)K�1;hx (X�1;i � x�1) with x = (x1; x�1),

5(3)
p S (y; x) [p̂]

=
1

n

nX
i=1

K 0
hx (X1;i � x1)K�1;hx (X�1;i � x�1)

Z y

0

Dp;1 (u; x)Khy fYi � ug du

=
1

n

nX
i=1

Khx (X1;i � x1)K�1;hx (X�1;i � x�1)�
�Z y

Yi

Dp;1 (u; x) du+OP
�
hmy
��
:

Thus,

Z
X
�w (x)5(1)

p S (y; x) [p̂] dx

=
1

n

nX
i=1

Z
X
�w (x)Khx (Xi � x)

Z y

0

Dp;0 (u; x)Khy fYi � ug du

=
1

n

nX
i=1

Z y

Yi

Z
X
�w (x)Dp;0 (u; x)Khx (Xi � x) dxdu�

�
1 +OP

�
hmy
��

=
1

n

nX
i=1

�w (Xi)

Z y

Yi

Dp;0 (u;Xi) du�
�
1 +OP

�
hmy
�
+OP (h

m
x )
�
:

By similar arguments,

Z
X
�w (x)5(2)

p S (y; x) [p̂] dx

=
1

n

nX
i=1

I fYi � yg
Z
X
w (x)Khx (Xi � x)Dp;y (Yi; x) dx+OP

�
hmy
�

=
1

n

nX
i=1

I fYi � ygw (Xi)Dp;y (Yi; Xi)
�
1 +OP

�
hmy
�
+OP (h

m
x )
�
;
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and Z
X
�w (x)5(3)

p S (y; x) [p̂] dx

=
1

n

nX
i=1

Z y

Yi

Z
X
�w (x)K 0

hx (X1;i � x1)Khx (X�1;i � x�1)Dp;1 (u; x) dxdu

�
�
1 +OP

�
hmy
��

= � 1
n

nX
i=1

Z y

Yi

Z
X
Khx (X1;i � x1)Khx (X�1;i � x�1)

@

@x1
[ �w (x)Dp;1 (u; x)] dxdu

�
�
1 +OP

�
hmy
��

= � 1
n

nX
i=1

Z y

Yi

@ [ �w (Xi)Dp;1 (u;Xi)]

@x1
du
�
1 +OP

�
hmy
�
+OP (h

m
x )
�
:

Since
p
n
�
hmx + hmy

�
= o (1), the claimed result now holds. �

Lemma 3. Under Assumptions A1-A11: For any weighting function �w with support

X0, Z
X
�w (x) fÊ[Ŝ (Y; x)]� E[S (Y; x)]gdx = 1

n

nX
i=1

' �w �w (Ui) + oP
�
1=
p
n
�
;

where ' �w (Ui) is de�ned in Equation (14).

Proof of Lemma 3. Applying Lemmas 1 and 2,Z
X
�w (x) Ê[Ŝ (Y; x)]� E[S (Y; x)]dx

=

Z
X
�w (x) fÊ[Ŝ (Y; x)]� Ê[S (Y; x)]gdx+

Z
X
�w (x) fÊ[S (Y; x)]� E[S (Y; x)]gdx

=
1

n

nX
j=1

Z
X
�w (x) fŜ (Yj; x)� S (Yi; x)gdx

+
1

n

nX
j=1

Z
X
�w (x) fS (Yj; x)� E [S (Y; x)]gdx

=
1

n2

nX
i=1

nX
j=1

 �w (UijYj) +
1

n

nX
j=1

Z
X
�w (x) fS (Yj; x)� E [S (Y; x)]gdx+ oP

�
1=
p
n
�
;
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The �rst term is a U -statistic, and by appealing to standard results (see e.g. Newey

and McFadden (1994), Lemma 8.4),

1

n2

nX
i=1

nX
j=1

 �w (UijYj) =
1

n

nX
i=1

� 
�w
(Ui) + oP

�
1=
p
n
�
;

where � �w
(Ui) = E

�
 �w (UijYj) jUi

�
. Thus,Z

X
�w (x) fÊ[Ŝ (Y; x)]� E[S (Y; x)]gdx = 1

n

nX
i=1

' �w (Ui) + oP
�
1=
p
n
�
:

�

Lemma 4. Under Assumptions A1-A11:

sup
(y;x)2Y�X 0

j5pS (y; x) [p̂�p]j2 = oP
�
1=
p
n
�
; sup

(y;x)2Y�X 0

j5fS (y; x) [f̂�f ]j2 = oP
�
1=
p
n
�
:

Proof of Lemma 4. >From the de�nition of 5pS (y; x) [dp],

sup
(y;x)2Y�X 0

j5pS (y; x) [dp]j

� sup
(y;x)2Y�X 0

jDp;0 (y; x)j sup
(y;x)2Y�X 0

jdp (y; x)j+ sup
(y;x)2Y�X 0

jDp;y (y; x)j sup
(y;x)2Y�X 0

jdpy (y; x)j

+ sup
(y;x)2Y�X 0

jDp;1 (y; x)j sup
(y;x)2Y�X 0

jdp1 (y; x)j ;

where sup(y;x)2Y�X 0
jDp;a (y; x)j < 1, a = 0; y; 1, given the smoothness and bound

conditions imposed in Assumptions A9 and A10. Next, with dp = p̂ � p, it follows

from the convergence rate results in Equation (28) together with the bandwidth

requirement in Assumption A11 that sup(y;x)2Y�X 0
jp̂ (y; x)� p (y; x)j = oP

�
1=n1=4

�
and similarly for its partial derivatives w.r.t. y and x. This proves the �rst claim.

The proof of the second claim follows along the same lines and so is left out. �
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