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Abstract

This paper considers a robust Bayes inference for structural vector autoregressions, where

impulse responses of interest are non-identified. The non-identified impulse responses arise if the

insufficient number of equality restrictions and/or a set of sign restrictions on impulse responses

are the only credible assumptions available. A posterior distribution for the set-identified impulse

responses obtained via the standard Bayesian procedure remains to be sensitive to a choice

of prior, even asymptotically. In order to make posterior inference free from such sensitivity

concern, this paper introduces a class of priors (ambiguous belief) for the non-identified aspects

of the model, and proposes to report the range of the posterior mean and posterior probability

for the impulse responses as a prior varies over the class. We argue that this posterior bound

analysis is a useful tool to separate the information for the impulse responses provided by the

likelihood from the information provided by the prior input that cannot be updated by data.

The posterior bounds we construct asymptotically converge to the true identified set, which

frequentist inference in set-identified models typically concerns. In terms of implementation,

the posterior bound analysis does not involve an inversion of hypothesis test, and it is therefore

computationally less demanding than the frequentist confidence intervals of Moon, Schorfheide,

and Granziela (2013) especially when the number of variables in the VAR is large.
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1 Introduction

The structural vector autoregressions (SVARs) proposed by Sims (1980) offer a useful tool to infer

dynamic causal impacts among economic variables, and they have been widely used in macro-

economic policy analysis. A common practice of SVAR analysis assumes a sufficient number of

identifying restrictions, in order to guarantee that knowledge on the sampling distribution of data

can uniquely pin down the underlying structural parameters. The estimation results and the policy

implications crucially rely on these identifying restrictions. Therefore, credibility of some of these

assumptions often becomes a source of controversies, and, in many contexts, a uniform consensus

on what set of identifying restrictions should be imposed is not available in the literature.

The main goal of this paper is to propose an inference procedure for the impulse responses,

when the imposed restrictions fail to identify the underlying structural parameters. To further

illustrate the motivation of this paper, consider a simple one-lag structural VAR model with three

variables, (∆ log∆ log  )  as studied by Leeper, Sims, and Zha (1996):⎛⎜⎝11 12 13
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where  is the price index of commodities,  output, and  the nominal short-term interest

rate. The first equation is the monetary policy equation, where structural shock  stands for a

contractionary monetary policy shock. The second equation is the output equation characterizing

the behavior of the final good producers, and  is a structural productivity shock. The third

equation is the price equation implied from an equilibrium condition, and  is a price shock.

Following a necessary and sufficient condition for exact-identification as demonstrated in Rubio-

Ramirez, Waggoner, and Zha (2010), the following set of restrictions yields identification of the

structural parameters,

(A1) 12 = 0: monetary policy does not respond to the current output growth, since the policy

maker does not observe the contemporaneous output (Sims and Zha (2006)).

(A2) 23 = 0: the production sector does not respond to the changes in the contemporaneous

nominal interest rate (Christiano, Eichenbaum, and Evans (2005))

(A3) The monetary policy has no effect on the long-run impact on output (Blanchard and Quah

(1993)).

In addition to, or as an alternative set of these dogmatic zero equality restrictions, one may

want to impose sign restrictions on the impulse responses, as considered in Canova and Nicolo

(2002), Faust (1998), and Uhlig (2005)).
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(A4) The response of commodity price index to a contractionary monetary policy shock is negative

over a certain period.

(A5) The response of the federal fund rate to a contractionary monetary policy shock is positive

over a certain period.

Suppose that we are not fully sure of the long-run money neutrality restriction (A3), and

consider dropping it from the set of assumptions. If we do so, it can be shown that the reduced

set of restrictions, (A1), (A2), (A4), and (A5), only set-identifies the structural parameters in the

sense of Manski’s partial identification (Manski (2003)). When we confront such situation, how do

we draw statistical inference for the impulse responses?

The standard Bayesian procedure with a prior distribution available for the whole structural

parameters yields the proper posterior distribution, regardless of whether the imposed restrictions

guarantee identification or not. This, however, does not mean that the Bayesian approach is free

from the identification issue. When the structural parameters are not identified, the posterior dis-

tribution for the impulse responses remains to be sensitive to a choice of prior, even asymptotically

(Kadane (1974), Poirier (1998), and Moon and Shorfheide (2012)), and the posterior distribution

converges to a conditional prior distribution given the reduced form parameters equal to their true

value. Such non-diminishing prior influence may raise challenges to Bayesians, especially when

they cannot confidently specify or cannot agree upon a prior belief for all the structural parameters

in the form of a probability distribution.

In order to relieve such sensitivity concerns and anxieties that the Bayesians may experience

in analyzing non-identified models, this paper considers a posterior inference procedure from the

multiple prior robust Bayes perspective. Instead of forcing one to form a prior for the entire

structural parameters, we propose to specify a set of priors as a prior input. The Bayes rule

is applied to each prior in the class to form the class of posteriors, and the class of posteriors is

summarized by reporting the ranges of posterior mean and posterior probability as the posterior

varies over the class. The posterior bound analysis of this type has been considered in the statistics

literatures of robust Bayes analysis and global sensitivity analysis including Berger and Berliner

(1986), DeRobertis and Hartigan (1981), and Wasserman (1990). In econometrics, Chamberlain

and Leamer (1976) and Leamer (1982) pioneered the bound analysis of the posterior mean in

the linear regression analysis. More recently, Kitagawa (2012) interprets the Manski’s partial

identification analysis from this robust Bayes viewpoint, and examines relationships between the

range of posterior quantities and frequentist inference for the identified set. With the class of priors

considered in this paper, the range of posterior quantities can be interpreted as summarizing the

"posterior distribution of the impulse response identified set", and presenting the range of posterior

quantities can also serve to draw a posterior inference for the identified set, as considered in Klein

and Tamer (2013) and Liao and Simoni (2013).

The prior class considered in this paper consists of any priors that share a common prior for

the reduced form parameters and satisfy the imposed zero and sign restrictions with probability
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one. When the imposed restrictions only set-identify the structural parameters, having a single

prior for the reduced-form parameters cannot yield the single posterior for the structural parame-

ters, and one must introduce a prior distribution to the non-identified components in the model

in order to perform the standard Bayesian inference on the basis of a single posterior. In the

context of the structural VAR with the sign restrictions, the non-identified component of the model

corresponds to a rotation matrix that determines how the reduced form errors are decomposed to

the structural shocks, and putting a prior for it corresponds to a common practice of introducing

a prior distribution (typically uniform distribution) for the rotation matrices (Uhlig (2005)). De-

spite that this "agnostic" Bayesian analysis has been applied to a wide range empirical studies, this

approach is subject to some criticism because the seemingly non-informative prior introduced for

the non-identified part of the model leads to unintentionally informative prior for the impulse re-

sponses, and it may significantly influence the posterior analysis no matter how large the sample size

is. This paper proposes an alternative to this widely-used, but controversial, "agnostic" Bayesian

practice, by translating "agnostic" prior belief to "ambiguous" belief in the sense of multiple priors.

Specifically, instead of discussing what prior for the rotation matrices represents "agnostic" prior

knowledge, we advocate to admit arbitrary priors specified for them in the form of a class of priors,

and to report the posterior inferential statement that is valid irrespective of what prior is used in

the class. Since data (likelihood) are informative only for the reduced form parameters and not at

all for the rotation matrix, our proposal of reporting the range of posterior quantities can be seen

as reporting the posterior information for the object of interest based only on the well-updated part

of belief, or synonymously, based only on the shape of the likelihood if the prior for the reduced

form parameters is diffuse. This way of summarizing "what data (likelihood) says" is in a similar

spirit to Manski’s partial identification analysis, and extends the view of statistical inference based

on the sample likelihood, as advocated in Sims (1998)1, to a non-identified model.

As opposed to the agnostic Bayesian approach with a "noninformative" prior, Baumeister and

Hamilton (2013), Fry and Pagan (2011), and Gordon and Boccanfuso (2001) insist importance of

making an effort for eliciting a prior input on the basis of the researcher’s belief on the structural

objects. This paper does not intend to be against a use of a carefully elicited prior for the structural

parameters, as far as the researcher can come up with it. Nevertheless, even when the researcher can

confidently specify a prior for the structural parameters, our posterior bounds analysis is still useful

and worth being reported, since it serves to summarize and visualize to what extent availability of

the specific credible prior enhances informativeness of the posterior inference.

If we ignore the difference in the source of probability in inferential statements, the posterior

bound analysis of this paper is similar to the frequentist inference procedures for the impulse

response identified set proposed by Moon, Schorfheide, and Granziela (2013). Both approaches

aim to draw inferential statement for impulse responses without relying on assumptions/belief other

1Sims and Zha (1998, pp1115) write "Reporting is not decision-making, and therefore makes no use of subjective

prior beliefs .... Scientific reporting is then just the problem of conveying the shape of the likelihood to potencial

users of the analysis."
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than the dogmatic equality restrictions and/or the sign restrictions. They are, in fact, expected

to give a similar result, at least asymptotically, since the posterior bound and the frequentist

confidence intervals both converges to the true identified set. Whereas, in terms of implementation

and the scope of applications, the posterior bounds analysis proposed in this paper differs from

the frequentist approach of Moon, Shorfheide, and Granziera (2013) in several aspects. First,

the posterior bound approach proposed in this paper is computationally less demanding than the

construction of the frequentist confidence intervals since the construction of the posterior bounds

avoids a construction of a non-rejection region of a test, which typically involves resampling-based

computation of a critical value of some test statistics. Accordingly, the posterior bound analysis

can be implemented straightforwardly even when the sign restrictions are placed for the impulse

responses to multiple shocks. Also, it is straightforward to accommodate a wider class of zero

restrictions than those considered in Moon, Shorfheide, and Granziera (2013). Second, the posterior

bound analysis allows us to separately report the posterior belief for the plausibility of the imposed

assumptions and the posterior belief for the impulse responses conditional on that the imposed

assumptions are plausible, i.e., the distribution of data (value of the reduced form parameters) is

consistent with the imposed restrictions. In contrast to our robust Bayes proposal, frequentist

inference is generally difficult to separate out these two distinct sample information, inference for

the object of interest and the measure of fitness (see Sims (1998) for enlightening discussion on this).

Third, the posterior bound analysis does not involve any asymptotic approximations, so we believe

that the proposed posterior inference procedure can be an attractive alternative for frequentists as

well, especially, those who concern with the shape of the observed likelihood and is anxious about

accuracy of the asymptotic approximations.

The remainder of the paper is organized as follows. Section 2 presents an illustrating example to

overview the main proposal of this paper. Section 3 introduces notations and a general analytical

framework of SVARs with zero and/or sign restrictions. Section 4 derives the identified set of

the impulse responses under the zero and sign restrictions. Section 5 introduces the class of

priors and presents a numerical procedure to compute the bounds of posterior means and posterior

probabilities. An empirical example is given in Section 6. Technical proofs are collected in

Appendix.

2 Posterior Sensitivity and Posterior Bounds: An Illustrating Ex-

ample

To highlight a motivation of this paper and to overview our proposal of the posterior bound analysis,

this section illustrates posterior sensitivity of an impulse response function in a commonly used

Bayesian procedure for SVAR with sign restrictions.

Consider the following four variable SVAR with two lags, where the vector of observables consists
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of a nominal interest rate , real GDP , inflation rate , and real money balances .

0
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where (0 1 2) are an intercept vector and matrices of structural parameters, and  =

( ∆  )
0 is a vector of structural shocks that is assumed to be independent of the

past realizations of any variables and follow Gaussian with mean zeros and the variance-covariance

standardized to the identity matrix. Here, the output variable is transformed to the first difference

(GDP growth) to have the reduced form VAR invertible. We write the reduced-form VAR as⎛⎜⎜⎜⎜⎝
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where (1 2Σ) are reduced-form parameters. Let an impulse response function of interest be

the output response to a monetary policy shock,
+


, at horizon  = 1. The dataset we use are

from Aruoba and Schorfheide (2011).

To draw a posterior inference with sign restrictions on impulse responses, we follow a widely

used "agnostic" Bayesian approach proposed by Uhlig (2005). As a set of sign restrictions, consider

imposing the following,

• the inflation response to a contractionary monetary policy shock is nonpositive for one quar-
terly period;

+


≤ 0 for  = 0 1

• the interest rate response to the contractionary monetary policy shock is nonnegative for one
quarterly period;

+


≥ 0 for  = 0 1.

• the responses of the real money balances to the contractionary monetary policy shock is
nonpositive for one quarterly period;

+


≥ 0, for  = 0 1.

In a common empirical practice with these sign restrictions, prior inputs one specifies are a prior

distribution for the reduced-form parameters and a prior distribution for a unit-length 4×1 vector .
Here,  plays a role of pinning down down structural monetary policy shock  based on a reduced

form error vector  via  = 0Σ−1 , where Σ is the lower-triangular Cholesky decomposition
of the variance-covariance matrix Σ. Since the impulse response of output to a unit shock in 

at  = 1 is obtained by (2 1) element of (1 + )Σ, the posterior of (1Σ) and a "prior" for 

induce the posterior distribution of the impulse response.2 Uhlig’s "agnostic" Bayesian approach

2Since the value of the likelihood for the structural parameters depends only through the reduced-form parameters,

the prior for reduced-form parameters can be updated by data, while the prior for  conditional on the reduced form

parameters is never be updated.
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in particular recommends a use of the uniform distribution on the unit sphere truncated according

to the sign restrictions as a prior for . The uniform prior on the unit sphere (without truncation)

can be obtained by transforming the standard multivariate normal distribution in the following

way,

 =


kk ,  ∼ N (0 4×4). (2.1)

With a prior for the reduced-form parameters set at their Jeffrey’s prior, the solid curve in

Figure 1 plots the posterior density and the posterior mean of
+1


obtained by the Uhlig’s agnostic

approach. The posterior is unimodal with the 90% highest posterior credible region [-.52, .72].

Note that the seemingly uninformative uniform prior for  does not generally yield a flat region

for the posterior of the impulse response, despite the fact that the sign restrictions can only set-

identify the impulse response (Moon, Shorfheide, and Granziera (2013)). Also, we cannot generally

claim that the uniform prior for  leads to the least informative posterior for the impulse response.

Obtaining such seemingly informative posterior is not only a finite sample phenomenon, but it also

occurs asymptotically. The asymptotic posterior of the impulse response is fully determined by the

conditional prior of  given the reduced form parameters set at their true value. It is important to

note that the uniform prior for  does not yield a uniform distribution of the impulse response even

without any sign restrictions, because transforming the uniform distribution on the unit sphere

via (1 + )Σ and marginalizing it to one coordinate leads to a non-uniform distribution. The

posterior of impulse response therefore converges to some non-uniform distribution, which results

in obscuring the lack of identifying information in data. Having known how the posterior behaves

in relation to the prior input, discussion on what prior for  can be justified as "non-informative"

or "agnostic" is inherently controversial, and, if no additional credible prior knowledge other than

the sign restrictions are available, a uniform consensus on what prior for  should be used seems

difficult to attain.

When the model lacks identification, another notable feature in the posterior analysis is a

posterior sensitivity to a choice of prior, especially, for the non-identified components in the model,

i.e., a prior of  in the current context. To illustrate this posterior sensitivity, The dot-dashed and

dashed curves in Figure 1 show posterior densities when the Uhlig’s agnostic prior is perturbed

in two different ways. The first perturbation introduces positive correlations (0.5) among . The

resulting posterior is drawn as the dot-dashed density. The second perturbation instead introduces

negative correlations (-0.3) among , and the resulting posterior is drawn as the dashed density.

As is evident from Figure 1, the shape of the posterior changes considerably as the prior variance-

covariance matrix for  changes. There are, indeed, (infinitely) many different ways to perturb

the prior for , and there may well be a prior for  that changes the posterior more drastically.

Furthermore, given the fact that the shape of the asymptotic posterior is governed by a prior for

, the posterior sensitivity we observe in Figure 1 will not vanish even asymptotically.

The non-diminishing posterior sensitivity and the absence of the consensus on a non-informative
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Figure 1: The prior for the reduced form parameters is fixed at the Jeffreys’ prior ∝ |Σ|52. Pos-
terior 1 (solid): Uhlig’s prior  ∼  kk,  ∼ N (0 4×4). The posterior mean is 10. The highest
posterior density region (HPD) is [−52 72]  Posterior 2 (dot-dashed): prior  ∼  kk,
 ∼ N (0Ω2) where Ω2 = 05× 4×4 + 05× 110. The posterior mean is 02. HPD is [−61 69].
Posterior 3 (dashed): prior  ∼  kk,  ∼ N (0Ω3) where Ω3 = 13 × 4×4 − 03× 110. The

posterior mean is 26. HPD is [−19 70]. The posterior mean bounds are [−38 70], and the
robustified credible region with lower credibility 90% is [−66 87].
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prior for  pose a challenging question to Bayesians; what prior input for  is desirable when the

available prior knowledge is exhausted by the set of sign and/or the insufficient number of zero

restrictions? In this paper, we propose a posterior inference for the impulse responses by reporting

the range of posterior means and the posterior probabilities, rather than discussing what choice

of a prior for  is a most reasonable representation for the lack of prior knowledge on . We

develop a way to compute the range of posterior quantities when a prior for  is allowed to vary in

an arbitrary way subject to the imposed sign and/or zero restrictions. For the current example,

the posterior mean bounds are shown as the horizontal segment in Figure 1. We interpret the

presented range of posterior means as that, with keeping the prior for the reduced form parameters

fixed, the posterior mean of the impulse response varies over this range as arbitrary priors for 

are allowed. Incapability of conveying which posterior means are more credible than the others

is a honest and accurate description of the posterior knowledge in the absence of prior knowledge

on . The interval with arrows shows a robustified posterior credible region with credibility 90%

as defined in Kitagawa (2012). The 90% robustified credible region shows the shortest interval

such that, with keeping the prior for the reduced form parameters fixed, the posterior probabilities

on the interval are at least 90% irrespective of what prior for  is used. The robustified credible

regions can be plotted at each credibility level as in Figure 2, and they can be used to summarize

and visualize the class of posterior distributions induced by multiple priors of .

3 The Framework

Consider SVARs in the following general form

0 = +

X
=1

− +  for  = 1      ,

where  is an ×1 vector of endogenous variables,  the lag length,  an ×1 vector of exogenous
structural shocks independent of the past ’s and ’s,  an × matrix of structural parameters

for  = 0     , and  is a  × 1 vector of intercepts. Assume that the distribution of structural

shocks  is -variate Gaussian with mean zero and the variance-covariance matrix , × identity
matrix. The initial conditions, 1      are given.

We write the reduced form representation of this structural form as

 = +

X
=1

− + , (3.1)

where  = −10 ,  = −10 ,  = −10 , and  (
0
) ≡ Σ = −10

¡
−10

¢0
. We denote the

reduced form coefficients by  = [1     ], and denote the entire reduced form parameters by

 = (Σ) ∈ Φ ⊂ R+2 × Ω, where Ω is the space of positive-semidefinite matrices. The value
of likelihood depends only on , since the sampling distribution of data is fully characterized by .

We set Φ the domain of  to the set of (Σ) such that the reduced form VAR(p) can be inverted

to VMA(∞).
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The impulse response functions are of central interest in inferring the dynamic causal effect of

the structural shocks on the endogenous variables. We denote the -th horizon impulse response

matrix by an ×  matrix ,  = 0 1 2    , where the ( )-element in  gives the impulse

response of -th variable in + in response to a unit shock of the -th structural shock in . An

expression of  can be obtained by the MA(∞) representation of the reduced form (3.1). If the

reduced form lag polynomial
¡
 −

P
=1


¢
is invertible, we have

 = +

∞X
=0

 ()−

= +

∞X
=0

 ()
−1
0 −,

where  () is the -th coefficient matrix of the inverted lag polynomial
¡
 −

P
=1


¢−1
, which

depends only on .  can be therefore written as

 =  ()
−1
0 .

The long-run impulse response matrix is defined as ∞ = lim→∞  =
¡
 −

P
=1

¢−1
−10 ,

and the long-run cumulative impulse response matrix is defined as ∞ =
P∞

=0 
 = (

P∞
=0 ())

−1
0 .

Identification of the structural coefficients0 is essential in identifying the dynamic causal effects

in the SVAR framework, while, in the absence of any restrictions, the knowledge of the reduced form

parameters  does not pin down a unique 0. We can express the set of observationally equivalent

0’s given Σ using  ∈ O() an  ×  orthonormal matrix, where O() be the set of  × 

orthonormal matrices. The individual column vectors in  are denoted by [1 2     ]. Denote

the cholesky decomposition of Σ by Σ = ΣΣ
0
, where Σ is the unique lower-triangular Cholesky

factor with nonnegative diagonal elements. Note that any 0 in the form of 0 = 0Σ−1 satisfies

Σ = (000)
−1
. So, in the absence of any identifying restrictions,

©
0 = 0Σ−1 :  ∈ O()

ª
forms

the set of 0’s that are consistent with the reduced-form variance-covariance matrix Σ (Uhlig (2005)

Proposition A.1). Since the likelihood function only depends on the reduced form parameters ,

data are silent about , which leads to ambiguity in decomposing Σ into the product of −10 . If the
imposed identifying restrictions fail to identify 0, it means, for each given Σ, there are multiple

’s yielding the structural parameter matrix 0 satisfying the imposed restrictions. See Rubio-

Ramirez, Waggoner, and Zha (2010) for the definition of global identification of the structural

parameters via the rotation matrix.

In the absence of any identifying restrictions on 0, the only restrictions to be imposed for 

are the sign normalization restrictions for the structural shocks, which can be introduced by the

sign restrictions on the diagonal elements of 0. The sign normalization restriction for 0 that we

maintain throughout this paper is that the diagonal elements of 0 are all positive. Depending

on interpretation of the structural equations as well as the structural shocks, sign normalization

restrictions may be imposed on different elements of 0
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Once the sign normalization restrictions on 0 are imposed, the set of observationally equivalent

0’s corresponding to Σ can be expressed as©
0 = 0Σ−1 :  ∈ O(), 

¡
0Σ−1

¢ ≥ 0ª  (3.2)

where the inequality restriction, 
¡
0Σ−1

¢ ≥ 0, means all the diagonal elements of 0 = 0Σ−1
are nonnegative. We express the sign normalization restriction in terms of the weak inequalities,

so that the set of admissible rotation matrices  satisfying 
¡
0Σ−1

¢ ≥ 0 is given as a closed
set in O(). By denoting the column vectors of Σ−1 as

£
1 2     

¤
, this sign normalization

restrictions can be written as a collection of linear inequalities,

0
 ≥ 0 for all  = 1     .

We hereafter denote the set of ’s satisfying 
¡
0Σ−1

¢ ≥ 0 by Q (), Σ-dependent closed
subset in O().

Consider that we want to draw inference for an impulse response, say, (̃ )-element of ,


̃
≡ 0̃ ()Σ ≡ 0̃ ()  ,

where ̃ is ̃-th column vector of  and 0̃ () is the ̃-th row vector of  ()Σ. To compress

the notational complexity, we make ̃, , and  in the subscripts and superscripts implicit in our

notation unless confusions arises, and use  ∈ R to denote the impulse response of interest, i.e.,

 ≡ ̃ . When we want to emphasize the dependence of  on the reduced form parameters  and

the rotation matrix , we express  as (). Note that the identified set and the posterior

bound analysis developed below cover not only impulse responses, but also structural parameters

in 0 and [1     ], since each structural parameter can be expressed by the inner product of

a vector depending on  and a column vector of , e.g., ( ̃)-entry of  can be expressed by

0
̃

¡
Σ−1 

¢0
 .

4 Partially-Identified VARs

In what follows, when we say "... holds for almost all  ∈ Φ," it means that "... holds for all  ∈ Φ,
except for the null set of  in terms of the Lebesgue measure on Φ."

4.1 Identified Set with Under-identifying Zero Restrictions

In order to have informative estimation and inference for the response, the SVAR analysis imposes

a set of restrictions that constrain the values of structural parameters. For instance, the triangu-

larity restriction of 0 with sign normalizations on the diagonal elements, which comes from the

assumptions on contemporaneous causal ordering among the endogenous variables, unambiguously

sets the lower-triangular components of 0 equal to zeros. It has been also considered to impose
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equality restrictions setting some elements of the lagged structural coefficients, { :  = 1    }
equal to zeros. As another class of identifying restrictions, the empirical macroeconomics litera-

ture sometimes imposes restrictions on the long-run impulse responses; setting some elements in

the long-run impulse response ∞ =
¡
 −P

=1

¢−1
Σ, or the long-run cumulative impulse

response, ∞ =
P∞

=0 ()Σ, equal to zeros (Blanchard and Quah (1993) among others).

We refer to the equality restriction setting an element of the structural parameter matrix, or the

impulse response matrices equal to zero as a zero restriction.

A collection of these zero restrictions can be represented in the following form,

 () ≡

⎛⎜⎜⎜⎜⎝
1 () 1

2 () 2
...

̃ () ̃

⎞⎟⎟⎟⎟⎠ = 0 (4.1)

where ̃ ≤ ,  () is an  ×  matrix that can depend only on the reduced form parameters

 = (Σ). If ̃  , then, for  = (̃+ 1)      , no zero restrictions are imposed for the

corresponding column vectors of . Without loss of generality, we order the endogenous variables

in such way that 1 ≥ 2 ≥ · · · ≥ ̃  0 holds, and for  = ̃ + 1     , we define  = 0 just

for expositional convenience. This form of zero restrictions can accommodate any zero restrictions

that set elements of 0, { :  = 1    }, ∞ and ∞ to zeros. For instance, by noting

that 00 =
¡
Σ−1

¢0
, setting ( )-element of 00 equal to zero can be written as a linear equality

constraint for -th column vector of ,

0
¡
Σ−1

¢0
 = 0.

Similarly, by noting 0 = 0
¡
Σ−1

¢0
, the equality restriction such that ( )-element of 0 equals

to zero can be written as,

0
¡
Σ−1 

¢0
 = 0

As for the lung-run impulse responses, ∞ =
¡
 −P

=1

¢−1
Σ, setting the ( )-element of

∞ equal to zero can be also written as a linear equality constraint for -th column vector of ,

0

Ã
 −

X
=1



!−1
Σ = 0

 () is defined accordingly by stacking the row vectors multiplied to  in these zero restrictions

into a matrix.

A class of non-identified models considered in this paper consists of those, where exact-identification

for the structural parameters fails in a certain manner. Following Definition 5 of Rubio-Ramirez

et al (2010), the structural VAR is exactly identified if, for almost every  ∈ Φ, there exists unique
structural parameters (0 1     ) satisfying the imposed identifying restrictions. This can be
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equivalently said as that, for almost every  ∈ Φ, there is unique  satisfying  () = 0 and the

sign normalizations. By Lemma 9 of Rubio-Ramirez, Waggoner, and Zha (2010), a necessary con-

dition for exact identification is, in our notation, given by that  = −  holds for all  = 1     .3
This paper focuses on cases, where the number of zero restrictions imposed for each  is smaller

than or equal to the one necessary for exact identification,

 ≤ −  for all  = 1     , (4.2)

If the inequalities in (4.2) are strict for some  ∈ {1     }, we call the model is under-identified.
Note that the class of under-identified models considered here do not exhaust all the non-identified

structural VARs, since there exists a model that does not fall into (4.2), but still the structural

parameters are not globally identified for some reduced form parameter values with a positive

measure. For instance, the example given in Section 4.4 of Rubio-Ramirez, Waggoner, and Zha

(2010) provides an example with  = 3 and 1 = 2 = 3 = 1, where local identification of the

structural parameters is met, while their global identification fails. We leave such locally-identified,

but not globally-identified models out of scope of this paper’s analysis.

If the model is under-identified in the sense defined above, there exist multiple ’s satisfy-

ing  () = 0 and the sign normalizations at almost every value of . Existence of mul-

tiple admissible ’s, given , can generate a collection of the impulse responses that are con-

sistent with the reduced form parameter , and this collection constitutes the identified set of

the impulse responses corresponding to . More formally, let us denote by Q (| ) the set
of ’s that meets the imposed restrictions (4.1) and the sign normalization given , Q (| ) =©
 ∈ O() :  () = 0,  ¡0Σ−1 ¢ ≥ 0ª. The identified set for  is defined as a set-valued

map from  to a subset in R that gives the range of  () when  varies over its domain Q (| ),

 (| ) = { () :  ∈ Q (| )} .

This way of defining the identified set as a set-valued map of the reduced form parameters is the

same as the one considered in Moon et al (2013).

The lemma given below demonstrates that  (| ) is generally convex, and it can become -
a.s. singleton if the inequalities of (4.2) hold with equalities at each  ≤  In Lemma 4.1(ii) below,

we state the point-identification condition for  with employing an algorithm developed by Rubio-

Ramirez, Waggoner, and Zha (2010) that successively finds the orthonormal vectors consistent with

the imposed zero restrictions.

Lemma 4.1 Consider the zero restrictions of the form given by (4.1), where the order of variables

is consistent with 1 ≥ 2 ≥ · · · ≥ ̃  0. Assume  ≤ −  holds for all  = 1 2     .

(i) The identified set for  = 0̃ ()  is non-empty, bounded, and convex for every ̃ ∈ {1     }
and  = 0 1 2    , at every  ∈ Φ.

3By Theorem 7 of Rubio-Ramirez et al (2010), this necessary condition for exact-identification becomes a necessary

and sufficient condition under additional regularity conditions.
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(ii) Let  ∈ Φ be given. Assume that  = −  and ( ()) =  hold for all  = 1     .

Consider an algorithm developed by Rubio-Ramirez et al (2010), which successively constructs the

orthonormal vectors 1     , consistent with the zero restrictions.

(Step 1) Let 1 be a unit length vector satisfying 1()1 = 0, which is unique up to sign since

(1()) = − 1 by the assumption.

(Step 2) Given 1 of Step 1, find orthonormal vectors 2       by solving⎛⎜⎜⎜⎜⎝
 ()

01
...

0−1

⎞⎟⎟⎟⎟⎠  = 0

successively for  = 2 3     . If



⎛⎜⎜⎜⎜⎝
 ()

01
...

0−1

⎞⎟⎟⎟⎟⎠ = − 1 at each  = 2      (4.3)

and  obtained by the algorithm satisfies 0
 6= 0 then the identified set for  = 0̃ ()  is

a singleton for every ̃ ∈ {1     } and  = 0 1 2    . If the claim holds for almost every ,

the identified set for  becomes -a.s. a singleton, so that the impulse response functions to

the -th structural shock are point-identified.

Proof. See Appendix A.

Lemma 4.1 (i) shows that the identified set for the impulse responses under the zero restrictions

is always convex. It also clarifies that the identified set of the impulse response never becomes

empty at every variable and horizon, so any zero restrictions that can be represented in the form

of (4.2) cannot be refuted by data. The convexity of the identified sets plays an important role

in simplifying computation of the range of posterior probabilities, as discussed in the next section.

Lemma 4.1 (ii) offers an algorithmic way of examining point-identification of the impulse response

of interest. This lemma is a straightforward extension of Lemma 7 of Rubio-Ramirez, Waggoner,

and Zha (2010), to the case where only a unique determination of the -th column vector of  is

concerned. Whether the rank conditions (4.3) hold or not depends on the choice of zero restrictions

and a value of reduced form parameters.4 Our posterior bound analysis given below can apply to

both set-identified and point-identified cases (in the sense stated in Lemma 4.2(ii)) without explicitly

4A situation where the rank conditions of Lemma 3.1 (ii) are guaranteed at almost every  arises if the row vectors

of  () are spanned by the row vectors of −1() for all  = 2     . This condition holds when we impose the

triangularity restrictions on 0.
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checking the rank condition (4.3). If the posterior probability (in terms of ) of having the rank

conditions (4.3) satisfied is one, then the bounds for the posterior of  collapses to a point, resulting

in reporting a single posterior distribution.

This lemma ensures that, when the model is under-identified, the identified-set  (| ) is
given by a bounded convex interval. The posterior inference procedure and its robust Bayes

interpretation to be proposed below are valid regardless of whether  (| ) is convex or not,
whereas its large-sample consistency property to the true identified set will rely on convexity of

 (| ) at the true . For this reason, it is useful to have the almost sure convexity result for

the identified set.

To illustrate our framework and notations, we provide a couple of examples.

Example 4.1 Consider a four variable SVAR ( = 4). Assume zero restrictions are placed for

0 and ∞ in the following way,

0 =

⎛⎜⎜⎜⎜⎝
11 12 13 0

21 22 24 24

31 32 33 0

41 42 43 44

⎞⎟⎟⎟⎟⎠  ∞ =

⎛⎜⎜⎜⎜⎝
∞11 0 ∞13 ∞14
0 ∞22 ∞23 ∞24
∞31 ∞32 ∞33 ∞34
∞41 ∞42 ∞43 ∞44

⎞⎟⎟⎟⎟⎠ . (4.4)

By recalling 00 =
¡
Σ−1

¢0
 and ∞ =

¡
 −

P
=1

¢−1
Σ, these restrictions can be written

as

04
0
01 = 04

¡
Σ−1

¢0
1 = 0

04
0
03 = 04

¡
Σ−1

¢0
3 = 0

01 
∞2 = 01

Ã
 −

X
=1



!−1
Σ2 = 0

02 
∞1 = 02

Ã
 −

X
=1



!−1
Σ1 = 0

By collecting and sorting these restrictions for each , we obtain the coefficient matrices of (4.1)

as

1 () =

Ã
04
¡
Σ−1

¢0
02
¡
 −

P
=1

¢−1
Σ

!
 2 () = 01

Ã
 −

X
=1



!−1
Σ,

3 () = 04
¡
Σ−1

¢0
,

and 1 = 2, 2 = 1, and 3 = 1. This model is under exactly-identified since 1 = 2  4 − 1 and
2 = 1  4− 2. Suppose we are interested in responses to a structural shock in the third variable.
They are not point-identified since the conditions of Lemma 4.1 (ii) fail for  = 3 at every value

of . Whereas, Lemma 4.1 (i) guarantees that the identified sets of each impulse response is

non-empty and convex at every horizon.
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Example 4.2 Consider the illustrating example given in Introduction. Suppose we impose (A1)

and (A2) only. With the ordering of variables unchanged, these identifying restrictions can be

written as

1 () 1 = 02
¡
Σ−1

¢0
1 = 0

2 () 2 = 03
¡
Σ−1

¢0
2 = 0

that is, 1 = 2 = 1. Suppose the impulse response of interest is the impact of monetary policy

shock () on output, e.g.,  = 1. Again, point-identification of this impulse response fails since

the conditions of Lemma 4.1 (ii) are not met for any value of .

4.2 Sign Restrictions on Impulse Response

It is straightforward to incorporate the sign restrictions on the impulse responses into the current

framework. Adding sign restrictions of the impulse responses to the zero restrictions indeed tightens

up the identified set of the impulse responses. Given the zero restrictions  () = 0, we maintain

the order of variables as in the previous section, i.e., 1 ≥ 2 ≥ · · · ≥ ̃  0 holds. In case there

are no zero restrictions and only the sign restrictions are imposed, we let the order of variables

arbitrary, and 1 = · · · =  = 0 hold. Consider sign restrictions placed on the responses to the

-th structural shock. Suppose that, on the -th horizon impulse responses, we impose  ≤ 

number of sign restrictions. Since the impulse response vector to the -th structural shock is given

by the -th column vector of  =  ()Σ, we can write the sign restrictions placed on the

-th horizon response vector as,

 ()  ≥ 0

where the inequality is interpreted as the component-wise inequalities,  () ≡  ()Σ is

a ×  matrix, and  is the ×  selection matrix that selects the sign restricted responses

from the × 1 response vector  ()Σ. Note that the nonzero elements of  take 1 or −1
depending on whether the corresponding impulse responses are restricted to be positive or negative.

By stacking the coefficient matrices  () over the multiple horizons, we express the whole set of

sign restrictions imposed on the responses to -th shock by

 ()  ≥ 0 (4.5)

where  () is a
³P̄

=0 

´
×  matrix defined by  () =

£
1 ()

0      ̄ ()
¤0
. (if no sign

restrictions are placed for the ̃-th horizon responses, 0 ≤ ̃ ≤ ̄ we set ̃ = 0 and interpret

̃ () is not present in the construction of  ().) Note that the sign restrictions considered here

do not have to be restricted to the impulse responses. Since the matrices of structural parameters

can be written as 00 = Σ
−10
  and 0 = 0

¡
Σ−1

¢0
,  = 1     , any sign restrictions on structural
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parameters appearing in the -th row of 0 or  takes the form of linear inequalities for  as well,

so these sign restrictions can be appended to  () in (4.5).

Let I ⊂ {1 2     } be the set of indices, such that  ∈ I if some of the impulse responses to
-th structural shock are sign-constrained, i.e., the set of sign constraints involve linear inequalities

for . The set of all the sign constraints can be accordingly expressed by

 ()  ≥ 0 for  ∈ I . (4.6)

As a shorthand notation, we represent the entire set of sign restrictions by () ≥ 0.

Given  ∈ Φ, let Q (| ) be the set of ’s that jointly satisfy the sign restrictions (4.6), zero
restrictions (4.1), and the sign normalizations, .

Q (| ) = © ∈ O() : () ≥ 0,  () = 0,  ¡0Σ−1 ¢ ≥ 0ª . (4.7)

Being different from the case with only zero restrictions, Q (| ) can be an empty set depending
on  and the imposed sign restrictions. If Q (| ) is nonempty, the identified set of  denoted by
 (| ) is obtained by the range of  with the domain of  given by Q (| ). If Q (|)
is empty, the identified set of  is defined as an empty set.

In contrast to the case with only the zero restrictions,  (| ) is not always a convex set.
The next lemma presents a sufficient condition for  (| ) to be -a.s. convex.

Lemma 4.2 Let  = ̃ ()  be an impulse response of interest. Suppose I = {}, i.e., the
sign restrictions are placed only for the impulse responses to the -th structural shock. If zero

restrictions  () = 0 satisfy either one of the following conditions,

1. the condition of Lemma 4.1 (ii) holds up to index  = 1     , i.e., the zero restrictions pin

down a unique [1 2      ], -a.s.

2.  = 1 and 1 ≤ − 1, or  ≥ 2 and   −  holds for all  = 1      − 1,

3.  ≥ 2 and there exists index ∗ ∈ {1      − 1} such that the condition of Lemma 4.1 (ii)
holds up to index  = 1     ∗, and    −  holds for all  = ∗ + 1 ∗ + 2     ( − 1) if
∗ + 1 ≤  − 1.

then  (| ) is convex for every ̃ ∈ {1     } and  = 0 1 2    , whenever  (|)
is nonempty.

Proof. See Appendix A.

Lemma B.1 of Moon, Shorfheide, and Granziera (2013) shows convexity of the impulse response

identified set for the case where I = {} and zero restrictions are imposed only for  . This lemma
extends their lemma to the cases in which we can have zero restrictions on the column vectors of
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 other than  . In case that sign restrictions are imposed for impulse responses to a structural

shock other than -th shock, i.e., I contains an index other than , we can find an example in

which the identified set for an impulse response becomes non-convex.5 Note that the conditions

for zero restrictions  () = 0 imposed in Lemma 4.2 are stronger than the one given in Lemma

4.1. We leave for future research further investigation on whether these conditions for  () = 0

in Lemma 4.2 can be weakened or not.

Example 4.3 To illustrate the notations introduced in this section, consider again the three vari-

able example given in Introduction. Suppose we impose sign restrictions (A4) and (A5) for

 = 0 1     5. Then, the sign restrictions at horizon  ∈ {0 1      5} are written asÃ
−02 ()
03 ()

!
1 ≥ 0,

where 0 () is the -th row vector of  ()Σ. Hence, 1 () =

Ã
−02 ()
03 ()

!
,  = 0 1     5.

Stacking {1 () :  = 0 1     5} yields 12 × 3 matrix 1 (), and the whole sign restrictions is

expressed as 1 () 1 ≥ 0.

5 Multiple Priors and the Posterior Bounds for Impulse Responses

5.1 Posterior Bounds: Analytical Representation

Let ̃ be a probability measure on the reduced form parameter space Φ. To construct a prior

distribution for  consistent with the zero restrictions  () = 0 and sign restrictions () ≥ 0,
we trim the support of ̃ as follows,

 ≡ ̃|Φ ≡
̃1 {Q (| ) 6= ∅}
̃ ({Q (| ) 6= ∅})



where the conditioning event Φ in the notation of ̃|Φ is the set of reduced form parameter

values that is consistent with the imposed restrictions, Φ = { ∈ Φ : Q (| ) 6= ∅}. By

construction, prior  assigns probability one to the distribution of data that is consistent with the

zero restrictions and the sign restrictions, i.e.,  ({Q (| ) 6= ∅}) = 1. A joint prior for () ∈
Φ×O() that has -marginal  can be expressed as  = |, where | is supported only
on Q (|) ⊂ O(). Since the structural parameters (0 1     ) and any impulse responses

5Consider the example given in Section 4.4 of Rubio-Ramirez (2010), where  = 3 and their zero restrictions

satisfy 1 = 2 = 3 = 1. They show that the identified set of an impulse response function consists of two distinct

points. If we interpret the zero restrictions placed for the second and the third variables as pairs of linear inequality

restrictions for 2 and 3 with opposite signs, convexity of (| ) fails. In this counterexample, the assumption
of I = {} fails.
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are functions of (),  induces the unique prior distribution for (0 1     ) as well as the

prior for the impulse responses. In turn, if we specify a prior distribution for (0 1     ) with

incorporating the sign normalizations, it induces a prior for . If one implements a standard

Bayesian inference with having  or a prior for (0 1     ) as a prior input, the data only

allow us to update the marginal prior for , whereas the conditional prior | is never be updated
by data, since  does not appear in the likelihood, i.e.,  is conditionally independent of data

given . This means that, if the analyst conducts SVAR analysis with a prior distribution for

(0 1     ), the prior for  induced by the prior of (0 1     ) is well-updated by data,

while the conditional prior |, which is implicitly induced by the prior of (0 1     ), remains

as it is.

In the exact identification case where the imposed restrictions and the sign normalizations can

pin down a unique  (Q (| ) is a singleton) at -almost every , | is degenerate and gives
a point mass at such . Accordingly, with the point-identifying restrictions a priori imposed in

a dogmatic way, specifying  suffices to induce the single posterior distribution for the structural

coefficients as well as all the impulse responses. In contrast, in the partially identified situation

where Q (| ) is non-singleton for ’s with a positive measure, specifying solely  cannot yield
a unique posterior distribution for the impulse responses. To have a posterior distribution for the

impulse responses, as desired in the standard Bayesian approach, we need to specify |, which
is supported only on Q (| ) ⊂ O() at each  ∈ Φ. In empirical practice, however, it is a

challenging task for a researcher to come up with a "reasonable" specification for | especially
when his prior knowledge that he considers credible is exhausted by the zero restrictions and the

sign restrictions () ≥ 0. Even when it is feasible to specify |, the fact that | is never be
updated by data makes the posterior distributions for the impulse responses remain to be sensitive

to the choice of | even asymptotically, so that a limited confidence in the choice of | leads to
an equally limited credibility in the posterior inference. Since () and the structural parameters

(0 1     ) are one-to-one (under the sign normalizations), the difficulty of specifying a prior

for | can be equivalently stated as the difficulty of specifying a joint prior for the whole structural
parameters with fixing the prior for  at .

The robust Bayes procedure considered in this paper aims to make the posterior inference free

from a choice of |. More specifically, we specify a single prior for the reduced form parameters

 which the likelihood are always informative about, while, instead of discussing what is a desirable

choice of | nor seeking for a consensus on what is a least informative |, we introduce a set
of priors (ambiguous belief) for the conditional prior of  given . Let Π| denote a collection
of conditional priors |. Given a single prior for , , let | be the posterior distribution for
 obtained by the Bayesian reduced-form VAR, where  stands for a sample. The posterior of 

combined with the prior class Π| generates the class of joint posteriors of (),

Π| =
©
| = || : | ∈ Π|

ª
,

which coincides with the class of posteriors obtained by applying the Bayes rule to each prior in
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the class
©
 = | : | ∈ Π|

ª
. This class of posteriors of () induces the class of

posteriors for impulse response,  =  (),

Π| ≡
©
| (·) = | ( () ∈ ·) : | ∈ Π|

ª
. (5.1)

We summarize the posterior class of  by constructing the bounds of the posterior means of  and

the posterior probabilities.

The class of conditional priors that puts no restrictions other than the zero restrictions or the

sign restrictions is defined as

Π| =
©
| : | (Q (| )) = 1, -almost surely

ª
 (5.2)

In words, this class consists of arbitrary |’s as far as they assign probability one over ’s that
meet the imposed restrictions. Kitagawa (2012) focuses on this type of prior class for a general

class of partially identified models, and the first claim of the next proposition can be obtained as

a corollary of Theorem 3.1 in Kitagawa (2012).6

Proposition 5.1 Let a prior for , , be given, and assume  ({ : Q (| ) 6= ∅}) = 1. Let

a prior class for | be given by (5.2).
(i) The bounds of the posterior probabilities for an event { ∈ }, where  is a measurable

subset in R, are given by
h
| ∗ ()  ∗| ()

i
 where

| ∗ () ≡ inf
©
| () : | ∈ Π|

ª
= | ( (|  ) ⊂ ) 

∗| () ≡ sup
©
| () : | ∈ Π|

ª
= | ( (|  ) ∩ 6= ∅) 
= 1− | ∗ (

) 

(ii) The range of the posterior means (| ) with the posterior class Π| given in (5.1) is∙Z
Φ

 () | 
Z
Φ

 () |

¸
 (5.3)

where  () is the lower bound of  (|),  () = inf { () :  ∈ Q (| )}, and  () is

the upper bound of  (| ),  () = sup { () :  ∈ Q (|)}.
6 In our notation, () corresponds to the model parameters  of Kitagawa’s notation. Our notation for the

reduced form parameters  has the same meaning as the Kitagawa (2012)’s  notation. The impulse response of

interest  = 0() corresponds to the parameter of interest in Kitagawa’s notation, () ∈ R.
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Proof. The first claim is a corollary of Theorem 3.1 in Kitagawa (2012). For a proof of the second

claim, see Appendix A.

Note that this proposition is valid irrespective of whether  (|  ) is a convex interval
or not, so the formulas of the posterior probability bounds and the mean bounds apply to any

set-identified SVARs. The presented posterior probability bounds are convex in the sense every

value in
h
| ∗ ()  ∗| ()

i
is attained by some posterior in Π| (see Lemma B.1 of Kitagawa

(2012) for a proof of this statement). As the expressions of the | ∗ () and ∗| () suggest, the
bounds of the posterior probabilities can be computed by the posterior probability that  contains

and intersects with the identified set of , respectively. If the impulse response is point-identified

in the sense of  (| ) being | -almost surely a singleton, the posterior probability bounds
collapses to a point for every , leading to the single posterior. We can approximate these posterior

probability bounds if we can compute  (|  ) at values of  randomly drawn from its posterior
| . Computation of  (|  ) can be greatly simplified if  (|  ) is guaranteed to be
convex, e.g., the cases where Lemma 4.1 and Lemma 4.2 apply, since obtaining convex  (|  )
is reduced to computing () and ().

The posterior mean bounds are given by the mean of the lower and upper bounds of  (|  )
taken with respect to the posterior of . The range of the posterior means are convex irrespective

of whether the identified sets of  are convex or not.

Based on Proposition 4.1, our robust Bayes inference proposes to report the posterior mean

bounds of (5.3). As a robustified credible region, we consider reporting an interval satisfying

| ∗() ≥ . (5.4)

 is interpreted as an interval estimate for  such that the posterior probability put on  is

greater than or equal to  uniformly over the posteriors in the posterior class (5.1). There are

multiple ways to construct  satisfying (5.4). One proposal is the one that has shortest width

(Kitagawa (2012)) and meets (5.4) with equality. We hereafter refer to it as the robustified credible

region with lower credibility . We can also define  by mapping the highest posterior density

region of  to the real line via the set-valued map  (·|  ) (Moon and Schorfheide (2011)),
which can be conservative in the sense that (5.4) can hold with inequality See also Klein and

Tamer (2013) and Liao and Simoni (2013) for alternative ways to construct .

5.2 Computing Posterior Bounds

This subsection presents an algorithms to approximate the posterior quantities introduced in the

previous subsection, using random draws of  from its posterior.

Algorithm 5.1 Let  () = 0 and () ≥ 0 be given, and let  = 0̃ ()  be an impulse
response of interest.
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(Step 1) Specify ̃ a prior for the reduced form parameters . The proposed ̃ need not satisfy

̃ ({ : Q (| ) 6= ∅}) = 1. Run a Bayesian reduced form VAR to obtain the posterior

̃| .

(Step 2) Draw a reduced form parameter vector  from ̃| . Given the draw of , we examine

Q (| ) is empty or not by following a subroutine (Step 2.1) - (Step 2.3) below.

(Step 2.1) Let 1 ∼ N (0 ) be a draw of an -variate standard normal random variable. LetM11

be the × 1 residual vector in the linear projection of 1 onto a × 1 regressor matrix

1 ()
0  Set ̃1 =M11. For  = 2 3     , we run the following procedure sequentially;

draw  ∼ N (0 ), and compute ̃ =M, where M is the residual vector in the

linear projection of  onto the × ( + − 1) regressor matrix, £ ()0  ̃1     ̃−1¤ 
(Step 2.2) Given ̃1     ̃ obtained in the previous step, define

 =

∙


¡
̃01

1
¢ ̃1

k̃1k      
¡
̃0


¢ ̃

k̃k
¸


where k·k is the Euclidian metric in R. Thus-constructed  can be seen as a draw

of an orthogonal matrix from Q (| ).
(Step 2.3) If  obtained in (Step 2.2) satisfies the sign restrictions () ≥ 0, retain this  and

proceed to (Step 3). Otherwise, repeat (Step 2.1) and (Step 2.2) at most  times (e.g.,

 = 10000), until we obtain  satisfying () ≥ 0. If none of  number of draws

of  satisfies () ≥ 0, we then approximate Q (| ) to be empty, and go back to
Step 2 to obtain a new draw of .

(Step 3) Given  and  obtained in (Step 2) and (Step 2.3), compute the lower and upper bound

of  (|  ) by solving the following nonlinear optimizations with equality and inequality
constraints,7

 () = argmin


0̃ ()  

s.t. 0 = ,  () = 0,

(0Σ−1 ) ≥ 0, and () ≥ 0,

and () = argmax 0̃ ()  under the same set of constraints.

(Step 4) Repeat (Step 2) - (Step 3)  times, and obtain  draws of the intervals, [() ()],

 = 1     . We then approximate the posterior mean bounds of Proposition 4.1 by the

sample average of (() :  = 1    ) and (() :  = 1    ).

7 In the empirical application given in Section 5, we used "auglag" function available in an R package "alabama",

which implements the augumentated Lagrangean multiplier method for a nonlinear optimization with equality and

inequality constraints. At each , we use  obtained in (Step 2.3) as an initial value for the nonlinear optimization.

For all the models considered in Section 5, the optimization algorithm converged under the default convergence

criterion at every draw of .
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(Step 5) To construct the robustified credible region, define  ( ) = max {| − ()|  | − ()|}, and
let ̂() be the sample -quantile of (( ) :  = 1    ). The robustified credible

region for  is obtained as an interval that centers at argmin ̂() with radius min ̂()

(Proposition 5.1 of Kitagawa (2012)).

In the above algorithm, the non-linear optimization part of (Step 3) can be computationally

unstable and time-consuming, especially when the number of variables and constraints are large

and convergence to the optimum is slow. If one comes up with such computational challenge in a

given application, a more computationally stable algorithm can be used, in which (Step 3) above is

replaced with (Step 3’) below. A downside of this alternative algorithm is that the approximated

identified set is smaller than  (| ) at every draw of , resulting in approximating the posterior
bounds to be shorter than the actual ones.

(Step 3’) Iterate (Step 2.1) - (Step 2.3)  times and let
³
 :  = 1     ̃

´
be those that satisfy the

sign restrictions. (If none of the draws satisfies the sign restrictions, we draw new  and

iterate (Step 2.1) - (Step 2.3) again). Let ,  = 1     ̃, be the -th column vector of .

We then approximate [() ()] by [min 
0
̃ () max 

0
̃ () ].

5.3 Posterior Probability of the Empty Identified Set

By calculating the proportion of drawn ’s passing (Step 2.3) of Algorithm 4.1, we can obtain

an approximation of the posterior probability (corresponding to the non-trimmed prior ̃) of

having a nonempty identified set, ̃| ({ : Q (| ) 6= ∅}). With the under-identifying zero

restrictions only, the set of admissible ’s, Q (| ), is never be empty, so that data never be able
to detect violation of the imposed assumptions irrespective of a choice of ̃. In contrast, with the

sign restrictions imposed, Q (| ) can become empty for some , so that, if we specify ̃ that

supports entire Φ (e.g., the normal -Wishart prior for  = (Σ)), data allow us to update the belief

for plausibility of the imposed assumptions (i.e., belief for having a non-empty identified set). As is

also claimed in Klein and Tamer (2013), we consider that the posterior plausibility of the imposed

assumptions is an important quantity to report in empirical applications, since it can convey the

upper bound of the credibility (most optimistic belief) for the imposed assumptions after observing

data.8 In fact, the posterior plausibility of the imposed assumptions is not specific in the current

robust Bayes proposal, but it can be in principle computed as a by-product of the MCMC algorithm

8An alternative quantity that is informative for plausibility of the imposed assumptions is the prior-posterior odds

of the nonemptiness of the identified set,

 =
̃| ({ : Q (| ) 6= ∅})
̃ ({ : Q (| ) 6= ∅}) 

 exceeding one indicates that the data are in favor of plausibility of the imposed assumptions.
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in the Bayesian structural VAR analysis with the sign restricted impulse responses, although it has

been rarely reported in the literature.

In the frequentist approach Moon, Shorfheide, and Granziera (2013), it is not straightforward to

separate out inferential statement for the plausibility of assumptions from the confidence statement

for the impulse response identified set. Observing narrow frequentist confidence intervals can

be a consequence of sample information for the misspecification of the assumptions rather than

precise sample information for the underlying small identified set, or vice versa. In contrast, the

robust Bayes approach proposed above enables us to separately quantify these information on the

basis of the posterior distribution of the reduced form parameters, by reporting both the posterior

probability of having an empty identified set and the posterior bounds conditional on  yielding

nonempty identified set.

5.4 Asymptotic Property of the Posterior Bounds

This section concerns asymptotic consistency property of the posterior bounds proposed above. Let

0 ∈ Φ be the value of the reduced form parameters that corresponds to the true sampling process

of the data, and let   = (1      ) denote a sample of size  . We assume posterior consistency

for the reduced parameters, meaning lim→∞ |  () = 1 for every  open neighborhood of 0

for almost every sampling sequence   in terms of the true sampling distribution of   . The

posterior consistency of the Gaussian reduced form VAR is standard, and we let the posterior

consistency for  be given in the following analysis.

If the identified set of ,  (|), viewed as a set-valued map of  is non-empty and a
continuous correspondence at  = 0, then the posterior mean bounds constructed in Proposition

5.1 (ii) is consistent to the convex hull of  (0|), as claimed in the next proposition.

Proposition 5.2 Suppose that  (| ) is a non-empty and continuous correspondence at  =
0,

(i) lim→∞ |  ({ :  ( (| )   (0|))  }) = 0 for almost every sampling

sequence   , where  (· ·) is the Hausdorff distance.
(ii) Let [ (0)  (0)] be the convex hull of  (0| ). The range of the posterior means

converges to [ (0)  (0)],R
Φ
 () |  →  (0) andR

Φ
 () |  →  (0) , as  →∞,

for almost every sampling sequence   .

Proof. See Appendix A.

The first claim of this proposition shows that the identified set  (| ) viewed as a random
set induced by the posterior of  converges to the true identified set in the Hausdorff metric. If

 (0| ) is convex, as can be implied by the assumptions of Lemma 4.1 or 4.2, the posterior
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consistency in the sense of Proposition 5.2 (i) implies that at every credibility level 0    1 the

robustified credible region constructed in (Step 5) of Algorithm 5.1 converges to the true identified

set. On the other hand, if the true identified set is non-convex, then, the robustified credible region

constructed by Algorithm 5.1 yields an interval estimate that is consistent to only a convex hull of

the true identified set. The second statement in this proposition claims that the range of posterior

means is also consistent to the convex hull of the true identified set. That is, if  (0| ) is
known to be convex, the range of posterior means is consistent to the true identified set.

The continuity of  (| ) at  = 0 assumed in this proposition is crucial for guaranteeing

consistency of the robust Bayes procedure. The continuity of  (| ) can be obtained from
a set of more primitive conditions involving rank conditions for the coefficient matrices of the zero

and sign restrictions in the neighborhood of 0. Under the setup as considered in Lemma 4.1

and Lemma 4.2, Appendix B characterizes a sufficient condition under which the impulse response

identified set becomes a continuous correspondence.

6 An Empirical Example

We illustrate a use of the posterior bound analysis developed above in a four-variable SVAR, where

the vector of observables consists of a nominal interest rate , real GDP , inflation rate , and

real money balances . The data set we use is from Aruoba and Schorfheide (2011), and it is

used in the empirical illustration of Moon et al (2013). The data are quarterly observations for the

period from 1965:I to 2005:I, constructed from the FRED2 database of Federal Reserve Bank of St.

Louis. For the details of the construction of the variables, see Aruoba and Schorfheide (2011).

We specify the four variable structural VAR as⎛⎜⎜⎜⎜⎝
11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝



∆





⎞⎟⎟⎟⎟⎠ = +

2X
=1



⎛⎜⎜⎜⎜⎝
−
∆−
−
−

⎞⎟⎟⎟⎟⎠+
⎛⎜⎜⎜⎜⎝








⎞⎟⎟⎟⎟⎠ 

where we specify the lag to be  = 2. The output variable is transformed to the first difference

(GDP growth), since without first-differencing , the implied reduced form VAR is non-invertible

with a high posterior probability. The order of variables presented here are determined in such way

that the set of zero restrictions introduced below are compatible with 1 ≥ 2 ≥ 3 ≥ 4. Suppose

that the impulse response function of interest is the output response to a monetary policy shock,
+


, i.e., ̃ = 2 and  = 1 in our notation of the previous sections. For the sign normalizations, we

restrict the diagonal elements of the coefficient matrix in the left-hand side to be nonnegative, so

the output response is estimated with respect to a unit standard deviation contractionary monetary

policy shock.

We consider several specifications of the SVARs, where each specification uses a different com-

bination of the following set of zero restrictions and sign restrictions.
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Restrictions:

(i) The monetary authority does not respond to the contemporaneous GDP growth, 12 = 0.

(ii) The instantaneous impulse response of the real GDP to a monetary policy shock is zero,

0(∆ ) = 0.

(iii) The long-run impulse response of the real GDP level to a monetary policy shock is zero,

∞(∆ ) ≈P
=1

∆+


= 0, with  = 80.

(iv) The inflation response to a contractionary monetary policy shock is nonpositive for one quar-

terly period,
+


≤ 0 for  = 0 1 the interest rate response is nonnegative for one quarterly
period,

+


≥ 0 for  = 0 1, and the responses of the real money balances is nonpositive for
one quarterly period,

+


≥ 0, for  = 0 1.

To compare identifying power and informativeness of each restriction, we conduct the poste-

rior bound analysis for seven different combinations of the restrictions. Table 1 summarizes the

combinations of the restrictions we consider. The restrictions (i) through (iii) are zero restrictions

that constrain the first column vector of , so 1 = 1 if only one assumption out of (i) - (iii) are

imposed (Model II and IV), and 1 = 2 if two out of (i) - (iii) are imposed. On the other hand,

no zero restrictions are placed on the other columns of , so 2 = 3 = 4 = 0 hold for all the

models. The sign restrictions on the impulse responses are given by (iv), which are identical to

those considered in Moon, Shorfheide, and Granziera (2013). We impose the sign restrictions on

all the specifications. Note that, in the all the models considered, the output impulse response

functions are set-identified, so the set of priors defined above will yield the set of posteriors, and

the posterior bounds are not supposed to collapse to a point. Furthermore, the current setup

satisfies the conditions of Lemma 4.1 and 4.2, so that the identified set of the impulse responses

are guaranteed to be convex for every . Consequently, the posterior bounds to be reported are

consistent with the true identified set if additional regularity assumptions listed in Appendix B

holds at the true .

Table 1: Definition of Models and Posterior Plausibility

Restriction \ Model I II III IV V VI VII

(i) 12 = 0 - O - - O O -

(ii) 0( ) = 0 - - O - O - O

(iii) ∞( ) = 0 - - - O - O O

(iv) sign restrictions O O O O O O O

Pr ((| ) 6= ∅|) 1.00 1.00 1.00 1.00 0.99 0.93 0.98

Note: "O" indicates the restriction is imposed

We set a prior for reduced form parameters (̃ defined in Section 4) common to all the models

and it is specified to be improper ̃ (Σ) ∝ |Σ|− 4+1
2 . This prior for  corresponds to the
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Jeffreys’ prior for the reduced form Gaussian VAR, and the posterior for  is nearly identical to

the likelihood with the current sample size. The bottom row of Table 1 presents the posterior

probabilities for plausibility of the imposed restrictions (nonemptiness of the identified set). In all

the specifications considered, these probabilities are approximated to be either one or nearly one

for the current sample.

In addition to the posterior bound analysis, we draw a single prior Bayes inference for the

purpose of assessing how much extra information is added to the posterior inference by the non-

updated part of the prior. We introduce a prior for  that is similar to the agnostic Bayesian

inference procedure of Uhlig (2005). Specifically, we obtain the approximated posterior for the

impulse responses based on the MCMC draws of the impulse responses. The draws for the impulse

responses are obtained by iterating Step (2.1) - (2.3) of Algorithm 4.1, and retaining the draws of

 satisfying the sign restrictions.

Figure 3 and 4 present the posterior distributions and the posterior bounds for impulse re-

sponses. In implementing Algorithm 4.1, we draw ’s until we obtain 1000 realizations of nonempty

identified set (|  ). In all the models considered, we employ the non-linear optimization step
of Algorithm 4.1 (Step 3). Figure 3 and 4 summarize the marginal distribution of the impulse

response at each horizon, and so the figure does not summarize the dependence of the responses

across different horizons. Since the same prior is used for  in every model and the posterior prob-

abilities of having nonempty identified sets are close to one for all the models, the posterior bounds

differ across the models only through the difference of the imposed zero and/or sign restrictions.

Model I in Figure 3 shows that the posterior of  combined with only the sign restrictions do not

lead to informative inference for output responses; their posterior distributions vary over a wide

range depending on a prior for , as we can observe that the posterior mean bounds are as wide as

the posterior credible region of the single prior Bayesian procedure. Note that the posterior mean

bounds and the robustified credible regions are as wide as the point estimator for the identified

sets and the frequentist confidence intervals for them reported in Moon, Shorfheide, and Granziera

(2013). These similarities to the frequentist inference for impulse response identified sets is not

surprising given the consistency property of the posterior bounds (Proposition 5.1). When one

zero restriction is additionally imposed (Model II - IV), the posterior mean bounds and the ro-

bustified credible regions get substantially tighter, although an informative conclusion is hard to

draw (except the negative impact in the short horizon in Model III). With two zero restrictions

additionally imposed (Model V - VII), the posterior mean bounds become informative for the sign

of the output response for short to middle-range horizons. Specifically, when the imposed zero

restrictions include restriction (ii) (Model V and VII), the range of posterior means of output re-

sponses are negative for  = 0 up to about  = 10. On the other hand, if restriction (i) and (iii)

are jointly imposed, the range of posterior means is positive for short horizons, and we obtain the

opposite conclusions to Model V and VII. These results on relatively more informative posterior

bounds show that, despite the lack of point-identification, the posterior is less sensitive to a choice

of prior for  once any of the two zero restrictions are imposed.
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It is worth noting that both the posterior mean bounds and the lower credible region become

tighter as more restrictions are added. As far as the posterior probabilities of nonemptiness of

the identified set are one, this monotonic gain in informativeness of the posterior bounds holds

irrespective of the realized values of the observations, since adding zero equality or sign restrictions

monotonically reduce the size of the prior class without changing the posterior of . This property of

"more restrictions, more informative inference" does not necessarily hold when we report frequentist

confidence intervals for the true identified set.

7 Concluding Remarks

This paper develops a robust Bayes inference for non-identified structural vector autoregressions.

The proposed procedure reports the range of posterior probabilities and posterior means for impulse

responses, when a prior varies over the class that consists of any priors for the non-identified

components in the model. The range of posterior quantities induced by such class of priors can be

interpreted as a Bayesian inference for the identified set, and the posterior mean bounds and the

robustified credible region converge to the true identified set. The posterior bounds are easy to

compute, even when the sign restrictions are placed for multiple shocks, and it can be applied to a

large class of non-identified SVARs involving zero restrictions and sign restrictions. We consider

that the offered procedure is a useful tool to separate the information for the impulse responses

based on the sample likelihood from any prior input that is not updated by data. With a diffuse

prior of the reduced form parameters, the posterior bound analysis also provides a way to summarize

the shape of the observed likelihood by dealing with the flat region of likelihood by profiling rather

than integration. Given that the shape of the likelihood is an important object to know for both

Bayesians and frequentists, we believe both Bayesians and frequentists find the proposed robust

Bayes analysis useful in summarizing and visualizing the information of the impulse response of

interest contained in data.

Appendix

A Omitted Proofs

The proofs of Lemma 4.1 and 4.2 given below use the following notations. For given  ∈ Φ, and
 = 1     , let ̃ () ≡  ( ()). Let V () be the linear subspace of R that is orthogonal

to the row vectors of  (). If no zero restrictions are placed for , we interpret V () to be R.

Note that, the dimension of V () is equal to  − ̃(). We let H () be the half-space in R

defined by
©
 ∈ R :  ()0  ≥ 0ª, where  () is the -th column vector of Σ−1 . The unit sphere

in R is denoted by S. Given linearly independent vectors,  = [1     ] ∈ R×, denote
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Figure 3: Plots of Output Impulse Responses. See Table 1 for the definition of each model. In

each figure, the points plot the posterior means, the vertical bars show the posterior mean bounds,

the dashed curves connect the upper/lower bounds of the highest posterior density regions with

credibility 90%, and the solid curves connect the upper/lower bounds of the posterior lower credible

regions with credibility 90%. The posterior mean and the highest posterior density regions are

computed from the single prior Bayesian procedure described in the main text.
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Figure 4: Plots of Output Impulse Responses for Model IV - VII. See Table 1 for the

definition of each model. See the caption of Figure 1 for remarks.
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the linear subspace in R that is orthogonal to the column vectors of  by P(). Note that the

dimension of P() is − .

Proof of Lemma 4.1 (i). Fix  ∈ Φ, and denote 1: = [1     ] be an  ×  matrix of

orthogonal vectors in R. The set of feasible ’s satisfying the zero restrictions, Q(| ), can be
written in the following recursive manner,

 = [1     ] ∈ Q(| )
if and only if  = [1     ] satisfies

1 ∈ 1 () ≡ V1() ∩H1 () ∩ S
2 ∈ 2 ( 1) ≡ V2() ∩H2 () ∩ P(1) ∩ S
3 ∈ 3 (1:2) ≡ V3() ∩H3 () ∩ P(1:2) ∩ S

...

 ∈ 

¡
1:(−1)

¢ ≡ V() ∩H () ∩ P(1:(−1)) ∩ S (A.1)

...

 ∈ 

¡
1:(−1)

¢ ≡ V() ∩H () ∩ P(1:(−1)) ∩ S

where 

¡
1:(−1)

¢ ⊂ R is the set of feasible ’s given 1:(−1) = [1     −1], ( − 1) ortho-
normal vectors in R preceding . First, nonemptiness of the identified set for  = ̃ ()  follows

if the feasible domains of the orthogonal vector, 

¡
1:(−1)

¢
is nonempty at every  = 1     .

Note that, by the assumption of 1 ≤ − 1, V1()∩H1 () is the half-space of the linear subspace
of R with dimension  − ̃1 () ≥  − 1 ≥ 1. Hence, 1 () is nonempty for every  ∈ Φ.
For  = 2     , V() ∩H () ∩ P(1:(−1)), is the half-space of the linear subspace of R with

dimension at least

− ̃()− dim(P(1:(−1))) ≥ −  − (− 1)
≥ 1,

where the last inequality follows by the assumption of  ≤ − . Hence, 

¡
1:(−1)

¢
is non-

empty for every  ∈ Φ. Thus, we conclude that Q(| ) is nonempty, and this implies nonemptiness
of the impulse response identified sets for every ̃ ∈ {1     } and  = 0 1 2    .

Next, we show convexity of (| ) We first consider the case of  = 1, and subsequently

generalize the claim to the cases for   1 by mathematical induction. Since 1 ≤  − 1 by
assumption, the feasible domain for 1, 1 (), is the half-space of a linear subspace in R with

dimension  − ̃1 () ≥  − 1 ≥ 1, intersected with the unit sphere, so 1 () is a compact and

path-connected subset inR. (In case of 1 = −1 and (1()) = −1, 1 () is a singleton.)
Since the range of a continuous function on a path-connected domain is convex, the convexity of

the identified set of  = 0̃()1 follows.
We now generalize the claim to  ≥ 2. Let us view the feasible domain of  , 

¡
1:(−1)

¢
,

given in (A.1) as a set-valued map from 1:(−1) ⊂ R×(−1) to R. We denote the domain of this
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set-valued map by

Q1:(−1) (| ) =
©
1:(−1) : 1 ∈ 1 ()  2 ∈ 2 ( 1)      −1 ∈ −1

¡
1:(−2)

¢ª
.

(A.2)

We first present an auxiliary lemma, whose proof is postponed to a later part of this section.

Lemma A1: Fix  ∈ . Assume Q1:(−1) (| ) is a compact and path-connected subset in
×(−1). Then, the graph of the set-valued map 

¡
1:(−1)

¢


Q1: (| ) ≡
©
1: =

£
1:(−1) 

¤ ∈ R× :  ∈ 

¡
1:(−1)

¢
 1:(−1) ∈ Q1:(−1) (| )

ª
(A.3)

is a compact and path-connected set in R×, and its projection onto the range space for ,

E () ≡
[

1:(−1)∈Q1:(−1)(| )


¡
1:(−1)

¢
, (A.4)

is a compact and path-connected set in R.

Note that for the case of  = 2, Q1:(−1) (| ) is given by 1(). We have already shown that
1() is a compact and path-connected set in R. So, successive applications of Lemma A.1 shows

E () =
[

1:(−1)∈Q1:(−1)(| )


¡
1:(−1)

¢
is a compact and path-connected set in R. Since the

identified set of  = 0̃() is given by the range of a continuous function of  , the compactness
and path-connectedness of E () implies compactness and convexity of the identified set of .

Proof of Lemma 4.1 (ii). Let [1      ] be orthonormal vectors obtained by the algorithm

given in the statement of the lemma. Under the given rank conditions, [1      ] are unique up

to combinations of the signs for each column vector. If we focus on  , the sign normalization

restriction 0
 ≥ 0 allows us to uniquely pin it down if 0

 6= 0 as assumed, holds. The

uniqueness of  implies that the identified for  is a singleton. Hence, the conclusion follows.

Next we provide a proof of Lemma A.1 appeared in the proof of Lemma 4.1 (i).

Proof of Lemma A.1. To show that Q1: (| ) is a compact given Q1:(−1) (| ) is com-
pact, it suffices to show that 

¡
1:(−1)

¢
is a compact-valued correspondence. Recall that



¡
1:(−1)

¢
is the half-space of the linear subspace with dimension greater than or equal to 1

intersected with unit sphere (see (A.1)). Hence, 

¡
1:(−1)

¢
is a compact and path-connected

set in R at every 1:(−1) ∈ Q1:(−1) (| ). Furthermore, set-valued map 

¡
1:(−1)

¢
:

Q1:(−1) (| )⇒ R is a bounded and upper-semicontinuous correspondence9 defined on a compact

domain, so the graph of 

¡
1:(−1)

¢
, Q1: (| ), is closed and bounded (see, e.g., Proposition

1.4.8 of Aubin and Frankowska (1990)).

9Upper-semicontinuity of 


1:(−1)


in 1:(−1) holds by the following argument. Consider a sequence


1:(−1) in Q1:(−1) (| ) with limit 1:(−1), and let 


 ∈ 




1:(−1)

. Since  ’s lie on a compact set, 


 has a
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To show path-connectedness of Q1: (| ), we show that there exists a continuous path be-

tween any two points,
¡
  1:(−1)

¢
and

³
̃  ̃1:(−1)

´
, in Q1: (| ). Since 

¡
1:(−1)

¢
:

Q1:(−1) (| ) ⇒ R is a nonempty upper-semicontinuous correspondence defined on a path-

connected domain, there exists a continuous function  : Q1:(−1) (| )→ R such that (1:(−1)) ∈


¡
1:(−1)

¢
holds for every 1:(−1) ∈ Q1:(−1) (| ). Consider constructing a continuous path

from
¡
  1:(−1)

¢
to
³
̃  ̃1:(−1)

´
, by connecting (i)

¡
  1:(−1)

¢
to ((1:(−1)) 1:(−1)), (ii)

((1:(−1)) 1:(−1)) to ((̃1:(−1)) ̃1:(−1)), and (iii) ((̃1:(−1)) ̃1:(−1)) to (̃  ̃1:(−1)). Ex-
istence of continuous paths for (i) and (iii) follow by the path-connectedness of 

¡
1:(−1)

¢
and



³
 ̃1:(−1)

´
, respectively. Existence of a continuous path for (ii) follows since  is contin-

uous and the domain Q1:(−1) (| ) is path-connected. Thus, we obtain path-connectedness of

Q1: (| ).
A projection of a compact and path-connected set Q1: (| ) onto a lower dimensional space is

a continuous map, and it preserves compactness and path-connectedness, so E () is compact and
path-connected.

Proof of Lemma 4.2. Under Condition 1 of this lemma, Lemma 4.1 (ii) implies that  (|)
is either a singleton or an empty set, depending on whether sign restrictions  ()  ≥ 0 holds
or not at the a.s. uniquely determined  given . Hence,  (| ) is convex whenever it is
nonempty.

Under Condition 3 of this lemma, the algorithm of Lemma 4.1 (ii) combined with the sign

normalization restrictions pins down uniquely the first ∗ column vectors of  ∈ Q (| ), if
Q (| ) is non-empty. We denote them by [∗1     ∗∗ ]. Let the orthogonal matrices that attain
the lower bound and the upper bound of {() :  ∈ Q (| )} be = [∗1     ∗∗  ∗+1     ]
and ̃ = [∗1     

∗
∗  ̃∗+1     ̃], respectively. If   ∗ + 1, the -th column vectors of  and ̃

converging subsequence with a limit denoted by  . Since


()


1:(−1)


 = 0 and  ()

0
 ≥ 0 hold for all , and

by continuity of inner product,


()

1:(−1)


 = 0 and  ()

0
 ≥ 0 hold, implying  ∈ 


1:(−1)


. Hence,




1:(−1)


is upper-semicontinuous in 1:(−1).
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satisfy⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

 ()

∗01
...

∗0∗
0∗+1
...

0−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
 = 0, () ≥ 0 and

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

 ()

∗01
...

∗0∗
̃0∗+1
...

̃0−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
̃ = 0, ( ̃) ≥ 0

Define  () =
+(1−)̃
k+(1−)̃k , for  ∈ [0 1]. Note that k + (1− ) ̃k 6= 0, since k + (1− ) ̃k =

0 happens only when  = −̃ , but this possibility is excluded -a.s. from the sign normalization

restriction. We now show that, for any  ∈ [0 1], there exists  () ∈ Q (| ) whose -th

column vector is  (). Consider constructing the orthogonal vectors,  (),  = ∗ + 1     ( − 1)
recursively by solving⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

 ()

∗01
...

∗0∗
0∗+1()

...


0
−1()
 ()

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
 () = 0. (A.5)

Note that the there exist  () solving these orthogonality conditions because under the assumption

that  ≤ − − 1,  = ∗ + 1      − 1, the matrices multiplied to  () have rank at most − 1.
As for the orthogonal vectors for the columns  =  + 1     , the under-identified situation

 ≤ −  guarantees existence of [+1 ()       ()], as successive applications of the orthogonal

condition (A.5) for  =  + 1      can yield orthogonal vectors [+1 ()       ()]. Thus, we

obtain  () = [∗1     
∗
∗  ∗+1 ()       ()], which belongs to Q (| ) since  (()) = 0

and  ()  () ≥ 0 holds by the construction. Since  (),  ∈ [0 1], forms a continuous path
between  and ̃ and  = ̃ ()  is continuous in  , the identified set of  = ̃ ()  is
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given by a convex interval [̃ ()   ̃ () ̃ ]. Hence, we conclude that  (| ) is a connected
interval.

If  = ∗+1, then the -th column vector of  giving the lower and upper bounds of the impulse
response satisfy⎛⎜⎜⎜⎜⎝

 ()

∗01
...

∗0∗

⎞⎟⎟⎟⎟⎠  = 0, () ≥ 0 and

⎛⎜⎜⎜⎜⎝
 ()

∗01
...

∗0∗

⎞⎟⎟⎟⎟⎠ ̃ = 0, ( ̃) ≥ 0

Construct  () as above. Clearly,  () meets the orthogonality conditions and the sign restric-

tions, and it provides a continuous path between  and ̃ .

Under Condition 2 of the lemma, we simply drop [∗1     
∗
∗ ] from the preceding proof for

the case of Condition 3, and the conclusion follows by adopting the same way of constructing a

continuous path,  (),  ∈ [0 1].

Proof of Proposition 5.1 (ii). The proof proceeds by applying the proof of Proposition 4.1

of Kitagawa (2012). Let () = 0() be the impulse response of interest. By Lemma A.4

of Kitagawa (2012) and Proposition 10.3 of Denneberg (1994), the upper bounds of the posterior

mean of () satisfies the following equality,

sup
| ∈Π|

Z
()| =

Z
()∗| 

where the integral with respect to the upper probability
R
()∗

| stands for the generalized
Choquet integral (Denneberg (1994), pp62),Z

()∗| =
Z 0

−∞

h
∗| ({() ≥ ̃})− 1

i
̃ +

Z ∞

0

∗| ({() ≥ ̃}) ̃

By Proposition 5.1 (i), it holds

∗| ({() ≥ }) = ∗| ({ ≥ ̃})
= | ((| ) ∩ { ≥ ̃} 6= ∅) 

Note that (| ) ∩ { ≥ ̃} 6= ∅ is true if and only if {() ≥ ̃}. Hence, we haveZ
()∗| =

Z 0

−∞

£
| (() ≥ ̃)− 1¤ ̃ + Z ∞

0

| (() ≥ ̃) ̃

= −
Z 0

−∞
| (()  ̃) ̃ +

Z ∞

0

| (() ≥ ̃) ̃

= | (())
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where the last line follows by interchanging the order of integrations. The lower bound of the

posterior means can be obtained similarly by replacing () above with −(). Any posterior
means between the lower and upper bounds can be obtained by a mixture of the priors attaining

the lower and upper bounds, so the range of the posterior means is convex.

Proof of Proposition 5.2. (i) Let   0 be arbitrary, and denote the identified set of an impulse

response by () for short. By the assumption of continuity of the identified set correspondence,

there exists an open neighborhood  of 0 such that  ( ()  (0))   holds for every  ∈ .

Consider

|  ({ :  (() (0))  }) = |  ({ :  (() (0))  } ∩)
+|  ({ :  (() (0))  } ∩)

≤ |  () 

where the last line follows because { :  (() (0))  } ∩ = ∅ by the construction of .
The posterior consistency of  yields lim→∞ |  () = 0,  (∞|0)-a.s., so lim→∞ |  ({ :  (() 
0 holds  (∞|0)-a.s.

(ii) Continuity of the identified set correspondence implies that () and () is continuous at 0.

Since the assumption of the posterior consistency of  implies that |  converges weakly to the

Dirac measure at 0 for almost all 
 . Hence,

R
Φ
()|  → (0) and

R
Φ
()|  → (0)

as  →∞ holds for almost all   .

B Continuity of Identified Set Correspondence

In this appendix, we provide a set of conditions, under which the identified set for impulse responses

becomes a continuous correspondence. We treat the case with only the zero restriction and the

case with both zero and sign restrictions separately.

B.1 Only Zero Restrictions

This section of the appendix concerns the case as considered in Lemma 4.1, i.e., the imposed

restrictions compose of zero restrictions satisfying  ≤ −  for all  = 1     . As for the set of

feasible ’s, we follow the representation of Q(| ) given in (A.1) and the notations defined in the
proof of Lemma 4.1.

Let our object of interest be the impulse responses with respect to a -th shock, and let 0 be

the true value of reduced form parameters, at which continuity of the identified set correspondence

is concerned. By Lemma 4.1, the impulse response identified set is compact and convex, so, in

order to show continuity of the identified set correspondence, it suffices to show continuity of ()

and () at  = 0. Note that () and () can be seen as minimized and maximized values

of ̃(1:) = 0̃() subject to 1: ∈ Q1:(| ), where the second argument of ̃(1:)
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emphasizes that we see 1: as the choice variable in the optimizations (the rest of column vectors

+1      can be ignored since the zero restrictions placed for them do not constrain 1: due to

the sequential structure of (A.1)). Since objective function ̃(1:) is continuous in  and 1: ,

the Maximum Theorem (see, e.g., Theorem 9.14 of Sundaram (1996)) says continuity of () and

() follows from continuity of a constraint set correspondence Q1:(| ). Therefore, it suffices to
focus on characterizing a condition for continuity of Q1:(| ).

Continuity of Q1:(| ) can be obtained by combining the following two lemmas. Proofs of

these lemmas are given in a later part of this section.

Lemma B.1 Assume

1. there exists  ⊂ Φ an open neighborhood of 0 such that (1()) = 1 for all  ∈  and

2. the first column vector of the true Σ−1 , 
1(0), is linearly independent of the row vectors of

1(0).

Then, 1 () =
©
1 ∈ S : 1()1 = 0 1(0)01 ≥ 0

ª
is a continuous correspondence at  =

0

Lemma B.2 Let  ∈ {2     } be fixed. Suppose that Q1:(−1) (| ) is a continuous correspon-
dence at  = 0. Assume the following two conditions.

1. Let K() =

(


Ã
()

0
1:(−1)

!
: 1:(−1) ∈ Q1:(−1) (| )

)
be the set of ranks that ( + − 1)×

 matrix

Ã
()

0
1:(−1)

!
can take as 1:(−1) varies over Q1:(−1) (| ). There exists  ⊂ Φ an

open neighborhood of 0 such that K() = K(0) holds for all  ∈ .

2. The -th column vector of the true Σ−1 , 
(0), is linearly independent of the row vectors ofÃ

(0)

0
1:(−1)

!
for all 1:(−1) ∈ Q1:(−1) (0| ).

Then, Q1: (| ) is a continuous correspondence at  = 0.

Lemma B.1 concerns continuity of the constraint set correspondence for 1 only, and Lemma

B.2 concerns continuity of the constraint set correspondence for 1: given continuity of the one of

1:(−1). If the impulse responses of interest are those with respect to a shock in the first variable
( = 1), Lemma B.1 combined with the Maximum theorem yields continuity of () and () at

 = 0. Lemma B.2 is used if the impulse responses of interest are those with respect to a shock

in variable  ≥ 2. In case of  = 2, Q1:(−1) (| ) is guaranteed to be a continuous correspondence
by Lemma B.1, so if Assumptions 1 and 2 hold sequentially from  = 2 to ( − 1) then recursive
applications of Lemma B.2 proves that Q1: (| ) is a continuous correspondence at  = 0. Thus,

as a corollary of Lemmas B.1 and B.2, we obtain continuity of () and (), as formally stated in

the next proposition.
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Proposition B.1 Assume the zero restrictions satisfy  ≤ −  for  = 1 2     . If the impulse
responses of interest are those with respect to a shock in the first variable ( = 1),  = 0

̃
()1, then

Assumptions 1 and 2 of Lemma B.1 are sufficient for continuity of the impulse response identified

set for all ̃ = 1      and  = 0 1 2     If the impulse responses of interest are those with respect

to a shock in the  -th variable with  ≥ 2,  = 0̃(), then the impulse response identified set is
continuous for all ̃ = 1      and  = 0 1 2     if Assumptions 1 and 2 of Lemma B.1 hold and

Assumptions 1 and 2 of Lemma B.2 hold for all  = 1      − 1.

The conditions specified in Lemmas B.1 and B.2 consist of two types of rank conditions. As-

sumption 1 in these lemmas says that the possible dimensions of the linear subspace that  can lie

does not vary in  in a neighborhood of 0. Assumption 2 in these lemmas says that the vector of

the sign normalization restriction for  is linearly independent of the coefficient matrix of the zero

restrictions for .

Proof of Lemma B.1. Note first that 1() is a closed and bounded correspondence, so upper-

semicontinuity and lower-semicontinuity of 1() can be defined in terms of sequences (see, e.g.,

Propositions 21 of Border (2013)),

• 1() is upper-semicontinuous (usc) at  = 0 if and only if, for any sequence 
 → 0 and

any 1 ∈ 1(
), there is a subsequence of 1 with limit in 1(0).

• 1() is lower-semicontinuous (lsc) at  = 0 if and only if, 
 → 0 and 01 ∈ 1(0) imply

that there is a sequence 1 ∈ 1(
) with 1 → 01.

In the proofs given below, we use the same index  to denote a subsequence, just to compress

a notational burden.

Usc: Since 1 is a sequence on a unit-sphere, it has a convergent subsequence 

1 → 1. Since

1 ∈ 1(
), 1(

)1 = 0 and 
1()01 ≥ 0 hold for all , and they hold at the limit as well since

1() and 1() are continuous. Hence, 1 ∈ 1(0).

Lsc: The proof of lsc proceeds in a similar manner to the proof of Lemma 3 in Moon et al

(2013). Let 01 ∈ 1(0), and define P
0 = 1(0)

0 [1(0)1(0)0]
−1

1(0) be the projection

matrix onto the space spanned by the row vector of 1(0) By Assumption 1, P0 and P =

1(
)0 [1()1()0]

−1
1(

) are well-defined for all large . Let ∗ ∈ R be a vector satisfying

1(0)
0 £ −P0¤ ∗  0, which exists since 1(0)0 £ −P0¤ 6= 00 by Assumption 2. Let

 =
2

1(0)
0 [ −P0] ∗ 

∗

and let  =
°°1()0 [ −P]− 1(0)

0 £ −P0¤°°  Since P converges to P0,  → 0. Define

1 =
[ −P]

£
01 + 

¤°°[ −P]
£
01 + 

¤°° ,
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which converges to 01. We show that thus-constructed 1 belongs to 1(
). First, 1(

)1 = 0

holds since 1(
) [ −P] = . Second, as for the sign normalization restriction, we have

1()01 =
1°°[ −P]
£
01 + 

¤°° ©1()0 [ −P] 01 + 1()0 [ −P] 
ª

=
1°°[ −P]
£
01 + 

¤°°
( ¡

1()0 [ −P]− 1(0)
0 £ −P0¤¢ 01

+1()0 [ −P] 

)
≥ 1°°[ −P]

£
01 + 

¤°° ©− °°01°°+ 1()0 [ −P] 
ª

=
°°[ −P]
£
01 + 

¤°° ©1()0 [ −P]  − 1ª ,
where the second line follows since

£
 −P0¤ 01 = 0. By the construction of , 1()0 [ −P] 

converges to 2, so that 1()0 [ −P] −1  0 holds for all large . Hence, we have 1()01 ≥ 0
for all large .

Proof of Lemma B.2. Usc: Let 
1:(−1) ∈ Q1:(−1)(| ) be a sequence. By continuity

of Q1:(−1)(| ), 
1:(−1) has a convergent subsequence with limit 

0
1:(−1) ∈ Q1:(−1)(0| ). Let

 ∈ (
 

1:(−1)) and 

1: =

h

1:(−1) 




i
. Since  has a converging subsequence with limit 

0
 ,

01: =
h
0
1:(−1) 

0


i
the limit of 

1: exists. Note that

Ã
(

)

0
1:(−1)

!
 = 0 and ()0 ≥ 0 holds

for all  by the construction of  , and they hold at the limit as well. Hence, 
0
 ∈ (0

0
1:(−1))

holds, and 01: ∈ Q1:(0| ).

Lsc: Let 01: =
h
0
1:(−1) 

0


i
∈ Q1:(0| ), and let  = 

Ã
(0)

00
1:(−1)

!
. By continuity of

Q1:(−1)(| ), there exists 
1:(−1) ∈ Q1:(−1)(| ) converging to 01:(−1), and by Assumption 1,

we can take 
1:(−1) to satisfy  = 

Ã
(

)

0
1:(−1)

!
for all . Let P0 be the projection matrix that

projects  ∈ R onto the  dimensional linear subspace formed by the row vectors of

Ã
(0)

00
1:(−1)

!
,

andP be the projection matrix that projects  ∈ R onto the -dimensional linear subspace formed

by the row vectors of

Ã
(

)

0
1:(−1)

!
. Then, since

Ã
(

)

0
1:(−1)

!
→
Ã
(0)

00
1:(−1)

!
, we have convergence of

projection matrices P → P0. Following the proof of Lemma B.1, let ∗ ∈ R be a vector satisfying

(0)
0 £ −P0¤ ∗  0, which exists since (0)0 £ −P0¤ 6= 00 by Assumption 2. Construct  in

the exactly same manner as 1 was constructed in the proof of Lemma B.1.

 =
[ −P]

£
0 + 

¤°°[ −P]
£
0 + 

¤°° 
 =

2

(0)
0 [ −P0] ∗ 

∗

 =
°°()0 [ −P]− (0)

0 £ −P0¤°° .
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Repeating the same steps as in the proof of Lemma B.1, we have  ∈ (


1:(−1)) and 

 → 0 .

B.2 Zero and Sign Restrictions

In this section, we show continuity of the identified set correspondence in the presence of both zero

and sign restrictions. As in Lemma 4.2, we consider the situation, where the sign restrictions are

placed only for the -th shock, i.e., I = {}. In this case, the set of feasible 1: = [1      ]

can be expressed as

Q1:(| ) ≡
(£

1:(−1) 
¤
:

Ã
 ()

0
1:(−1)

!
 = 0, () ≥ 0, 1:(−1) ∈ Q1:(−1) (| )

)
,

(B.1)

where Q1:(−1) (| ) is as defined in (A.1).
On R,  ≥  means  ≥ ,  = 1     , and  À  means   ,  = 1     . The next

proposition characterizes a sufficient condition for the impulse response identified set to be a con-

tinuous correspondence. Note that the requirement for the number of zero restrictions considered

in the next proposition is slightly weaker than that of Lemma 4.2.

Proposition B.2 Let  = ̃ ()  be an impulse response of interest. Suppose I = {}, i.e.,
the sign restrictions are placed only for the impulse responses to the -th structural shock. Suppose

that the zero restrictions  () = 0 satisfy  ≤  −  for all  = 1     . Assume that the

following four conditions hold.

1. Q1:(−1) (| ) is a continuous correspondence at  = 0.

2. Q1:(| ) defined in (B.1) is non-empty for all  ∈  in an open neighborhood of 0.

3. Let K() be as defined in Assumption 1 of Lemma B.2. K() = K(0) for all  in an

open neighborhood of 0

4. Each row vector of

Ã
 (0)

 (0)
0

!
is linearly independent of the row vectors of

Ã
 (0)

0
1:(−1)

!
for every 1:(−1) ∈ Q1:(−1)(| ).

Then, the impulse response identified set (| ) is a continuous correspondence at  = 0

for all ̃ = 1      and  = 0 1 2    .

Proof. We first prove continuity of correspondence Q1:(| ) under the given assumptions.
Usc of Q1:(| ) can be shown by replicating the proof of the usc part in Lemma B.2. Lsc of

Q1:(| ) can be shown by slightly modifying the proof of lsc in Lemma B.2.

41



Let 01: =
h
0
1:(−1) 

0


i
∈ Q1:(0| ), and let  = 

Ã
(0)

00
1:(−1)

!
. By continuity of

Q1:(−1)(| ) as assumed, there exists 
1:(−1) ∈ Q1:(−1)(| ) converging to 0

1:(−1), and by

Assumption 3, we can take 
1:(−1) to satisfy  = 

Ã
(

)

0
1:(−1)

!
for all . Let P be the

sequence of projection matrices P → P0, where P and P0 are as defined in the proof of Lemma

B.2. Let ∗ ∈ R be a vector satisfying

Ã
 (0)

 (0)
0

!£
 −P0¤ ∗ À 0, which is assumed to exist

by Assumption 4, and let  = max

(Ã
 (0)

 (0)
0

!£
 −P0¤ ∗)  0. Analogous to the proof of

Lemma B.2, consider constructing  as

 =
[ −P]

h
0 + 

i
°°°[ −P]

h
0 + 

i°°° 
 =

2


∗

 =

°°°°°
Ã

 (
)

 ()0

!
[ −P]−

Ã
 (0)

 (0)
0

!£
 −P0¤°°°°° .

By construction  → 0 , and

Ã
 (

)

0
1:(−1)

!
 = 0 hold. Note also that

Ã
 (

)

 ()0

!
 ≥ 0 holds

for all large  since, for ()0, an arbitrary row vector of

Ã
 ()

 ()0

!
, we have

()0 =
1°°[ −P]
£
01 + 

¤°° ©()0 [ −P] 01 + ()0 [ −P] 
ª

=
1°°[ −P]
£
01 + 

¤°°
( ¡

()0 [ −P]− (0)
0 £ −P0¤¢ 0

+()0 [ −P] 

)
≥ 1°°[ −P]

£
01 + 

¤°° ©− °°0°°+ ()0 [ −P] 
ª

=
°°[ −P]
£
01 + 

¤°° ©()0 [ −P]  − 1ª ,
where the last expression is nonnegative for all large  provided that ()0 [ −P]  converges

to (0)
0 £ −P0¤   0. Hence, 

1: =
h

1:(−1) 




i
∈ Q1:(| ) holds and we conclude

Q1:(| ) is lsc at  = 0.

The impulse response identified set can be seen as a product correspondence in the form of

(| ) ≡ (Q1:(| )) ≡
©
̃()

0 : 1: ∈ Q1:(| )
ª
.

Following the same argument as in the proof of Lemma 3 (iv) of Moon et al (2013), we conclude

(| ) is a continuous correspondence at  = 0.
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