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Abstract

This paper studies simultaneous equations models for two or more discrete outcomes. These

models may be incoherent, delivering no values of the outcomes at certain values of the latent

variables and covariates, and they may be incomplete, delivering more than one value of the

outcomes at certain values of the covariates and latent variates. We revisit previous approaches

to the problems of incompleteness and incoherence in such models, and we propose a new

approach for dealing with these. For each approach, we use random set theory to characterize

sharp identification regions for the marginal distribution of latent variables and the structural

function relating outcomes to covariates, illustrating the relative identifying power and tradeoffs

of the different approaches. We show that these identified sets are characterized by systems of

conditional moment equalities and inequalities, and we provide a generically applicable algorithm

for constructing these. We demonstrate these results for the simultaneous equations model for

binary outcomes studied in for example Heckman (1978) and Tamer (2003) and the triangular

model with a discrete endogenous variable studied in Chesher (2005) and Jun, Pinkse, and Xu

(2011) as illustrative examples.
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1 Introduction

In this paper we consider the identifying power of simultaneous equations models in which endoge-

nous variables, Y , are all discrete. The models involve covariates Z and latent variables U which are

restricted to be stochastically independently distributed. The variables Y , Z and U , with support

Y,Z,U , respectively, may have any finite dimension.

The model imposes the structural relation

h(Y, Z, U) = 0, (1.1)

which delivers a set of values of Y at each value (z, u) of (Z,U),

Y (z, u;h) ≡ {y : h(y, z, u) = 0}.

The econometrician observes realizations (y, z) of the random vectors (Y,Z) such that y ∈ Y (z, u;h)

when this set is nonempty When there are values of (z, u) for which Y (z, u;h) has more than one

element, multiple outcomes are feasible, and the structural relation h is incomplete. When there

are values of (z, u) for which Y (z, u;h) is empty, h is incoherent. For example, h(y, z, u) = 0 could

be a set of conditions that characterize equilibrium behavior in a model of a game, and for certain

(z, u) there could be multiple equilibria, a unique equilibrium, or no equilibrium.

Models that allow for Y (z, u;h) to be non-singleton are known to pose significant challenges for

identification. The main challenge is the question of how the outcome Y is determined when the

model is not guaranteed to deliver a unique y for every possible (z, u). We consider four distinct

possibilities regarding the determination of Y in such cases, which in turn provide four distinct

approaches for obtaining set identification of (h,GU ), where GU is the marginal distribution of U .

The first approach applies to settings where a null outcome is observed when the realization of (Z,U)

gives no solution for Y . Although perhaps of limited practical applicability, this approach provides

a useful backdrop for analysis of settings where null outcomes are never observed. The second

approach, which is new to this paper, and the third approach both deal with multiple feasible

outcomes (i.e. incompleteness) in the same way as the recent literature on set identification in

models with multiple equilibria, but differ in the way they deal with the case where the set Y(Z,U ;h)

is empty.1 For each approach, we use random set theory to obtain a sharp characterization of the

identified set. Thus, in addition to introducing a new approach for dealing simultaneously with

incoherence and incompleteness, a goal of our identification analysis is to illuminate the relationship

between different approaches by analyzing each of them under the common framework of random

set theory.

1Specifically, the second and third approaches deal with incompleteness by allowing any of the multiple solutions
to obtain, as in e.g. Tamer (2003), Andrews, Berry, and Jia (2004), Aradillas-Lopez and Tamer (2008), Beresteanu,
Molchanov, and Molinari (2011), Galichon and Henry (2011), and Kline and Tamer (2012)
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Table 1: A summary of the determination of outcome Y for the approaches of section 3 when the
model delivers no or multiple solutions.

Restrictions for the determination of Y when:
Y(Z,U ;h) = ∅ (no solution) #Y(Z,U ;h) ≥ 2 (multiple solutions)

Approach 1: Y = ϕ Y ∈ Y(Z,U ;h)
Approach 2: not observed Y ∈ Y(Z,U ;h)
Approach 3: Y ∈ Y Y ∈ Y(Z,U ;h)
Approach 4: not observed not observed

As in the recent literature, our general characterizations of identified sets across the different

approaches take the form of conditional moment inequalities. We show that within the context of

any particular model, some of these conditional moment inequalities can be combined to yield con-

ditional moment equalities. Thus our characterizations are in fact collections of moment equalities

and inequalities, and we provide an algorithm to collect the model’s implied moment restrictions.

The moment equalities correspond to well known probabilities of observable events in the simulta-

neous binary game studied by e.g. Bresnahan and Reiss (1991) and Tamer (2003), but our approach

for detecting when inequalities may be strengthened to equalities applies more broadly. When ap-

plied to complete models, our characterization reduces to just a set of moment equalities, which

coincide with the usual likelihood expressions if the model is fully parametric.

1.1 Approaches for Incompleteness and Incoherence

We now briefly discuss a variety of approaches to the problems of incompleteness and incoherence,

beginning with the four that we formally investigate in Section 3, whose distinguishing features are

summarized in Table 1 for convenience.

The first approach we consider assumes that if the set Y(z, u;h) is empty then this event is

recorded as Y = ϕ. So either a single value of Y is observed, or, it is observed that the process

delivers no value of Y . This approach effectively treats these observations as data with censored

outcomes. In this situation the probability distribution of Y given Z = z has mass one on the

extended support Y∗≡ Y ∪ {ϕ}. While there are relatively few applications in which null outcomes

are recorded, it is useful to study this case because it illuminates the issues posed by incoherence

in the more commonly encountered situations in which null outcomes are not recorded.

The second approach is closely related, but like the rest of those we consider, does not require

that null outcomes are recorded. Rather it takes the structural relation (1.1) as correct, and applies

the logic that data where some outcome is always observed cannot have been generated by values of

the unobservable that result in the feasible outcome set Y(Z,U ;h) being empty, as then (1.1) would

not hold. Following this logic, the distribution of observables is effectively treated as a truncated

version of the distribution generated by GU and the structural relation (1.1).
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The third approach, previously considered by Beresteanu, Molchanov, and Molinari (2011),

effectively takes an “anything goes” approach to emptiness of the feasible outcome set Y(Z,U ;h).2

Like the first two approaches, when Y(Z,U ;h) is non-empty, Y ∈ Y(Z,U ;h) is assumed, while if

Y(Z,U ;h) is empty all that is assumed is that Y ∈ Y. The underlying reasoning is that when the

model delivers an outcome set, or multiple equilibria, one of these occurs, but if the model delivers

no feasible outcomes, i.e. no equilibria, then the model is completely silent as to how the outcome

is determined and anything is possible.

The fourth approach was previously considered by Dagenais (1997) and Hajivassiliou (2008). It

stipulates that the distribution of observables corresponds only to that subset of the sample space

where the outcome is uniquely determined, i.e. where the set Y(Z,U ;h) is singleton. Here the

distribution of observables is given by the truncated distribution corresponding to this subset of

the sample space. This restriction effectively renders the model both coherent and complete, and

allows for construction of a likelihood function if the model is fully parametric.

In some earlier studies incompleteness and incoherence have been treated by restricting the space

of admissible structural relations in a way that guarantees that the outcome set Y(Z,U ;h) is unique.

Like the approach of Dagenais (1997) and Hajivassiliou (2008), this effectively transforms the model

into one that is both complete and coherent, and thus enables the use of maximum likelihood in

fully parametric models, but instead achieves this aim through restrictions on h. Related conditions

are imposed by Amemiya (1974) in a class of simultaneous Tobit models. Similarly, Gourieroux,

Laffont, and Monfort (1980) and Blundell and Smith (1994) impose coherency conditions in their

analysis of simultaneous equations regime-switching models and simultaneous equations models of

qualitative or censored outcomes, respectively. For a more thorough review of this approach in a

variety of models see e.g. Schmidt (1981) and Maddala (1983).

Other approaches to completing incomplete models include redefining the outcome variable

or specifying a selection mechanism among multiple potential outcomes. In simultaneous binary

response models of firm entry, Bresnahan and Reiss (1990, 1991) circumvent problems posed by

incompleteness by exploiting the observation that their model uniquely determines the number of

entrants. Bjorn and Vuong (1984) and Kooreman (1994) augment models which are incomplete by

specifying that whenever Y(Z,U ;h) contains more than one outcome, one of these is selected with

fixed probability, which is then taken as a parameter to be estimated. More recently Bajari, Hong,

and Ryan (2010) illustrate how to incorporate more complex equilibrium selection mechanisms into

general discrete games of complete information. These approaches all yield specifications of the

structural relation that result in a model that is complete and coherent. We show in Section 5

how our characterizations of the identified set apply in such contexts, reducing to a set of moment

equalities, which coincide with the usual likelihood expressions if the model is fully parametric. An

alternative approach to incoherence, but which allows for incompleteness, is to choose a sufficiently

2See Section D of the on-line Supplementary Appendix to Beresteanu, Molchanov, and Molinari (2011).

4



flexible solution concept, for example by assuming that strategies are rationalizable as in Aradillas-

Lopez and Tamer (2008), or by allowing mixed strategies as in Beresteanu, Molchanov, and Molinari

(2012). We do not explicitly consider the implications of mixed or rationalizable strategies, though

these could be allowed in our setup through modification of the structural relation h.

We characterize the identified set delivered by the different approaches through a collection of

conditional containment functional inequalities of the form

G̃U (S;h, z) ≥ CT (Y,Z;h) (S|z) , a.e. z ∈ Z, (**)

for some collection of sets S ⊆ U . Here CT (Y,Z;h) (S|z) is the conditional containment functional

of a random set T (Y, Z;h), a set of values for the unobservables U . This set, and hence its

containment functional, varies with the structural relation h under consideration, and with what

is assumed about the realization of Y when Y(Z,U ;h) is non-singleton. Thus it differs across the

different approaches outlined above and considered formally in Section 3, but for each of them,

and for every (h, z), is identified from knowledge of the joint distribution of (Y, Z). The quantity

on the left hand side, G̃U (·;h, z), as a function of S ⊆ U is for each (h, z) a probability measure

on (U ,B (U)), where B (U) denotes the Borel sets on U . It can also vary across the different

approaches in Section 3, and with (h, z), but not with the distribution of observables. It is a known

functional of GU . In fully parametric models it is either known by assumption, or known up to a

finite dimensional parameter vector, for example when U is assumed multivariate normal.

1.2 Definitions of Complete and Coherent Functions and Models

To enable further discussion of these issues, we classify structural relations h as follows:

• h is complete if for almost every (z, u) ∈ Z ×U the set Y(z, u;h) has cardinality no greater

than one.

• h is incomplete if for some positive measure set of values of (z, u) ∈ Z ×U the set Y(z, u;h)

has cardinality exceeding one.

• h is coherent if for almost every (z, u) ∈ Z × U the set Y(z, u;h) is non-empty.

• h is incoherent if for some positive measure set of values of (z, u) ∈ Z ×U the set Y(z, u;h)

is empty.

Any structural relation h is necessarily either coherent or incoherent, and either complete or in-

complete, and can be any of the four combinations of these.

A model comprises a collection of admissible structural relations H and conditional probability

measures for U given Z, denoted
{
GU |Z (·|z) , z ∈ Z

}
. We use the following terminology regarding

the classification of models according to the set of structural relations admitted:
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• A model is complete if every h ∈ H is complete.

• A model is incomplete if there is at least one h ∈ H that is incomplete.

• A model is coherent if every h ∈ H is coherent.

• A model is incoherent if there is at least one h ∈ H that is incoherent.

• A model is proper if it both coherent and complete.

A model can therefore include structural relations h which fall into any or all of the four possi-

ble combinations of coherence and completeness. Particular structures admitted by an incoherent

model may be coherent and particular structures permitted by an incomplete model may be com-

plete. Our identification results deliver an identified set D0(Z) of structural relations h, paired

with distributions of unobservables.

Our terminology and classification of models follows that of Tamer (2003) and Lewbel (2007) in

distinguishing between incoherent and incomplete models. Some earlier papers in the literature, e.g.

Gourieroux, Laffont, and Monfort (1980) and Blundell and Smith (1994) use incoherence to mean

either incoherence or incompleteness as we have defined them. This alternative definition renders

coherence equivalent to the existence of a unique reduced form, as lucidly described by Lewbel

(2007), and is also equivalent to our definition of proper. Many models encountered in econometrics

are proper, and these allow direct derivation of the conditional distribution of outcomes given

covariates from the conditional distribution of latent variables given covariates. Thus, in fully

parametric models, these can allow for estimation by maximum likelihood.

1.3 Outline of the Paper

In Section 2 we formally lay out the restrictions of our model, absent assumptions regarding the

determination of outcomes when there is the possibility of null outcome sets due to incoherence. We

also provide two examples of simultaneous equations binary outcome models, which we refer back

to extensively in the paper to illustrate key points. In Section 3 we describe the different approaches

to incompleteness and incoherence studied, including what is assumed for the determination of Y

when h (y, Z, U) = 0 holds for no y ∈ Y. For each approach we provide a formal characterization of

the identified set.3 These characterizations apply quite generally to simultaneous discrete outcome

models, but each entail a collection of conditional moment inequalities of the same cardinality as

the set of closed subsets of U . In Section 4 we show that in the context of any particular model,

this characterization can be reduced to a much smaller number of conditional moment inequalities.

This is done through the notion of core-determining sets, defined by Galichon and Henry (2011).

3By “identified set” we mean the set of pairs of structural functions and distributions of unobserved heterogeneity
(h,GU ) ∈ H × GU that can possibly generate the conditional distributions of Y given Z = z for almost every z on
the support of Z. That is, these sets constitute sharp bounds for (h,GU ).
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We further show that some of these inequalities may in fact be strengthened to equalities, and

we provide an algorithm for obtaining the resulting system of conditional moment equalities and

inequalities that characterize the identified set. The analysis of this section applies to all four of the

approaches laid out in Section 3. In Section 5 we show how our characterizations for the identified

set simplify when the model is complete, producing a set of only conditional moment equalities,

which coincide with the usual likelihood expressions if the model is fully parametric. All proofs are

collected in the Appendix.

2 An Incoherent and Incomplete Discrete Outcome Model

We study models that incorporate the following restrictions:

Restriction A1: (Y,Z, U) are defined on a probability space (Ω,F ,P), endowed with the Borel

sets on Ω. The support of Y , denoted Y ⊆ RNY , is countable, and the support of (U,Z) is

U × Z ⊆ RNU × RNZ .

Restriction A2: For each value z ∈ Z there is a proper conditional mass function for Y given

Z = z, denoted f0
Y |Z (·|Z = z), the collection of which is denoted {f0

Y |Z ,Z} These conditional mass

functions are identified by the sampling process.

Restriction A3: If Y(Z,U ;h) ̸= ∅, then (Y, Z, U) satisfies h(Y,Z, U) = 0. The function h (·, ·, ·) :
Y × Z × U → R belongs to a known class of functions H.

Restriction A4: U is marginally distributed according to probability measure GU on (U ,B (U)),
where B (U) denotes the Borel sets on U . GU is known to belong to some family of probability

measures GU .

Restriction A5: U and Z are stochastically independent.

Restriction A1 is standard. Restriction A2 stipulates that the conditional distribution of Y

given Z = z is identified for all z ∈ Z. This holds under random sampling, but can also hold

in other contexts. Restriction A3 imposes the model specification h(Y,Z, U) = 0, and addition-

ally stipulates that the structural relation h belongs to some family of functions H. In principal

this class of functions could be parametrically, semiparametrically, or nonparametrically specified.

Restriction A4 specifies that the measure GU belongs to some class of probability measures GU

Thus GU (S) denotes the probability of the event {U ∈ S}. Likewise, we use GU |Z (S|z) to denote

the probability of this event conditional on Z = z for any z ∈ Z. Like the family of structural

relations H, the class of probability measures GU could be parametrically, semiparametrically, or

nonparametrically specified. Restriction A5 formally states the instrumental variable restriction

we impose throughout. Under this restriction GU (S) = GU |Z (S|z) for all S ⊆ U and z ∈ Z, but

in some places it will be useful to use GU |Z (·|z) explicitly in the derivation of our results.

It is important to note that Restriction A3 is silent as to the realization of Y when the set

Y(Z,U ;h) = ∅, i.e. when the structural relation h(Y,Z, U) = 0 holds for no y ∈ Y. This is relevant
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when the model is incoherent. The approaches in Section 3 differ in what is assumed about the

realization of Y in this case. For each approach we explicitly provide an additional restriction on

the determination of Y when Y(Z,U ;h) = ∅, which in some cases requires extending the definition

of the structural relation h (y, z, u). In our various treatments of incoherent models below we will

be precise about the implied relationship between the population probabilities {P[·|Z = z], z ∈ Z}
and the identified quantities {f0

Y |Z ,Z}.
Before proceeding to identification analysis we provide two benchmark examples of models in

the literature to which our analysis applies. Both models comprise multiple equation specifications

for a bivariate binary outcome variable. While two equation systems of binary outcomes constitute

the simplest incarnation of the class of models we study, our analysis applies more generally to

models with any finite number of binary or non-binary discrete outcomes, such as for example

those considered by Andrews, Berry, and Jia (2004), Ciliberto and Tamer (2009), Engers and Stern

(2002), and Jovanovic (1989). In subsequent sections of the paper we refer back to the examples

below to help illustrate the various approaches we consider.

Example 1: A Simultaneous Equations Model for Binary Outcomes:

Our first example is the simultaneous binary response model previously considered by Heckman

(1978), Bresnahan and Reiss (1990,1991), and Tamer (2003), among others. This model has received

much attention in the literature and as such provides a familiar setting in which to illustrate key

concepts. The model is given by

Y1 = 1 [Z1β1 + Y2δ1 + U1 > 0] , (2.1)

Y2 = 1 [Z2β2 + Y1δ2 + U2 > 0] , (2.2)

where Y ≡ (Y1, Y2), (Y, Z) ∈ Y × Z are observable, and U = (U1, U2) is an unobservable 2-vector

in R2. Typically in the prior literature U has been assumed to be normally distributed with mean

zero and unknown covariance matrix Σ, with Σ11 diagonal elements normalized to one.

To write the model in the form of (1.1), one can use any structural relation h (y, z, u) that takes

value zero if and only if (2.1) and (2.2) are satisfied, for example,

h (Y, Z, U) =

{
Y1 · |Z1β1 + Y2δ1 + U1|− + (1− Y1) · |Z1β1 + Y2δ1 + U1|+
+Y2 · |Z2β2 + Y1δ2 + U2|− + (1− Y2) · |Z2β2 + Y1δ2 + U2|+

}
,

where |x|− and |x|+ denote the negative and positive part of x, respectively. Here the structural

relation h is known up to the finite dimensional parameter vector θ ≡
(
β′
1, δ1, β

′
2, δ2

)′
.

Whether the function h is incomplete or incoherent depends on the sign of the product of

interaction terms δ1 · δ2. The top panels of Figure 1 illustrates the case for a particular z and θ

where δ1 · δ2 > 0, with dark blue regions indicating values of u that entail multiple solutions. In

the first panel, where δ1, δ2 < 0, the solution set is Y(z, u;h) = {(0, 1) , (1, 0)} whenever u belongs

8



to the rectangle (−z1β1,−z1β1 − δ1]× (−z2β2,−z2β2 − δ2]. For all u outside this rectangle, there

is a unique solution. The second panel depicts the case where δ1, δ2 > 0. In this case the solution

set is Y(z, u;h) = {(0, 0) , (1, 1)} whenever u ∈ (−z1β1 − δ1,−z1β1]× (−z2β2 − δ2,−z2β2]. For all

other u there is a unique solution for y. In these cases h is thus coherent but incomplete.

The two bottom panels in the figure illustrate the cases in which δ1 · δ2 < 0. In each of these

cases there is no solution for (y1, y2) whenever u belongs to the middle unshaded region. In the case

where δ1 > 0 and δ2 < 0, this region is given by the set of u satisfying −z1β1 − δ1 < u1 ≤ −z1β1

and −z2β2 ≤ u2 ≤ −z2β2− δ2. When u lies in this rectangle, y1 = 1 solves (2.1) only if y2 = 0, but

y2 = 0 solves (2.2) only if y1 = 0. When δ1 < 0 and δ2 > 0, the situation is symmetrical, with no

solution for (y1, y2) when −z1β1 < u1 ≤ −z1β1 − δ1 and −z2β2 − δ2 < u2 ≤ −z2β2. In both cases

with δ1 ·δ2 < 0 there are no regions where multiple solutions to (2.1) and (2.2) are admitted, so such

structural relations are incoherent but not incomplete. The model however may be both incoherent

and incomplete, as long as the sign of δ1 ·δ2 is not restricted a priori. Other simultaneous equations

models for discrete outcomes may admit functions h that are both incomplete and incoherent,

for example in simultaneous equations models with more than two binary endogenous outcome

variables, such as that of Ciliberto and Tamer (2009). �
Example 2: A Triangular Model for Binary Outcomes: Consider the triangular simultane-

ous equations model

Y1 = g1 (Y2, Z1, U1) ,

Y2 = g2 (Z2, U2) ,

with Y1 again binary and Y2 a discrete, ordered outcome, where g1 and g2 are weakly increasing in

scalar unobservables U1 and U2, respectively. With (U1, U2) and Z independent and with suitable

normalizations, but without further parametric structure on functional forms, g2 is point identified

while g1 may only be set identified, see Chesher (2005) and Jun, Pinkse, and Xu (2011). The model

may be written in the form of (1.1), for example as

h (Y, Z, U) = (Y1 − g1 (Y2, U1))
2 + (Y2 − g2 (Z,U2))

2 .

A special case is that where Y1 and Y2 are both binary, and where the functions g1 and g2 are

restricted to have the linear threshold-crossing representation:

g1 (Y2, Z1, U1) = 1 [Z1β1 + Y2δ1 + U1 > 0] , (2.3)

g2 (Z2, U2) = 1 [Z2β2 + U2 > 0] . (2.4)

Like our first example, this system is an instance of Heckman’s (1978) Multivariate Probit Model

with Structural Shift. The added restriction, relative to example 1, that δ2 = 0 guarantees that
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Heckman’s principal assumption holds, and hence that the model is both complete and coherent,

and therefore proper. Heckman (1978) provides conditions under which there is point identification

when (U1, U2) are bivariate normally distributed, and provides a likelihood-based estimation pro-

cedure. Note however that without the assumption of bivariate normal errors, the model remains

proper, though this alone does not guarantee point identification. In Section 5 we show how in

such cases the approaches of this paper reduce to the classical treatment of this model, produc-

ing moment equalities that correspond precisely to likelihood equations when the distribution is

parametrically specified. �

3 Identification

In this section we consider four different approaches to the analysis of incoherent and incomplete

models. The first three approaches deal with incompleteness in the same way as the recent

literature on set identification in incomplete models. That is, the observed outcome is permitted

to be any one of the set of outcomes compatible with an incomplete structural relation. These

approaches differ however in how they handle the event Y(Z,U ;h) = ∅ when the structural relation

is incoherent. The fourth approach, proposed by Dagenais (1997) and Hajivassiliou (2008), treats

incoherence and incompleteness identically in a way that enables construction of a unique likelihood

function. The properties of all four approach are summarized in Table 1.

In our first approach we assume that null outcomes are directly observed, much as censored

outcomes in models of censoring. Data often include no observations with “null” outcomes, for

example in the analysis of market structure, one never observes markets in which the market

configuration is null or empty.4 Nonetheless, this setting provides an instructive precursor to the

rest of the approaches we consider, all of which propose alternative methods to deal with incoherence

in settings where null outcomes are never observed.

Our goal throughout is (set) identification of the pair (h,GU ). To this end we define the zero

level sets of the structural relation h as follows:

∀y ∈ Y, L(y, z;h) ≡ {u : y ∈ Y(z, u;h)} = {u : h(y, z, u) = 0} , (3.1)

and sets on which h(y, z, u) = 0 has no solution as

L(∅, z;h) ≡ {u : Y(z, u;h) = ∅} = {u : ∀y ∈ Y, h(y, z, u) ̸= 0} , (3.2)

where ∅ denotes the null or empty set.

In the following analysis we work with random sets T (Y, Z;h), which are constructed through

4A null outcome should not be confused with one in which no firm enters, in which case the outcome is the zero
vector.
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combinations of set theoretic operations applied to the level sets L(Y, Z;h). The definition and

indeed support of the random sets T (Y, Z;h) varies with the different approaches below, as well

as the structural relation h under consideration. In each case, T (·, ·;h) : Y × Z → U comprises

the set of values of the unobservable U that are feasible given arguments (y, z). Applying the

correspondence T (·, ·;h) to random arguments Y and Z, we have the random set T (Y, Z;h). For

any z ∈ Z, the distribution of this random set conditional on Z = z is completely characterized by

its conditional containment functional CT (Y,Z;h) (·|z) : 2U → [0, 1], defined as

CT (Y,Z;h) (S|z) ≡ P {T (Y, Z;h) ⊆ S|Z = z} , (3.3)

for any S ⊆ U .
The conditional moment inequalities used in our characterizations are all of the form

G̃U (S;h, z) ≥ CT (Y,Z;h) (S|z) , a.e. z ∈ Z, (3.4)

for all closed S ⊆ U , where G̃U (·;h, z) is a probability measure on (U ,B (U)). Both G̃U (S;h, z)
and CT (Y,Z;h) (S|z) vary across the different approaches. The theorems of this section apply rather

generally to any simultaneous discrete choice model that satisfies our restrictions. In the next section

we show that in the context of any particular model we can reduce this characterization to a subset

of these inequalities by showing it suffices to consider a collection of regions S in (3.4), that is

much smaller than the collection of all closed subsets of U . These are “core-determining” sets as

in Galichon and Henry (2011). We further provide conditions whereby some of these inequalities

reduce to equalities.

In studying these characterizations it is important to understand that the containment func-

tional in (3.4) may vary with z because (i) as z varies the conditional distribution f0
Y |Z (·|z) may

vary and (ii) as z varies the conditional support of the random set T (Y, Z;h) may vary. As a result

the identified set D0(Z) is critically dependent on the support of Z.

3.1 Approach 1: Observed Null Outcomes

This approach requires that when the realizations of (Z,U) are such that no outcome y satisfies

h (y, Z, U) = 0, this event is observed. We use ϕ as a place-holder for the “null” realization that Y

takes when Y(Z,U ;h) = ∅. Thus we have

{Y = ϕ} ⇔ {Y(Z,U ;h) = ∅} ⇔ {U ∈ L(∅, z;h)} . (3.5)

and for all z ∈ Z, P[Y(Z,U ;h) = ∅|Z = z] = P[Y = ϕ|Z = z]. The probability allocated by

P {·|Z = z} over the extended support Y∗ ≡ Y ∪ ϕ is one. With the event {Y = ϕ} observed,

P {Y = y|Z = z} = f0
Y |Z (y|z) is identified for all Y ∈ Y∗ and almost every z ∈ Z.
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To capture the knowledge that observation of Y = ϕ is logically equivalent to U ∈ L(∅, z;h),
we expand the definition of the structural relation h (·, ·, ·) to cover the extended support Y∗ with

the following restriction.

Restriction B1 (Censored Null Outcomes): The outcome variable Y has support Y∗, and

there is the equivalence of events {U ∈ L(∅, Z;h)} ⇔ {Y = ϕ}. Furthermore, for any (z, u) ∈ Z×U ,
h (ϕ, z, u) = 0 if for all y ∈ Y, h(y, z, u) ̸= 0, and h (ϕ, z, u) ̸= 0 if h(y, z, u) = 0 for some y ∈ Y.

Under Restriction B1, h(ϕ, z, u) = 0 precisely when h(y, z, u) = 0 is solved by no y ∈ Y.

Therefore {Y = ϕ} implies that h(ϕ,Z, U) = 0, and taken together with Restriction A3 this implies

that U ∈ T1(Y, Z;h) for all (Y, Z, U), where the random set T1(Y,Z;h) is defined simply as

T1(Y,Z;h) ≡ L(Y, Z;h), (3.6)

for all (Y, Z, h) ∈ Y∗ ×Z ×H.

Because the event {Y = y ∧ Z = z} implies that U ∈ T1(y, z;h), any structural relation h and

collection of conditional measures
{
GU |Z , z ∈ Z

}
that can generate {f0

Y |Z ,Z} must satisfy for all

y ∈ Y∗,

GU |Z(T1 (y, z;h) |z) ≥ f0
Y |Z (y|z) , a.e. z ∈ Z. (3.7)

It follows that for any set S ⊆ U ,

GU |Z(S|z) ≥
∑
y∈Y∗

1[T1(y, z;h) ⊆ S]× f0
Y |Z (y|z) , a.e. z ∈ Z. (3.8)

Under the independence restriction U ∥ Z this simplifies to

GU (S) ≥
∑
y∈Y∗

1[T1(y, z;h) ⊆ S]× f0
Y |Z (y|z) , a.e. z ∈ Z, (3.9)

for all S ⊆ U . The left hand side does not depend on z so that for each h ∈ H only the largest

value of the summation on the right hand side is relevant. The quantity on the right of (3.9) is the

conditional (on Z = z) containment functional of the random set T1(Y, Z;h),

CT1(Y,Z;h) (S|z) ≡
∑
y∈Y∗

1[T1(y, z;h) ⊆ S]× f0
Y |Z (y|z) , (3.10)

which for any h ∈ H and z ∈ Z maps sets S ⊆ U to the unit interval, and is identified from

knowledge of {f0
Y |Z ,Z}.

This delivers the following system of inequalities.

∀S ⊆ U , GU (S) ≥ sup
z∈Z

CT1(Y,Z;h) (S|z) , (3.11)
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which is equivalent to (**) with G̃U (S;h, z) = GU (S). As we establish in the following theorem,

the pairs of (h,GU ) that satisfy this system of inequalities can generate the family of distributions

{f0
Y |Z ,Z}, so these pairs comprise the identified set.

Theorem 1 Let Restrictions A1-A5 and B1 hold. Then the identified set of admissible pairs

(h,GU ) associated with
{
f0
Y |Z ,Z

}
is

D0(Z) ≡
{
(h,GU ) ∈ H×GU : ∀S ∈ F (U) , GU (S) ≥ CT1(Y,Z;h) (S|z) , a.e. z ∈ Z

}
,

where F (U) denotes the set of all closed subsets of U .

The theorem establishes that D0(Z) is the identified set for (h,GU ) from knowledge of {f0
Y |Z ,Z}.

The proof of this and the analogous theorems for subsequent approaches in this section are based

on a key result from random set theory, namely Artstein’s inequality (Artstein (1983)) that char-

acterizes the selections of a random set through inequalities based on its associated capacity or

containment functional. This and related results have been previously used to establish sharp

bounds for the parameters of econometric models by Beresteanu, Molinari, and Molchanov (2011a,

2011b), Galichon and Henry (2011), and Chesher, Rosen, and Smolinski (2011). In our model this

characterization guarantees that, up to an ordered coupling, we can find for any (h,GU ) ∈ D0(Z)

a random vector Ũ that is (i) compatible with our restrictions and that (ii) delivers the observed

distribution of the data conditional on almost every z ∈ Z. Thus, for any (h,GU ) ∈ D0(Z), Restric-

tions A1-A5 and B1 are satisfied and the implied conditional distribution of Y |Z = z corresponds

to that given by the conditional mass function f0
Y |Z (·|Z = z), a.e. z ∈ Z.

Example 1 (continued): In the context of the simultaneous binary model, observability of the

event {Y = ϕ} trivially allows one to detect whether the structural relation h is incoherent according

to whether f0
Y (ϕ) > 0, and hence to infer the sign of δ1 × δ2. If f0

Y (ϕ) = 0 then the situation

is that depicted in one of the top two panels, so that the model is coherent but incomplete. If

instead f0
Y (ϕ) > 0 then h is incoherent but complete. In both cases the support of the random set

T1(Y,Z;h) conditional on Z = z is the collection of regions:

T1((0, 0) , z;h) = {u ∈ U : u1 ≤ −z1β1 ∧ u2 ≤ −z2β2} , (3.12)

T1 ((0, 1) , z;h) = {u ∈ U : u1 ≤ −z1β1 − δ1 ∧ u2 > −z2β2} ,

T1 ((1, 0) , z;h) = {u ∈ U : u1 > −z1β1 ∧ u2 ≤ −z2β2 − δ2} ,

T1 ((1, 1) , z;h) = {u ∈ U : u1 > −z1β1 − δ1 ∧ u2 > −z2β2 − δ2} ,

T1 (∅, z;h) =

{
u ∈ U :

{
{−z1β1 < u1 < −z1β1 − δ1 ∧ −z2β2 − δ2 < u2 < −z2β2}

∨ {−z1β1 − δ1 < u1 < −z1β1 ∧ −z2β2 < u2 < −z2β2 − δ2}

}}
.

These sets correspond precisely to the regions L(Y, z;h) shown in Figure 1. Application of Theorem
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1 then gives that for all closed S ⊆ U

GU (S) ≥ sup
z∈Z

CT1(Y,Z;h) (S|z) ,

if and only if (h,GU ) is in the identified set. �

3.2 Approach 2: Truncation of Null Outcomes

Suppose now and for all remaining approaches that the model is incoherent but null outcomes

are never observed. One may reason that observations of (Y,Z) must therefore correspond to

realizations of (Z,U) such that Y(Z,U ;h) is non-empty, even if the model allows Y(z, u;h) =

∅. Taking the structural relation h(Y,Z, U) = 0 at face value, a realization of (Z,U) such that

Y(z, u;h) = ∅ then could not have resulted in the observed Y . For example, in a study of firm

entry into markets one will never observe a market in which the “the empty set” obtains. In any

observed market a non-null outcome will be found, e.g. (0, 0) in a binary entry model in which

neither firm enters. This is formalized with the following restriction.

Restriction B2 (Truncated Null Outcomes): Only realizations of (Y, Z) = (y, z) that satisfy

y ∈ Y(z, U ;h) are observed and thus for each z ∈ Z, the distribution of Y conditional on Z = z

identified by the distribution of the data is that of Y | {Z = z ∧ Y(Z,U ;h) ̸= ∅}.

Under Restriction B2, data are drawn from the subset of the sample space in which Y(Z,U ;h)

is non-empty, since null outcomes are never observed. Considering incoherence in this way is

akin to assuming that the distribution of observable data is a truncated version of the underlying

population distribution. Under this restriction the probability mass functions {f0
Y |Z ,Z} correspond

to the distribution of U over the support U \L(∅, z;h) so that for all y ∈ Y,

f0
Y |Z (y|z) = P[Y = y|L(Y, z;h) ̸= ∅, Z = z], a.e. z ∈ Z. (3.13)

Observation of (Y,Z) implies that U ∈ T2 (Y, Z;h) where

T2 (Y,Z;h) ≡ L (Y, Z;h) , (3.14)

which is identical to the definition of T1 (Y, Z;h) in Section 3.1, but now Y = ϕ is never observed

and f0
Y |Z (·|z) assigns unit mass to Y.

Although the truncation probability is not observed in the data, it is a known function of

(h,GU ), namely

GU |Z (L(∅, z;h)|z) = P[Y(Z,U ;h) = ∅|Z = z]. (3.15)
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Starting with (3.13) we then have for all y ∈ Y

f0
Y |Z (y|z) = P[Y = y|Y(Z,U ;h) ̸= ∅, Z = z]

=
P[Y = y ∧ Y(Z,U ;h) ̸= ∅|Z = z]

P[Y(Z,U ;h) ̸= ∅|Z = z]

=
P[Y = y|Z = z]

1−GU |Z (L(∅, z;h)|z)
, (3.16)

where the third line follows because Y = y ⇒ Y(Z,U ;h) ̸= ∅, and by (3.15).

Combining U ∈ T2(y, z;h) with (3.15) we have that for all y ∈ Y and almost every z ∈ Z,

GU |Z (T2(y, z;h)|z) ≥ P[Y = y|Z = z] =
[
1−GU |Z (L(∅, z;h)|z)

]
· f0

Y |Z (y|z) .

Then, using the independence condition U ∥ Z it follows that

GU (T2(y, z;h)) ≥ [1−GU (L(∅, z;h))] · f0
Y |Z (y|z) ,

and dividing through by
[
1−GU |Z (L(∅, z;h))

]
,

GU (T2(y, z;h)|Y(z, U ;h) ̸= ∅) ≥ f0
Y |Z (y|z) . (3.17)

Consequently, for any S ⊆ U ,

GU (S|Y(z, U ;h) ̸= ∅) ≥

∑
y∈Y

1[T2(y, z;h) ⊆ S]f0
Y |Z (y|z)

 = CT2(Y,Z;h) (S|z) ,

where GU (S|Y(z, U ;h) ̸= ∅) is the conditional probability that U ∈ S given Y(z, U ;h) ̸= ∅. The

quantity on the right, CT2(Y,Z;h) (S|z), is the conditional containment functional of T2 (Y, Z;h).

Thus, this inequality is precisely (**) with G̃U (S;h, z) = GU (S|Y(z, U ;h) ̸= ∅). Indeed, the in-

equalities (3.2) taken over all closed sets and almost every z ∈ Z deliver the identified set.

Theorem 2 Let Restrictions A1-A5 and B2 hold. Then the identified set of admissible pairs

(h,GU ) associated with
{
f0
Y |Z ,Z

}
is

D0(Z) ≡
{
(h,GU ) ∈ H×GU : ∀S ∈ F (U) , GU (S|Y(z, U ;h) ̸= ∅) ≥ CT2(Y,Z;h) (S|z) , a.e. z ∈ Z

}
,

where F (U) denotes the set of all closed subsets of U .

Example 1 (continued): Using this approach can only be justified if the event {Y = ϕ} is never

recorded. The support of the random set T2(Y, Z;h) conditional on Z = z is identical to that for

T2(Y,Z;h) of the first approach given in (3.12), but for the exclusion of T1 (∅, z; θ). �
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3.3 Approach 3: Indeterminate Allocation of Null Outcomes

The restriction considered in this section regarding the determination of outcomes when Y(Z,U ;h) =

∅ was previously considered by Beresteanu, Molchanov, and Molinari (2011, on-line supplement p.

53) as their Assumption D.1(ii). The restriction is the following.

Restriction B3 (Anything Goes): If (Z,U) are such that U ∈ L(∅, Z;h), equivalently if

Y(Z,U ;h) = ∅, then any Y ∈ Y is feasible.

Restriction B3 allows for Y to take any realization when (Z,U) have realizations (z, u) such

that there is no y ∈ Y satisfying h (y, z, u) = 0. Combined with Restriction A3, this implies that

when Y(Z,U ;h) is non-empty, then Y ∈ Y(Z,U ;h), while if Y(Z,U ;h) = ∅, then Y can take

any realization on Y. The idea behind the restriction is that Y(Z,U ;h) are the solutions to the

underlying structural model h (Y, Z, U) = 0, for example the set of equilibrium outcomes of a game.

Thus it should be that Y ∈ Y(Z,U ;h). However, when Y(Z,U ;h) = ∅, the model has no solutions,

and is therefore silent as to what outcome will occur, so that any is taken to be feasible.

Here we have that observation of {Y = y ∧ Z = z} implies that U ∈ T3 (y, z;h) , where

T3 (y, z;h) ≡ {u : h(y, z, u) = 0} ∪ {u : Y(z, u;h) = ∅}. (3.18)

This is equivalently captured by imposing that (Y, Z, U) solve

h̃ (y, z, U) = 0, (3.19)

for the modified structural relation

h̃ (y, z, u) ≡ 1 [Y(z, u;h) = ∅]× h(y, z, u), (3.20)

which is zero if Y(z, u;h) is the null set, and h(y, z, u) otherwise. The sets T3 (Y,Z;h) then corre-

spond to the zero level sets of h̃, L
(
Y,Z; h̃

)
.

Using (3.18) we have that for almost every z ∈ Z,

GU |Z(T (Y, Z;h) |z) ≥ f0
Y |Z (y|z) .

Then applying the same logic as in Sections 3.1 and 3.2 and again using the independence Restriction

A5, it follows that any (h,GU ) in the identified set must satisfy

GU (S) ≥ CT3(Y,Z;h) (S|z) , a.e. z ∈ Z,

for any S ∈ U . This is again of the form (**), with G̃U (S;h, z) = GU (S), but with a different

containment functional than in the first two approaches, namely that of T3 (y, z;h). The following
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theorem establishes that this inequality indeed characterizes the identified set.

Theorem 3 Let Restrictions A1-A5 and B3 hold. Then the identified set of admissible pairs

(h,GU ) associated with
{
f0
Y |Z ,Z

}
is

D0(Z) ≡
{
(h,GU ) ∈ H×GU : ∀S ∈ F (U) , GU (S) ≥ CT (Y,Z;h) (S|z) , a.e. z ∈ Z

}
,

where F (U) denotes the set of all closed subsets of U , with h̃ as defined in (3.20).

Example 1 (continued): Like the previous approach this one can only be justified if the event

{Y = ϕ} is never recorded. The support of the random set T3(Y, z;h) for any z ∈ Z is given by

T3((0, 0) , z;h) = {u ∈ U : u1 ≤ −z1β1 ∧ u2 ≤ −z2β2} ∪ L (∅, z;h) , (3.21)

T3 ((0, 1) , z;h) = {u ∈ U : u1 ≤ −z1β1 − δ1 ∧ u2 > −z2β2} ∪ L (∅, z;h) ,

T3 ((1, 0) , z;h) = {u ∈ U : u1 > −z1β1 ∧ u2 ≤ −z2β2 − δ2} ∪ L (∅, z;h) ,

T3 ((1, 1) , z;h) = {u ∈ U : u1 > −z1β1 − δ1 ∧ u2 > −z2β2 − δ2} ∪ L (∅, z;h) .

If δ1δ2 > 0, as illustrated in the top panels of Figure 1, then h is incomplete but coherent so that

L (∅, z;h) = ∅, and these sets correspond precisely to those of the second approach, equivalently the

first four sets listed in (3.12). If instead δ1δ2 < 0, as illustrated in the bottom panels of Figure 1,

then h is complete but incoherent. In these panels L (∅, z;h) is the unshaded region in the center,

and each region T3(y, z;h) is the union of the cyan-shaded region L(y, z;h) with this region. �

3.4 Approach 4: Truncation of Null and Non-Unique Outcomes

In this section we characterize the identified set that results from imposing a restriction previ-

ously considered by Dagenais (1997) and Hajivassiliou (2008). The restriction, formalized below,

effectively removes incoherence and incompleteness from the model by assuming that observations

correspond to the subset of the population distribution on which (Z,U) map to a unique outcome.

Restriction B4 (Truncated Non-Unique Outcomes): Only realizations of (Y,Z) = (y, z) for

which Y(z, U ;h) = {y} are observed. Thus the distribution of Y conditional on Z = z identified

by the distribution of the data is that of Y | {Z = z ∧#Y(z, U ;h) = 1}, where #A denotes the

cardinality of A.

This restriction implies that the family of probability mass functions {f0
Y |Z ,Z} identified from

the data corresponds to

f0
Y |Z (y|z) = P [Y = y|Z = z|#Y(z, U ;h) = 1],
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We have that observation of {Y = y ∧ Z = z} implies that U ∈ T4(Y, Z;h), where

T4(y, z;h) ≡ {u : Y(z, u;h) = {y}} = L(y, z;h)\
{
∪y′ ̸=yL(y′, z;h)

}
(3.22)

where “\” denotes the set difference operator.

Proceeding in the same manner as for Approach 2, Section 3.2 starting with (3.13), but with

the conditioning event {#Y(z, U ;h) = 1} replacing {L(Y, Z;h) ̸= ∅}, we have the inequalities

GU (S|#Y(z, U ;h) = 1) ≥ CT4(Y,Z;h) (S|z) , a.e. z ∈ Z, (3.23)

for all S ∈ U , equivalently (**), with G̃U (S;h, z) = GU (S|#Y(z, U ;h) = 1) and the sets T4(y, z;h)
defined above. However, under Restriction B4 the model is effectively rendered complete, as the

realization of unobservable U that coincides with observation of (Y, Z) = (y, z) must be such that y

solves h (y, z, U) = 0 uniquely. This implies that for each z ∈ Z, the sets {T (y, z;h) : y ∈ Y} form a

partition of {u : #Y(z, U ;h) = 1}. Thus, by applying identical reasoning as that for identification in

complete models of Section 5 below, we can reduce this characterization to a simpler representation

based solely on equality restrictions, as stated in the following theorem.

Theorem 4 Let Restrictions A1-A5 and B4 hold. Then the identified set of admissible pairs

(h,GU ) associated with
{
f0
Y |Z ,Z

}
is

D0(Z) ≡
{
{h,GU} ∈ H × GU : ∀y ∈ Y, GU (T4(y, z;h)|#Y(z, U ;h) = 1) = f0

Y |Z (y|z) a.e. z ∈ Z
}

Thus the identified set is characterized by equalities of the form

GU (T4(y, z;h)|#Y(z, U ;h) = 1) = f0
Y |Z (y|z) .

The quantity on the right hand side, f0
Y |Z (y|z), is point-identified. The quantity on the left

varies with z, h, and GU , and is a known function of these quantities. In a model that is

fully parametric GU and h are specified up to a finite-dimensional parameter, say θ. Then

GU (T4(y, z;h)| |Y(z, U ;h)| = 1) is a parametric single-observation likelihood,

ℓ (θ; y, z) = GU (T4(y, z;h)|#Y(z, U ;h) = 1) ,

and the log-likelihood based on a random sample of observations {(yi, zi) : i = 1, ..., n} is

logLn (θ) =
n∑

i=1

log ℓ (θ; yi, zi) .

Then, under adequate rank or support conditions for the particular parametric specification, there
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may be point identification so that D0(Z) is singleton, and θ may be consistently estimated by

maximum likelihood. If these conditions do not hold, D0(Z) may then still be a proper set, despite

the characterization via moment equalities or likelihood functions.

Example 1 (continued): The sets on the support of T4(Y, z;h) are the subsets of the level sets

{L(y, z;h) : y ∈ Y} on which Y(z, U ;h) is singleton. In the top two panels of Figure 1 each set

T4(y, z;h) is given by the light blue portion of the set L(y, z;h); the dark blue region in the center

belong to no T4(y, z;h). This differs from the first three approaches, which allow observations to

be generated from realizations of U in this region, and hence assign the dark blue region to sets

T (y, z;h) for which Y = y is one of the possible outcomes. When the structural relation h is

complete, as in the bottom panels, the sets {T4(y, z;h) : y ∈ Y} are the same in this case as in

the second approach, considered in Section 3.2. Thus the second and fourth approaches handle

incompleteness identically, but differ in the way that they deal with incoherence. �

4 Core-Determining Sets

Section 3 above characterizes the identified set for (h,GU ) under various restrictions on the observ-

ability of outcomes when the model is incoherent or incomplete. In each case the identified set can

be written as the set of (h,GU ) satisfying the conditional moment inequalities

G̃U (S;h, z) ≥ CT (Y,Z;h) (S|z) , (4.1)

for all closed S ⊆ U and almost every z ∈ Z, where G̃U (·;h, z) is a probability measure on U and

CT (Y,Z;h) (S|z) is the conditional containment functional of a random set T (Y, Z;h). The measure

G̃U (·;h, z) and the random set T (Y, Z;h) differ with the imposed restrictions.

We now show that in the context of any particular model it can be sufficient to work with the

inequalities (4.1) over a smaller collection of test sets S. Specifically, we provide for each (h, z)

a core-determining collection of sets, Q (h, z), such that if (4.1) holds for all S ∈ Q (h, z), then it

also holds for all closed S ⊆ U . Therefore (h,GU ) belongs to the identified set if and only if (4.1)

holds for all S ∈ Q (h, z), a.e. z ∈ Z. The use of core-determining sets for identification analysis

was initially put forward by Galichon and Henry (2011), who characterize core-determining classes

of sets for incomplete models that satisfy a monotonicity requirement, which we do not require

here. We further extend their definition of such collections by allowing them to be specific to the

structural relation h and covariate value z.

The logic of our approach is similar to that of Chesher, Rosen, and Smolinski (2011) (CRS),although

the analysis there features instruments that are independent of unobserved heterogeneity, and some

of which are excluded from the structural relation. Here the covariates Z and unobserved hetero-

geneity U are also independently distributed, but Z is an argument of the structural relation. As
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a result, when conditioning on Z = z, the support of the random set T (Y, Z;h), denoted

S (h, z) ≡ {T ⊆ U : P [T (Y,Z;h) = T |z] > 0} ,

varies with z. This raises the question of how the support S (h, z) conditional on different values

of z can be combined to produce core-determining sets, and in particular whether one needs to

consider as test sets unions of sets in S (h, z) across different values of z. Lemma 1 below addresses

this question.

Our construction first requires some further notation. We use G̃U to denote a probability

measure on U , which may depend on both h and z, and T (Y, Z;h) a random set. The results in this

section can be applied to any of the approaches laid out in Section 3 by taking G̃U and T (Y, Z;h)

as the probability measures and random sets appearing in the characterizations of identified sets

for each of the various approaches. For any set S ⊆ U and any (h, z) ∈ H ×Z, define

TS (h, z) ≡ {T ∈ S (h, z) : T ⊆ S} , TS (h, z) ≡
{
T ∈ S (h, z) : G̃U (T ∩ S) = 0

}
,

which are the sets T ∈ S (h, z) that are contained in S and that, up to zero measure G̃ (·), do not

hit S, respectively. Define

T
S
(h, z) ≡ S (h, z) /

(
TS (h, z) ∪ TS (h, z)

)
as those sets T ∈ S (h, z) that belong to neither TS (h, z) nor TS (h, z). For any sets A,B, we use

“A ⊂ B” to mean A ⊆ B and A ̸= B. Finally, for convenience we employ the following slight abuse

of notation:

∀Ỹ ⊆ Y, T
(
Ỹ, z;h

)
≡
∪
y∈Ỹ

T (y, z;h) .

Lemma 1 Let z ∈ Z, h ∈ H, S ⊆ U , and G̃U (·) : B (U) → [0, 1] be a probability measure on

(U ,B (U)), where B (U) denotes the Borel sigma algebra on U . Let MS (h, z) denote the union of

all sets in TS (h, z),

MS (h, z) ≡
∪

T ∈TS(h,z)

T . (4.2)

Suppose that

G̃U (MS (h, z)) ≥ CT (Y,Z;h) (MS (h, z) |z) .

Then

G̃U (S) ≥ CT (Y,Z;h) (S|z) .

Lemma 1 establishes that for any (h, z) ∈ H ×Z, in order for the inequalities (4.1) to hold for

all closed S ⊆ U , it suffices to show that they hold only for those sets S that are unions of sets
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in S (h, z). However, the collection of core-determining sets may be further refined. Consider a

collection of sets S1, ...,SJ and a generic random set T . The probability that T is contained in

S ≡ S1 ∪ · · · ∪ SJ :

P {T ⊆ S} =


J∑

j=1
P {T ⊆ Sj}+ P

T ⊆ S
∧

j=1,...,J

T * Sj


−

J∑
k=2

(k − 1) · P {T ⊆ Sj for exactly k sets Sj}

 . (4.3)

The following lemma uses (4.3) to provide conditions whereby for any probability measure G̃U

G̃U (Sj) ≥ P {T ⊆ Sj} for all j = 1, ..., J ⇒ G̃U (S) ≥ P {T ⊆ S} .

Lemma 2 Let z ∈ Z, h ∈ H, and G̃U (·) : B (U) → [0, 1] be a probability measure on (U ,B (U)),
where B (U) denotes the Borel sigma algebra on U . Suppose that S ⊆ U admits the representation

S = S1 ∪ · · · ∪ SJ such that

(i) G̃U (Sj) ≥ CT (Y,Z;h) (Sj |z), j = 1, ..., J ;

(ii)
J∑

k=2

(k − 1) · P {T ⊆ Sj for exactly k sets Sj |z} ≥ P

T ⊆ S
∧

j=1,...,J

T * Sj |z

; and

(iii) G̃U (Sj ∩ Sk) = 0 for all j ̸= k.

Then G̃U (S) ≥ CT (Y,Z;h) (S|z).

The following theorem combines the two prior lemmata to show that in general only a subset

of unions of sets in S (h, z) are core-determining.

Theorem 5 Let G̃U (·) : B (U) → [0, 1] be a probability measure on (U ,B (U)). Let Y denote the

support of Y , and for any (h, z) ∈ H ×Z define

Q (h, z) ≡

{
T
(
Y ′, z;h

)
:

(
Y ′ ⊆ Y such that for all nonempty Ỹ ′ ⊂ Y ′,

G̃U

(
T
(
Ỹ ′, z;h

)
∩ T

(
Y ′/Ỹ ′, z;h

))
> 0

)}
,

Then G̃U (S) ≥ CT (Y,Z;h) (S|z) for all S ∈ Q (h, z) implies that the same inequality holds for all

S ⊆ U , so that the collection of sets Q (h, z) is core-determining.

Note that from the set Y ′ = {y} it follows that S (h, z) ⊆ Q (h, z). Theorem 5 can be applied

by taking G̃U (·) corresponding to any of the probability measures on the left hand side of the

inequalities defining the identified sets of Theorems 1-4. The theorem then implies that these
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identified sets are characterized by the set of (h,GU ) that satisfy these inequalities for all core-

determining test sets S ∈ Q (h, z), and almost every z ∈ Z. Moreover, the following corollary

shows that some of these inequalities can be replaced by equalities, so that the identified set can

be written as a collection of conditional moment inequalities and equalities.

Corollary 1 Define

QE (h, z) ≡ {S ∈ Q (h, z) : ∀y ∈ Y either T (y, z;h) ⊆ S or T (y, z;h) ∩ S = ∅} .

Then, under the conditions of Theorem 5, the collection of equalities and inequalities

G̃U (S) = CT (Y,Z;h) (S|z) , all S ∈ QE (h, z) ,

G̃U (S) ≥ CT (Y,Z;h) (S|z) , all S ∈ QI (h, z) ≡ Q (h, z) \QE (h, z) .

holds if and only if G̃U (S) ≥ CT (Y,Z;h) (S|z) for all S ∈ Q (h, z).

Below we provide an algorithm to compute QI (h, z) and QE (h, z) for any h, z and G̃ (·) =

G̃U (·;h, z). We make use of the operator ~, for any collections of sets C1 and C2 defined as:

C1 ~ C2 ≡

{
S1 ∪ S2 : S1 ∈ C1, S2 ∈ C2, S1 * S2,

S2 * S1, G̃ {S1 ∩ S2} > 0

}
.

Algorithm for the construction of core-determining sets Q (h, z).

1. Initialization. Set Q∗ (h, z) = S (h, z), QI (h, z) = ∅, and QE (h, z) = ∅.

2. For each S ∈ Q∗ (h, z) compute T
S
(h, z) and set

Q
∗
(h, z) ≡

{
S ∈ Q∗ (h, z) : T

S
(h, z) = ∅

}
,

Q∗ (h, z) ≡
{
S ∈ Q∗ (h, z) : T

S
(h, z) ̸= ∅

}
.

(a) Set QE (h, z) = QE (h, z) ∪ Q
∗
(h, z).

(b) Set QI (h, z) = QI (h, z) ∪ Q∗ (h, z).

3. Set Q∗ (h, z) = Q∗ (h, z)⊗ S (h, z).

(a) If Q∗ (h, z) = ∅, stop. Set Q (h, z) = QI (h, z) ∪ QE (h, z).

(b) If Q∗ (h, z) ̸= ∅, return to step 2.
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In the Appendix we prove that for any (h, z) the above algorithm produces precisely the sets

Q (h, z) characterized in Theorem 5. Initialization and the first iteration guarantees that all sets

S (h, z) belong to Q (h, z) produced by the algorithm. All other core-determining sets characterized

by the theorem are picked up in successive iterations. Moreover, in the process of constructing the

core-determining sets, those which produce moment equalities as characterized in Corollary 1 are

detected in step 2a. At termination the algorithm provides the collection of test sets S ∈ QI (h, z)

for which the containment inequality G̃U (S) ≥ CT (Y,Z;h) (S|z) must hold, as well as test sets

S ∈ QE (h, z) for which the containment inequality must in fact hold with equality.

The algorithm extends that of CRS for single agent discrete choice models in a number of

significant ways. First, as previously discussed, CRS focus primarily on cases where there is an

instrument Z that is excluded from the structural relation relating outcomes (choices) to observed

covariates X. Here the variable Z is an argument of the structural relation, so that the support of

the random sets T (Y, Z;h) given Z = z varies with z. Thus the algorithm in this paper must be

applied separately for each z ∈ Z. Second, the core-determining sets can vary with the probability

measure G̃ (·;h, z), because different measures may assign different probabilities to areas of overlap

between sets T (y, z;h) and T (y′, z;h), y ̸= y′. If however G̃ (·;h, z) is absolutely continuous with

respect to Lebesgue measure, then whether the intersection of such regions has zero measure will

not vary with G̃ (·;h, z). The restrictions of CRS, and indeed most econometric models impose this,

but it is not required here. Third, we do not require that the sets in S (h, z) are connected, as was

required in CRS. Finally, as already described, the algorithm produces a collection of conditional

moment inequalities and equalities. Conditions that deliver equalities are not provided in CRS.5

4.1 Illustration of Core-Determining Sets and Moment Conditions in the Si-

multaneous Binary Model

We now consider core-determining sets and collections of moment equalities and inequalities pro-

duced using each of the four approaches in section 3 in the context of Example 1. All conditional

moment restrictions are to be understood as holding for almost every z ∈ Z.

Approach 1: Observed Null Outcomes

In this case, if the structural relation h is incoherent, then a null outcome is observed with

positive probability. Therefore, based on whether P[Y = ϕ|Z = z] > 0, the researcher can determine

the sign of the product of the interaction parameters, i.e. the sign of δ1δ2. If P[Y = ϕ|Z = z] > 0

the sets T1 (y, z;h) coincide with the level sets L (y, z;h) for all y ∈ Y∗. The level sets are disjoint, so

that by Theorem 5 and Corollary 1, or equivalently, the algorithm, the identified set is characterized

by a collection of moment equalities, one for each regions L (y, z;h), y ∈ Y∗.

5Indeed, in the model of CRS the condition used to strengthen inequalities to equalities appears difficult to
motivate, outside the special case where covariates are in fact restricted to be independent of unobserved heterogeneity.
On the other hand simultaneous discrete models are well-known to produce some equalities as well as inequalities, at
least in special cases such as the simultaneous binary model.
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If on the other hand P[Y = ϕ|Z = z] = 0 then the researcher knows that δ1δ2 ≥ 0, so that the

level sets correspond to those depicted in one of the top panels of Figure 1. In the first case, where

δ1, δ2 < 0, the regions T1 ((0, 1) , z;h) and T1 ((0, 1) , z;h) overlap. Application of the algorithm

thus produces

QI (h, z) = {T1 ((0, 1) , z;h) , T1 ((1, 0) , z;h)} ,

which yield moment inequalities, as well as the sets

QE (h, z) = {T1 ((0, 0) , z;h) , T1 ((1, 1) , z;h) , T1 ({(0, 1) , (1, 0)} , z;h)} ,

which correspond to moment equalities. Applying the definition of the sets T1 (y, z;h) in (3.6), the

inequality GU (S) ≥ CT1(Y,Z;h) (S|z) in Theorem 1, and the definition of the containment functional

from (3.3), this gives:

GU (L ((0, 0) , z;h)) = f0
Y |Z ((0, 0) |z) ,

GU (L ((0, 1) , z;h)) ≥ f0
Y |Z ((0, 1) |z) ,

GU (L ((1, 0) , z;h)) ≥ f0
Y |Z ((1, 0) |z) ,

GU (L ((1, 1) , z;h)) = f0
Y |Z ((1, 1) |z) ,

GU (L ((0, 1) , z;h) ∪ L ((1, 0) , z;h)) = f0
Y |Z ((0, 1) |z) + f0

Y |Z ((1, 0) |z) .

The three moment equalities generated in the simultaneous binary model were used to construct a

likelihood based procedure by Bresnahan and Reiss (1991), and Tamer (2003) first illustrated how

the additional moment inequalities could be used to provide additional information for estimation

and inference.

Analogous reasoning for the case depicted in the upper right panel of Figure 1, where δ1, δ2 > 0

produces the system of conditional moment restrictions:

GU (L ((0, 0) , z;h)) ≥ f0
Y |Z ((0, 0) |z) ,

GU (L ((0, 1) , z;h)) = f0
Y |Z ((0, 1) |z) ,

GU (L ((1, 0) , z;h)) = f0
Y |Z ((1, 0) |z) ,

GU (L ((1, 1) , z;h)) ≥ f0
Y |Z ((1, 1) |z) ,

GU (L ((0, 0) , z;h) ∪ L ((1, 1) , z;h)) = f0
Y |Z ((0, 0) |z) + f0

Y |Z ((1, 1) |z) ,

since in this case the regions L ((1, 1) , z;h) and L ((0, 0) , z;h) overlap, while L ((0, 1) , z;h) and

L ((0, 1) , z;h) overlap no other region. Note that in both cases, if GU is parametrically specified

the probabilities GU (y, z;h) can be calculated as a function of model parameters.

Approach 2: Truncation of Null Outcomes
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This and each of the remaining approaches apply when Y = ϕ is never realized in the data.

Thus the researcher cannot immediately distinguish whether the structural relation is incoherent

as in Approach 1 from P[Y = ϕ|Z = z], since it is always zero.

First consider the case of a structural relation satisfying δ1δ2 ≥ 0, as in the top panels of

Figure 1. For any such h this approach produces precisely the same sets {T2 (y, z;h) : y ∈ Y} as

in Approach 1, and hence the same core-determining sets Q (h, z). Thus any pair (h,GU ) with

incomplete h (i.e. δ1δ2 > 0) is in the identified set if and only if the same moment restrictions laid

out in Approach 1 are satisfied.

The treatment differs from Approach 1 for incoherent h. The support of T2 (Y, z;h) is now

{L (y, z;h) : y ∈ Y} i.e. all sets L (y, z;h) taken over Y rather than over the extended support Y∗

which included ϕ. None of these sets overlap, and so the algorithm produces core-determining sets

that are simply the level sets

QE (h, z) = {L ((0, 0) , z;h) ,L ((0, 1) , z;h) ,L ((1, 0) , z;h) ,L ((1, 1) , z;h)} , QI (h, z) = ∅.

Application of Theorem 2 then produces the moment conditions

∀y ∈ Y, GU (L (y, z;h) |U /∈ L (∅, z;h)) = f0
Y |Z (y|z) .

Once again, in a model where GU is parametrically specified, the probabilities on the left can be

computed as a function of model parameters.

Approach 3: Anything Goes

The case of functions h satisfying δ1δ2 > 0 is again treated identically as in approaches 1 and

2, yet functions h such that δ1δ2 < 0, and which are hence incoherent, are treated differently. The

support of the random set T3 (Y, z;h) given in (3.21) produces the core-determining sets

QE (h, z) = ∅,

and

QI (h, z) =



T3 ((0, 0) , z;h) , T3 ((0, 1) , z;h) , T3 ((1, 0) , z;h) , T3 ((1, 1) , z;h) ,
T3 ((0, 0) , z;h) ∪ T3 ((0, 1) , z;h) , T3 ((0, 0) , z;h) ∪ T3 ((1, 0) , z;h) ,
T3 ((0, 0) , z;h) ∪ T3 ((1, 1) , z;h) , T3 ((0, 1) , z;h) ∪ T3 ((0, 1) , z;h) ,

T3 ((0, 1) , z;h) ∪ T3 ((1, 1) , z;h) ,
T3 ((0, 0) , z;h) ∪ T3 ((0, 1) , z;h) ∪ T3 ((1, 0) , z;h) ,
T3 ((0, 0) , z;h) ∪ T3 ((0, 1) , z;h) ∪ T3 ((1, 1) , z;h) ,
T3 ((0, 0) , z;h) ∪ T3 ((1, 0) , z;h) ∪ T3 ((1, 1) , z;h) ,
T3 ((0, 1) , z;h) ∪ T3 ((1, 0) , z;h) ∪ T3 ((1, 1) , z;h)



.
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The resulting moment inequalities are given by

GU

(
T3
(
Y ′, z;h

)
, z;h

)
≥
∑
y∈Y ′

f0
Y |Z (y|z) ,

for all subsets Y ′⊆ Y. Because for each y ∈ Y the region T3 (y, z;h) contains L (∅, z;h), all regions
T3 (y, z;h) overlap with one another, so that all unions of subsets of the support of T3 (Y, z;h)
belong to QI (h, z), resulting in 13 moment inequalities and no moment equalities.6

Approach 4: Truncated Non-Unique Outcomes

In this case the distribution of the data is assumed to be a truncated version of the population

distribution, where conditional on any Z = z regions of the unobservable that result in non-unique

outcomes are truncated. By application of Theorem 4 we have the moment equalities

∀y ∈ Y, GU (T4 (y, z;h) |#Y (z, U, h) = 1) = f0
Y |Z (y|z) ,

where T4 (y, z;h) is as defined in (3.22). The left hand side probabilities are those given by the

distribution GU conditional on U not belonging to the center box in the panels of Figure 1 in all

cases, incomplete or incoherent.

5 Identification in Complete Models

In this section we specialize our results to complete models, though we continue to allow the possibil-

ity that the model is incoherent. The resulting characterization follows by application of Theorem

5 and Corollary 1. We provide the formal result as a theorem to highlight the application of our

methodology to such cases, and in order to help illustrate the relation between our characterization

of identified sets in incomplete models to more familiar characterizations via moment equalities

used to deliver point identification in complete models.

Theorem 6 Suppose that, as in Theorems 1-4, the identified set for (h,GU ) is given by

D0(Z) ≡
{
(h,GU ) ∈ H×GU : ∀S ∈ F (U) , G̃U (S;h, z) ≥ CT (Y,Z;h) (S|z) , a.e. z ∈ Z

}
, (5.1)

where for each (h,GU ) ∈ H×GU , G̃U (·;h, z) is a known functional of probability measure GU ,

and is itself a probability measure on (U ,B (U)). Suppose in addition that the available restrictions

require the model to be complete. Then the identified set is equivalently characterized by the following

system of equalities:

D0(Z) =
{
(h,GU ) ∈ H×GU : ∀y ∈ Y, G̃U (T (y, z;h);h, z) = P[Y = y|Z = z], a.e. z ∈ Z

}
.

6There are 24 − 1 subsets of the support of T3 (Y, z;h), since #Y = 4. These subsets include the null set and the
set itself, which both result in uninformative inequalities given that GU is a probability measure.
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This result is straightforward. When the structural relation is complete the event{Y = y},
conditional on Z = z, occurs if and only if U ∈ T (y, z;h). This results in the conditional moment

equalities in the characterization delivered by the theorem.

The term G̃U (T (y, z;h);h, z) appearing on the left hand side here gives the probability distri-

bution of the structural relation delivered by the probability distribution G̃U (·;h, z), as

G̃U (T (y, z;h);h, z)) = P {h(y, z, U) = 0} = P[Y = y|Z = z]

where the uniqueness of the solution for y is guaranteed by completeness. The structural relation

h(y, z, U) = 0 now delivers a structural function for Y as a function of (U,Z), and P[Y = y|Z = z]

gives the distribution of that structural function conditional on Z = z.

We now return to our examples to illustrate the implications of completeness.

Example 1 (continued): Consider again Example 1, where Approach 1 is used, with P[Y =

ϕ|Z = z] > 0, that is where null outcomes are explicitly observed in the data. As discussed in

Section 4.1, the model is complete over the extended support Y∗. From Theorem 6 the identified

set is given by those (h,GU ) pairs that satisfy

∀y ∈ Y∗, GU (L (y, z;h)) = f0
Y |Z (y|z) , a.e. z ∈ Z.

The probabilities on the left, GU (L (y, z;h)), are the probabilities that U falls within the five

regions depicted in the bottom panels of Figure 1. �
Example 2 (continued): Consider again the discrete outcome triangular model of Example 2.

For any realization of Z2, the function g2 maps from the realization of U2 to a unique realization of

Y2. For any realizations of Y2, Z1, and U2, g1 maps to a unique realization of Y1. Hence the model

is complete, with corresponding equality restrictions

∀y ∈ Y, GU (L (y, z;h)) = f0
Y |Z (y|z) , a.e. z ∈ Z. (5.2)

Figure 2 depicts the regions L (y, z;h) in the case where both Y1 and Y2 are binary, when the g

functions are given by the linear threshold crossing functions in (2.3) and (2.4). The figure shows

these regions for a single value of z when δ1 < 0. Heckman (1978) provides conditions for point

identification in the case where GU is a bivariate normal distribution function with mean zero

and unknown but suitably normalized variance. For that model (5.2) corresponds precisely to the

resulting likelihood equations.

It is worth noting again that completeness alone does not guarantee identification. Even in the

binary triangular model, if there are no parametric restrictions placed on the functions g1 and g2

or the distribution of U , there in general will not be point identification, although the equalities

(5.2) still provide a characterization of the identified set. Chesher (2005) and Jun, Pinkse, and Xu
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(2011) provide set identification results for such models. �

6 Conclusion

Incoherent and incomplete models are well-known to cause problems for identification of structural

parameters. In this paper we have used random set theory to characterize identified sets under a

variety of different approaches to dealing with these issues in simultaneous discrete outcome models.

One of these approaches presents a new way for dealing with incoherence and incompleteness,

using recently developed methods for dealing with incompleteness, and a truncation approach for

incoherence. We showed how the conditional containment functional of a particular random set

can be used to characterize identified sets under each of the different approaches.

Our most general results delivered characterizations consisting of large collections of conditional

moment inequalities. We then used the notion of core-determining sets to refine these characteriza-

tions. This was achieved by establishing that in the context of any particular model one can rely on

a much smaller collection of conditional moment inequalities for characterization of the identified

set. In addition, we showed that some of these conditional moment inequalities must in fact hold

with equality. We provided an algorithm for constructing core-determining collections of sets in

these models, and the algorithm distinguishes which of these correspond to moment inequalities

and equalities in the characterization of the identified set.

Although it has been previously recognized that some incomplete models may produce some mo-

ment equality restrictions, general characterizations from the recent literature involve only moment

inequalities. Our conditions for strengthening such inequalities to equalities are generally applicable

to any simultaneous discrete outcome model. These conditions and our algorithm for producing the

system of moment equalities and inequalities in such models is a novel contribution. Recognition

of the moment equalities can potentially be of use in deriving conditions for point identification

and for estimation. Indeed, we showed that in the special case where the model is complete, our

characterization produces precisely the collection of conditional moment equalities obtained from

classical analysis, for instance likelihood contributions in fully parametric models, and in these

settings conditions for point identification and consistent estimation are well understood.

While our focus has been on the effect of incoherence and incompleteness on identification,

our characterizations of identified sets as collections of moment equalities and inequalities lend

themselves to recently developed inference methods such as those of Andrews and Shi (2009) and

Chernozhukov, Lee, and Rosen (2009). There are however interesting and challenging complications

for estimation, inference, and computation that may arise from the sheer number of restrictions

when the support of the outcome space is large, as well as from conditioning variables with high

dimension. These are important considerations, which, while beyond the scope of this paper,

warrant further research.
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Appendix A: Auxiliary Lemma

In this section we provide an auxiliary lemma used to prove theorems appearing in the main text.

Lemma 3 Let (Y, Z, U) ∈ Y ×Z ×U be random vectors defined on the probability space (Ω,F ,P),
where Y is a finite set, such that for some function h : Y ×Z ×U → R, P [h (Y, Z, U) = 0] = 1. For

each z ∈ Z, let G̃U (S;h, z) denote the probability of the event {U ∈ S} conditional on Z = z for

any S ⊆ U . Let CT (Y,Z;h) (S;h, z) ≡ P [T (Y, Z;h) ⊆ S|Z = z] denote the containment functional of

the set T (Y, Z;h) ≡ {u : h (Y, Z, u) = 0} conditional on Z = z, and let F (U) denote the collection

of all closed subsets of U . Then if

∀S ∈ F (U) , G̃U (S;h, z) ≥ CT (Y,Z;h) (S;h, z) , a.e. z ∈ Z. (6.1)

there exist random variables
(
Ũ , Ỹ

)
defined on (Ω,F ,P) such that (i) for almost every z ∈ Z, the

conditional distribution of Ỹ given Z = z is identical to that of Y given Z = z, (ii) with probability

one, h
(
Ỹ , Z, Ũ

)
= 0.

Proof. Conditional on Z = z, T (Y, Z;h) has finite support given by {T (y, z;h) : y ∈ Y}. Since any
subset of a finite set, in this case {T (y, z;h) : y ∈ Y}, is closed in the discrete topology, T (Y, z;h)

with Y conditionally distributed f0
Y |Z (Y |z) is a random closed set.

We now show in similar fashion to that of Theorem 2.1 of Beresteanu, Molchanov, and Molinari

(2012), which applies to random compact sets, and as also shown in Chesher, Rosen, and Smolinski

(2011) that (6.1) is equivalent to the conditional capacity functional inequalities

∀S ∈ K (U) , G̃U (S;h, z) ≤ P [T (Y,Z;h) ∩ S ≠ ∅|Z = z] , a.e. z ∈ Z, (6.2)

where K (U) denotes the collection of all compact subsets of U . This is because for any z ∈ Z,

G̃U (S;h, z) = 1− G̃U (Sc;h, z) ,

and

CT (Y,Z;h) (S;h, z) ≡ P [T (Y, Z;h) ⊆ S|Z = z] = 1− P [T (Y, Z;h) ∩ Sc ̸= ∅|Z = z] ,

where Sc denotes the complement of S in U . Therefore (6.1) is equivalent to

∀S ∈ F (U) , G̃U (Sc;h, z) ≤ P [T (Y,Z;h) ∩ Sc ̸= ∅|Z = z] , a.e. z ∈ Z,

equivalently

∀S ∈ G (U) , G̃U (S;h, z) ≤ P [T (Y,Z;h) ∩ S ≠ ∅|Z = z] , a.e. z ∈ Z,
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where G (U) denotes the collection of all open subsets of U . By Corollary 1.4.44 of Molchanov

(2005) this is in turn equivalent to (6.2).

Next, it follows from this collection of inequalities and Molchanov (2005, Corollary 1.4.44), see

also Artstein (1983) and Norberg (1992), that for each z ∈ Z, the probability measure G̃U (·;h, z)
is P [·|Z = z]-selectionable. This implies that there exists a random variable Ũ and a random set T̃
both defined on (Ω,F ,P) such that for any z ∈ Z, (a) P

[
Ũ ∈ T̃ |Z = z

]
= 1, (b) The distribution of

Ũ conditional on Z = z is the same as that of U conditional on Z = z, and (c) The distribution of

T̃ conditional on Z = z is the same as the of T (Y, Z;h) conditional on Z = z. From (b) it follows

that conditional on Z = z the random sets Y
(
Ũ , Z;h

)
and Y (U,Z;h) are identically distributed

where as in the main text,

Y (u, z;h) ≡ {y : h (y, z, u) = 0} .

Furthermore by P [h (Y,Z, U) = 0] = 1,

P [Y ∈ Y (U,Z;h) |Z = z] = P [h (Y, Z, U) = 0|Z = z] = 1, a.e. z ∈ Z,

that is Y is a measurable selection of Y (U,Z;h). The equivalence in distribution of Y
(
Ũ , Z;h

)
and Y (U,Z;h) given Z = z then implies that there exists a random variable Ỹ with the same

distribution as Y , conditional on Z = z, such that P
[
Ỹ ∈ Y

(
Ũ , Z;h

)
|Z = z

]
= 1 for almost every

z ∈ Z. This establishes (i), and (ii) follows because by definition Ỹ ∈ Y
(
Ũ , Z;h

)
holds if and only

if h
(
Ỹ , Z, Ũ

)
= 0, completing the proof. �

Appendix B: Proofs for Section 3

Proof of Theorem 1. By arguments in the text we have that every (h,GU ) in the identified set

satisfies the inequalities

∀S ∈ F (U) , GU (S) ≥ CT1(Y,Z;h) (S|z) , a.e. z ∈ Z.

Consider any (h,GU ) ∈ H×GU that satisfies these inequalities, equivalently any (h,GU ) ∈ D0 (Z).

By application of Lemma 3 with G̃U (S;h, z) = GU (S), there exist random variables
(
Ũ , Ỹ

)
on

(Ω,F ,P) such that ∀z ∈ Z, the conditional distribution of Ỹ given Z = z is identical to that

of Y given Z = z with P
[
h
(
Ỹ , Z, Ũ

)
= 0
]
. Thus every (h,GU ) ∈ D0 (Z) is admissible, which

establishes that D0 (Z) is the identified set. �
Proof of Theorem 2. Consider the set

D0(Z) ≡
{
(h,GU ) ∈ H×GU : ∀S ∈ F (U) , GU (S|Y(z, U ;h) ̸= ∅) ≥ CT2(Y,Z;h) (S|z) , a.e. z ∈ Z

}
,
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and any (h,GU ) ∈ D0 (Z). By application of Lemma 3 with G̃U (S;h, z) = GU (S|Y(z, U ;h) ̸= ∅),
and following the same steps as in the proof of Theorem 1 above, it follows that D0 (Z) is the

identified set. �
Proof of Theorem 3. The proof is identical to that of Theorem 1, but with CT3(Y,Z;h) (S|z) the

conditional capacity functional for T3 (Y, Z;h) defined in (3.18). �
Proof of Theorem 4. Using (3.23) from the main text, the identified set is given by

D0(Z) =
{
(h,GU ) ∈ H × GU : ∀S ∈ F (U) , GU (S|#Y(z, U ;h) = 1) ≥ CT4(Y,Z;h) (S|z) , a.e. z ∈ Z

}
.

For any (h, z) ∈ H × Z, S (h, z) = {T (y, z;h) : y ∈ Y} is a partition of {u : #Y(z, u;h) = 1} so

that the sets T4 (y, z;h) and T4 (y′, z;h) are disjoint, for any y ̸= y′. Thus Theorem 5 implies that

D0(Z) =

{
{h,GU} ∈ H × GU :

∀y ∈ Y,GU (T (y, z;h) |#Y(z, U ;h) = 1) ≥ CT (Y,Z;h) (T (y, z;h) |z) , a.e. z ∈ Z

}
.

Proceeding with the same steps as in the proof of Theorem 6 from (6.11) on completes the proof. �

Appendix C: Proofs for Sections 4 and 5

Proof of Lemma 1. MS (h, z) is a union of sets contained in S, so that MS (h, z) ⊆ S, and
therefore

G̃U (S) ≥ G̃U (MS (h, z)) .

Then G̃U (MS (h, z)) ≥ CT (Y,Z;h) (MS (h, z) |z) implies that G̃U (S) ≥ CT (Y,Z;h) (MS (h, z) |z).
The latter is

CT (Y,Z;h) (MS (h, z) |z) ≡ P {T (Y, Z;h) ⊆ MS (h, z) |Z = z}

=
∑
y∈Y

1 [T (y, z;h) ⊆ MS (h, z)] f0
Y |Z (y|z)

=
∑
y∈Y

1 [T (y, z;h) ⊆ S] f0
Y |Z (y|z)

= CT (Y,Z;h) (S|z) ,

where the second line follows by the law of total probability, and the third by the definition of

MS (h, z) in (4.2). This with G̃U (S) ≥ CT (Y,Z;h) (MS (h, z) |z) establishes G̃U (S) ≥ CT (Y,Z;h) (S|z),
completing the proof. �
Proof of Lemma 2. We have that

G̃U (S) =
J∑

j=1

G̃U (Sj) ≥
J∑

j=1

CT (Y,Z;h) (Sj |z) ≥ CT (Y,Z;h) (S|z) ,
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where the first equality follows from condition (iii) in the statement of the lemma, the first inequality

from (i), and second inequality from (ii) and (4.3) taken with P {·|z} in place of P {·}. �
Proof of Theorem 5. Lemma 1 establishes that for any S ⊆ U ,

G̃U (MS (h, z)) ≥ CT (Y,Z;h) (MS (h, z) |z) ⇒ G̃U (S) ≥ CT (Y,Z;h) (S|z) .

To prove the theorem it therefore suffices to show that

∀S ′ ∈ Q (h, z) , G̃U

(
S ′) ≥ CT (Y,Z;h)

(
S ′|z

)
(6.3)

implies that for any S ⊆ U ,

G̃U (MS (h, z)) ≥ CT (Y,Z;h) (MS (h, z) |z) , (6.4)

where recall that MS (h, z) = ∪
{
T ∈ TS (h, z)

}
. The proof proceeds by induction on #TS (h, z) =

# {T ∈ S (h, z) : T ⊆ S}.
Inductive Hypothesis: Suppose that (6.3) holds. Then for any positive integer k, if S ⊆ U such

that #TS (h, z) ≤ k, then (6.4) holds.

Base Case: Take k = 1 and suppose that (6.3) holds. That (6.4) holds for all S with #TS (h, z) ≤ k

is immediate from S (h, z) ⊆ Q (h, z).

Inductive Step: Suppose that (6.3) holds, and that for some positive integer k we have that for

all S with #TS (h, z) ≤ k, (6.4) holds. We need to prove that this implies that (6.4) also holds for

all S with #TS (h, z) = k + 1.

Consider an arbitrary set S ⊆ U with #TS (h, z) = k + 1. Suppose that MS (h, z) ̸∈ Q (h, z),

as otherwise (6.4) is immediate. Then by the definition of Q (h, z), there exists some nonempty set

Ỹ ⊆ TS (h, z) such that

G̃U

(
T
(
Ỹ, z;h

)
∩ T

(
Ỹc, z;h

))
= 0, (6.5)

where Ỹc ≡ TS (h, z) /Y ′.

We now verify conditions (i)-(iii) of Lemma 2 for the sets S1 = T
(
Ỹ, z;h

)
and S2 = T

(
Ỹc, z;h

)
.

Since MS (h, z) = S1 ∪ S2, application of the lemma will imply (6.4), as desired. Condition (i)

follows from (6.4) holding for all S with #TS (h, z) ≤ k. Condition (ii) holds because

T (Y, Z;h) ⊆ MS (h, z) ⇒ Y ∈ TS (h, z) ⇒ T (Y, Z;h) ⊆ S1 or T (Y,Z;h) ⊆ S2.

Condition (iii) is precisely (6.5) above. Thus we can apply Lemma 2 to conclude that (6.4) holds

for MS (h, z) . Since k is arbitrary this completes the proof. �
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Proof of Corollary 1. Consider any S ∈ QE (h, z). Note that

CT (Y,Z;h) (Sc|z) = P (T (Y, Z;h) ⊆ Sc|z) = P (T (Y, Z;h) ∩ S = ∅|z) .

S ∈ QE (h, z) implies that for all y ∈ Y, either T (y, z;h) ⊆ S or T (y, z;h) ∩ S = ∅. Thus

CT (Y,Z;h) (S|z) + CT (Y,Z;h) (Sc|z) = P (T (Y, Z;h) ⊆ S|z) + P (T (Y,Z;h) ∩ S = ∅|z) = 1. (6.6)

The inequalities of Theorem 5 imply that

G̃U (S) ≥ CT (Y,Z;h) (S|z) and G̃U (Sc) ≥ CT (Y,Z;h) (Sc|z) .

Then G̃U (S) + G̃U (Sc) = 1 and (6.6) imply that both weak inequalities hold with equality. �
Proof of Validity of the Algorithm for Core-Determining Sets. Fix (h, z) ∈ H × Z.

Let Q (h, z) denote the core-determining sets characterized by Theorem 5 as in the main text,

and let QA (h, z) denote the collections of sets produced by the algorithm. We show first that

Q (h, z) = QA (h, z). Next we show that the sets QE (h, z) from the algorithm coincide with those

of Corollary 1.

Step 1: We first show that S ∈ Q (h, z) ⇒ S ∈ QA (h, z).

Consider a set S ∈ Q (h, z). Suppose that S /∈ S (h, z), as otherwise S ∈ QA (h, z) is trivial. Then

S = T (YS , z;h) for some YS ⊆ Y such that for all nonempty ỸS ⊂ YS ,

G̃U

(
T
(
ỸS , z;h

)
∩ T

(
YS\ỸS , z;h

))
> 0. (6.7)

Starting with any y1 ∈ ỸS , we can then order the elements of ỸS as y1, ..., yJ such that:

G̃U (T (Yk, z;h) ∩ T (yk+1, z;h)) > 0, where ∀k = 1, ..., J − 1, Yk ≡
k∪

j=1

yj. (6.8)

Note that if this were not possible then (6.7) would be violated with ỸS equal to one of the sets

Yk, which would be a contradiction. Thus, starting with T (y1, z;h) in the first iteration, successive

iterations of the algorithm will add the sets T (Yk, z;h) to Q∗ (h, z), and after no more than J

iterations, S = T (YS , z;h) will be added to Q∗ (h, z), guaranteeing that S ∈ QA (h, z) .

Step 2: We now establish that S ̸∈ Q (h, z) ⇒ S ̸∈ QA (h, z).

Let S ̸∈ Q (h, z) be such that for some YS ⊆ Y, S = T (YS , z;h), as otherwise S ̸∈ Q (h, z) is

immediate. Because S ̸∈ Q (h, z), #YS ≥ 2, and there exists ỸS ⊂ YS such that

G̃U

(
T
(
ỸS , z;h

)
∩ T

(
YS\ỸS , z;h

))
= 0. (6.9)
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Therefore, for any y1 and y2 with y1 ∈ Ỹ and y2 ∈ YS\ỸS ,

G̃U (T (y1, z;h) ∩ T (y2, z;h)) = 0. (6.10)

It follows that there is no ordering y1, ..., yJ of the elements of YS such that (6.8) holds. This

implies that S ̸∈ QA (h, z), which completes step 2.

Step 3: The sets QE (h, z) produced by the algorithm coincide with those of Corollary 1.

This holds because the conditions of the corollary coincide with the condition T
S
(h, z) = ∅, which

is explicitly checked for each S ∈ Q∗ (h, z) in step 2 of the algorithm. �
Proof of Theorem 6. Because the model is complete, we have that for any (h, z) ∈ H×Z, S (h, z)

constitutes a partition of U . Thus the sets T (y, z;h) and T (y′, z;h) are disjoint, for any y ̸= y′.

It follows from Theorem 5 that S (h, z) is core-determining for each (h, z) ∈ H × Z, so that the

representation of D0(Z) given by 5.1 is equivalent to

D0(Z) =
{
{h,GU} ∈ H×GU : ∀y ∈ Y, G̃U (T (y, z;h) ;h, z) ≥ CT (Y,Z;h) (T (y, z;h) |z) , a.e. z ∈ Z

}
.

(6.11)

Using again that for any y ̸= y′ the sets T (y, z;h) and T (y′, z;h), y ̸= y′ are disjoint we have that

CT (Y,Z;h) (T (y, z;h) |z) = P[Y = y|Z = z],

and application of Corollary 1 implies that the inequalities of the characterization (6.11) must in

fact hold with equality, completing the proof. �
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Figure 1: This figure depicts the level sets L (y) = L (y, z;h) for a single value of z in the simulta-
neous binary model considered in Example 1. Each panel illustrates a different case for the signs
of the interaction parameters δ1 and δ2. The dark blue regions indicate places where these sets
overlap: in the top left panel this region is the intersection of L ((0, 1)) and L ((1, 0)), and in the
top right panel this is the intersection of L ((0, 0)) and L ((1, 1)). The regions L (∅) in the bottom
panels indicate values of U such that the structural relation h (y, z, u) = 0 holds for no possible y.
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Figure 2: This figure depicts the level sets L (y) = L (y, z;h) for a single value of z in the triangular
binary model considered in Example 2. Here the model is proper and the level sets partition the
support of the unobservable U .
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