
Event Generation 
with Neural Nets

Matthew D. Klimek
Cornell Univ.
Korea Univ.

with M. Perelstein
 1810.11509 + wip

HKUST Mini-workshop
10 Jan 2020



Goals for this talk

● Using NNs for MC event generator is not fancy or exotic.
It is the most natural way to improve current techniques.

● Details of implementation.

● Results for typical particle physics problems & improvements in 
efficiency.



MC integration/generation: general problem

Particle physics model 

Differential cross sections

Total cross section Simulate differential 
distributions



MC: the basic technique
Simplest case:
➢ Sample the domain of the function uniformly.
➢ Sum the function values at the N random points. 

An estimate of the integral is then obtained as:

What is the area of a 
circle?



MC: the basic technique
Simplest case:
➢ Sample the domain of the function uniformly.
➢ Sum the function values at the N random points. 

An estimate of the integral is then obtained as:

100 points, 71 fell inside 

A = 2.84

What is the area of a 
circle?



MC: the basic technique

1000 points, 772 fell inside 

A = 3.088

Simplest case:
➢ Sample the domain of the function uniformly.
➢ Sum the function values at the N random points. 

An estimate of the integral is then obtained as:

What is the area of a 
circle?



MC: the basic technique
Simplest case:
➢ Sample the domain of the function uniformly.
➢ Sum the function values at the N random points. 

An estimate of the integral is then obtained as:

100 points, 71 fell inside 

I = 1.21I = π/2 = 1.57



MC: the basic technique

1000 points, 772 fell inside 

I = 1.63

Simplest case:
➢ Sample the domain of the function uniformly.
➢ Sum the function values at the N random points. 

An estimate of the integral is then obtained as:

I = π/2 = 1.57



MC: Event generation

Keep randomly drawn 
point with probability:

Discard

Keep

x

pdf(x)

Generate events according to this 1-d p.d.f.:

Draw points randomly 



What about a function with a sharp peak?

Physical cross sections are often highly variable/peaked in some regions of 
phase space: on-shell resonances, collinear singularities, etc.

The basic technique

Most points will be 
discarded



What about a function with a sharp peak?

Physical cross sections are often highly variable/peaked in some regions of 
phase space: on-shell resonances, collinear singularities, etc.

The basic technique

Obvious fix:
Don’t sample 
much out here



What about a function with a sharp peak?

Physical cross sections are often highly variable/peaked in some regions of 
phase space: on-shell resonances, collinear singularities, etc.

The basic technique

Obvious fix:
Don’t sample 
much out here

Needed: a way to build a function that: 
➢ is easily sampled, and 
➢ approximates the target function. 



VEGAS (G.P. Lepage, J.Comp.Phys. 1978)

➢ Approximate the function by a set of bins of containing equal amounts of the 
integral of the function. 

➢ To sample the function: simply choose a random bin; then sample uniformly 
within that bin.

➢ Adapt bin edges to better match the function.

Sample the function values

higher values

lower values



VEGAS (G.P. Lepage, J.Comp.Phys. 1978)

➢ Approximate the function by a set of bins of containing equal amounts of the 
integral of the function. 

➢ To sample the function: simply choose a random bin; then sample uniformly 
within that bin.

➢ Adapt bin edges to better match the function.

Subdivide bins according 
to average function value 
in that bin



VEGAS (G.P. Lepage, J.Comp.Phys. 1978)

➢ Approximate the function by a set of bins of containing equal amounts of the 
integral of the function. 

➢ To sample the function: simply choose a random bin; then sample uniformly 
within that bin.

➢ Adapt bin edges to better match the function.

Merge bins back to 
original number



VEGAS
VEGAS can be viewed as building a map from 
a sampling space 
(over which points are drawn uniformly) 
onto the target space (where the density of 
points approximates the desired function) 
in a piecewise-linear way (fill bins uniformly). 

The training adjusts the values of the map 
at fixed discrete points.

sampling space

Target space (function 
domain)

Bins (evenly spaced 
= equal probability)

Piecewise-linear: fill 
each bin uniformly



VEGAS is ML

➢ VEGAS is a form of machine learning.

➢ The algorithm goes through a training process: 
It adjusts the location of the bin edges
Metric: decreases the variance in the function values in each bin.

What if we could extend this to adjust the map at every point?

We would need a map that is:
➢ defined in terms of some adjustable parameters
➢ capable of approximating any smooth map.

This is the basis of artificial neural nets.



General Approach First suggested by Bendavid 1707.00028, applied only to 
Gaussian functions

Neural Net

Sampling space 
(uniformly populated) Domain of target function. 

Non-trivial distribution 
induced by Jacobian of NN:

d-cube
d-cube



Statistical distance between the true and induced pdfs: 
Kullbeck-Leibler divergence.

General Approach First suggested by Bendavid 1707.00028, applied only to 
Gaussian functions

Neural Net

Sampling space 
(uniformly populated) Domain of target function. 

Non-trivial distribution 
induced by Jacobian of NN:

d-cube
d-cube



Statistical distance between the true and induced pdfs: 
Kullbeck-Leibler divergence.

General Approach First suggested by Bendavid 1707.00028, applied only to 
Gaussian functions

Neural Net

Sampling space 
(uniformly populated) Domain of target function. 

Non-trivial distribution 
induced by Jacobian of NN:

d-cube
d-cube

Adjust the NN so that DKL between 1/Jac(NN) and 
the differential cross section is minimized.





Our implementation

Design questions:
How many hidden layers/nodes?
What to use as activation/output functions?

Same number of 
input & output 
nodes = phase 
space dimension

Uniform 
distribution 
on hypercube

Induced 
distribution 
on hypercube

Output 
function 
maps onto 
hypercube



Our basic implementation

➢ A common choice of output function is the sigmoid:

Approaches 
asymptotic values 
slowly → hard to 
populate the edges of 
phase space



Output layer & Activation function

The NN can generate any real value, but must be 
mapped onto a hypercube:

“Soft clipping” function

p = 50

Approx. linear

Rapidly asymptotes



Output layer & Activation function

The NN can generate any real value, but must be 
mapped onto a hypercube:

“Soft clipping” function

p = 50

Approx. linear

Rapidly asymptotes

With this choice, a 
traditional ELU activation 
function is sufficient.



Choice of coordinates
A generic prescription that maps any n-body phase space onto a hypercube.

Define qi ∈ [0,1]: rescaled range of invariant mass of the system 
composed of particles {i+1, …, n}.

There are N-2 of these: {n-1, n}, …, {2, …, n}. 

Rescale 2N-5 relative angles to the range [0,1].

Choose overall rotation (3 Euler angles).

Phase space dimensionality:
(N - 2) + (2N - 5) + 3 = 3N - 4



Complete setup

➢ Physics input: simply type analytical expression for the differential 
cross section into the code, or provide a function that code can call. 
(Easy to interface with Feynman diagram calculator.)

➢ Training:

○ Draw a sample of 100 uniform random points → feed through NN.

○ Compute Jacobian of NN at each point (depends on current NN parameters).

○ Compute the KL divergence the Jacobian and the target diff. cross section.

○ Try to minimize KL divergence by adjusting the NN (gradient descent).

➢ Save and use NN parameters which gave the lowest KL divergence.



Example: 3-body decay through resonance

3-body decay via an 
intermediate resonance 
with mass 0.75 GeV.

NN average 10x

Our efficiency: 30-71%, depending on 
resonance width

MadGraph’s efficiency (VEGAS-based): 6%

True distribution
Binned 
NN-generated 
events



Multi-dimensional case: VEGAS

VEGAS uses a rectangular grid.

For multi-dimensional integrals, VEGAS 
needs any sharp feature to be aligned 
with a grid axis.



Multi-dimensional case: VEGAS

What about matrix elements that have 
multiple sharp features? 

This is currently handled with 
multi-channel integration:

> Define multiple grids, one for 
each feature

> Tune and sample from each grid 
separately

> Relative weights among grids 
must also be tuned.



Multi-dimensional case: NN

The NN approach has no intrinsic axes.

x1

x2

w
11

Each node is free to 
rotate to a new 
coordinate system.

The NN learns what the most 
interesting coordinates are.



Multi-dimensional case: NN

The NN approach has no intrinsic axes.

x1

x2

w
11

Each node is free to 
rotate to a new 
coordinate system.

The NN learns what the most 
interesting coordinates are.

We trained the NN on a decay that can 
proceed through two different diagrams:

In our coordinate system, these cannot 
be orthogonal!



Multi-dimensional case: NN

We trained the NN on a decay that can 
proceed through two different diagrams:

In our coordinate system, these cannot 
be orthogonal!

The NN automatically finds and 
maps onto both features!

Our efficiency: 54%

MadGraph’s efficiency (VEGAS-based): 6%



Singularities at quark 
momentum fraction x = 1

An appropriate kinematic cut can 
be specified in the code.

qqg: phase space singularities? 

NN average 10x

To cut on a quantity x > xcut > 0, multiply 
the cross section during training by



Singularities at quark 
momentum fraction x = 1

An appropriate kinematic cut can 
be specified in the code.

qqg: phase space singularities? 

NN average 10x

To cut on a quantity x > xcut > 0, multiply 
the cross section during training by

sqrt(s) = 1 GeV, mqg < 0.1 GeV, n=8

Our efficiency: 65-75% depending on cuts 
and n

MadGraph’s efficiency (VEGAS-based): 4%



Future Directions: New results

See forthcoming work with Perelstein & I-Kai (Calvin) Chen.

Increased number of final state particles → Performance still good!

Introduce gradient clipping → Solves issues of numerical stability when 
Jacobian becomes small

More physical examples: H → 4l, etc.



Future Directions: MadGraph

We have begun to integrate our NN code with the MadGraph diagram 
calculator.

MadGraph provides a piece of code that represents the target differential 
cross section.

Hope for a publicly usable code soon.



Summary

➢ Neural Networks allow a continuum implementation of the classic 
VEGAS phase space integrator/generator.

➢ We have presented several typical physical scenarios that can be 
handled by this method.

➢ We achieve good unweighting efficiency compared to classic methods, 
and without the need to choose special coordinate systems.

➢ We are currently integrating this technique with MadGraph and 
improving performance further.



Backup Slides



NN Basics Each hidden node takes a linear 
combination of the inputs, specified by 
the weights w1

i plus a constant bias 
b1, and transforms it by some 
non-linear activation function A.

The weights and biases together 
comprise the parameters of the net.

x1

x2

w
11



NN Basics Each hidden node takes a linear 
combination of the inputs, specified by 
the weights w1

i plus a constant bias 
b1, and transforms it by some 
non-linear activation function A.

The weights and biases together 
comprise the parameters of the net.

x1

x2

w
11

The output layer is 
similar, but its activation 
function should be 
chosen to map any real 
number onto the desired 
output range.



NN Basics

Loss function: a measure of how 
far the NN is from the desired 
behavior (KL divergence).

Each hidden node takes a linear 
combination of the inputs, specified by 
the weights w1

i plus a constant bias 
b1, and transforms it by some 
non-linear activation function A.

The weights and biases together 
comprise the parameters of the net.

The output layer is 
similar, but its activation 
function should be 
chosen to map any real 
number onto the desired 
output range.

Training: 
Compute gradient of the loss function w.r.t. all 

parameters.
Adjust parameters proportionally (gradient descent).

x1

x2

w
11



3-body Dalitz, constant matrix element
➢ 2-dimensional phase space. Parametrize with:

○ m23 and 𝜃, the angle between p2 and p1 in the m23 rest frame.
○ Phase space is flat in 𝜃.
○ Both variables can be shifted/scaled to lie in a unit square.

M = sqrt(s) = 1 GeV
m1 = 0.1 GeV
m2 = 0.2 GeV
m3 = 0.3 GeV



3-body Dalitz



3-body Dalitz

Based on these findings, we choose the ELU/SC 
architecture for all final results.

Our efficiency: 75%

MadGraph’s efficiency 
(VEGAS-based): 6%


