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Why is inflation a cosmological “collider”?



What's needed as a “collider”?
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The curvature perturbation {(x) ~ SN(x) ~ g&b (¢ = ¢po(t) + 5p(x,1))

Intuitive (probably too rough) Teyp~H - 6¢p~H

Formalism: QFT Recall Subodh’s talk

S=[dxdta*@®) -+,

<5¢n(x’ t)) — <(Teiftdt HI) 5¢6) (Te—iftdt H1)> ’ <5¢2> ~ H?2 ’ (54)3)

PGW & remaining isocurvature fluctuation (if any): similar

. N .
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Observations: Correlation functions of primordial --

- Curvature perturbation ¢
- From CMB AT/T, LSS & 21cm 8p/p
- Status: 2pt well measured (COBE DMR)

- 3pt, ... (hon-Gaussianity) not yet observed. SphereX: 10X

- GW: From CMB B-mode, not yet observed

- Isocurvature: From details of CMB/LSS, not yet observed
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Ever since inflation was proposed,

people use inflation to study HEP.

What’s new about the “cosmological collider”?



Traditional Way

Inflation
model

Observation
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Traditional Way Cosmological Collider

Inflation

model Ht

inflation: e

model
independent

Observation




Mass
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Dispersion relation for light and heavy particles during inflation

Light: m < H: w = k/a (time dependent)

2
Heavy: m ~ H or larger: w = \/(E) + m?4 ~ m (time independent)

a

Thus can have a “resonant time” if these two coincide

def(T) e lkT imt

7\

conformal time proper time



Suppose a heavy particle is produced in de Sitter
Let’s study its interactions

Heavy particle:

Mass m



Heavy particle:

Mass m

k
kL:—L~m
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(interaction 1)
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interference:

corr ~ explim(ts — ty)]

m
~ exp [i E (In(kg/m) — ln(kL/m))]

<

k
kS:—S~m
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(interaction 2)
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Model-independent

All based on known

3)

principles.

ko,

interference:

corr ~ explim(ts — ty)]

(k1/hkz) =< Sk,

m
~ exp [i E (In(kg/m) — ln(kL/m))]

<k5>"m/”
3 v S N TR R
actually u = (E) —3 h/k




Remark: Quantum nature ' a,
Heavy field: 1 particle state form > 3H /2 (interaction 2)
Inflaton: 2p from resonance to H

Test of QM during inflation? a W
Maldacena 1508.01082
Liu, Sou, YW 1608.07909
phase
changed

< by e imAt




Spin



The intermediate heavy particle is non-relativistic.
Angular distribution is the same as particle decay.




Spin 1 spin & motion parallel/anti-parallel form = +1. m = 0 is forbidden
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Spin 1 What about spin & motion has a general angle?
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In general, for integer spin s,
the angular distribution is P;(cos 0)

Arkani-Hamed & Maldacena 2015



Parity and CP

How to observe parity?
Compare “left” and “right” configurations
Beyond 2D. For scalar correlation: need 4pt.

Parity and CP:

- Since the inflaton is charge neutral, P = CP

- May probe CP for fermions

- No CPT invariance due to universe expansion

H CU v po
Interaction: —  0(1) 2. ZprE™"

Here 0 is a rolling field (may or may not be the inflaton)

Liu, Tong, YW, Xianyu 1909.01819



CP: decay plane correlation

N/
N\

CP arises from the plane correlation

of the red and the blue in the early universe



CP: decay plane correlation

CP arises from the plane correlation of .

SR AN
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the red and the blue in the early universe



Width



Width of peak after Fourier transform:

contributions from

kr (3 +%)/2 tiu
- Decay rate: (k—)
S

- Thermal motion (non-Rel & redshifting, subdominant)

(Arkani-Hamed, Maldacena)

(Chemical potential?)
- Higgs mechanism (Higgs fluctuation = Fuzzy mass)



Recap so far

Cosmological collider:

model-independently read off particle mass (resonance),
spin (2D angle), CP (3D angle), width (real power law)
... from inflation

-
p— -
———————————
——————




Recap so far

Cosmological collider:

model-independently read off particle mass (resonance),
spin (2D angle), CP (3D angle), width (real power law)
... from inflation

Any target physics on the cosmological collider?



What's at the energy scale H?



What's at the energy scale H?

Accidentally near H ?

- Grand unification

Kumar, Sundrum 1811.11200

- Neutrino seesaw

Chen, YW & Xianyu, 1805.02656



Uplifted to H scale:

- Standard Model
(h?) ~ H?
Ah* 2 A (h?) h?2 ~ mZg h?
also: possible h?R ~ H?h?
Chen & YW, 0911.3380
Chen, YW & Xianyu, 1610.06597

What's at the energy scale H? Kumar & Sundrum, 1711.03988

Accidentally near H ?

- Grand unification

Kumar, Sundrum 1811.11200

- Neutrino seesaw

Chen, YW & Xianyu, 1805.02656



Uplifted to H scale:
- Standard Model
(h?) ~ H?
Ah* D A (h?) h?2 ~ mZg h?

h = hlong + Ashort
Ah* 2 Ahjynohéhore ~ A(h?)h?

short
Details:

1. One loop and match IR divergence
What's at the energy scale H? 2. Pl of Euclidean zero mode

Accidentally near H ?

- Grand unification

Kumar, Sundrum 1811.11200

- Neutrino seesaw

Chen, YW & Xianyu, 1805.02656
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What's at the energy scale H?

Accidentally near H ?

- Grand unification

Kumar, Sundrum 1811.11200

- Neutrino seesaw

Chen, YW & Xianyu, 1805.02656

Uplifted to H scale:

- Standard Model
(h?) ~ H?
Ah* 2 A (h?) h?2 ~ mZg h?
also: possible h?R ~ H?h?
Chen & YW, 0911.3380

Chen, YW & Xianyu, 1610.06597
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ol i ' At 2 A (R2) B2 ~ mZg h?
02| h W : also: possible h?R ~ H?h?
| — Chen & YW, 0911.3380
My=0.05H M,=0.5H M,=5H Higgs Inf Chen, YW & Xianyu, 1610.06597
What's at the energy scale H? Kumar & Sundrum, 1711.03988
Accidentally near H ? - SUSY breaking
- Grand unification Baumann & Green, 1109.0292
Kumar, Sundrum 1811.11200 Delacretaz, Gorbenko

Chen, YW & Xianyu, 1805.02656



So far so good? Difficulties?

1.

2
3.
4

Non-Gaussian fy1, too small to observe
Limitedtom < H
Challenge for observing very squeezed limits

Pollution from coupling with inflaton



So far so good? Difficulties?

1. Non-Gaussian fy, too small to observe

2. Limitedtom < H

3. Challenge for observing very squeezed limits
4

Pollution from coupling with inflaton

Solutions:

a) Future experiments = 1 (partially)

b) Periodic potential = 2~4 Flauger, Mirbabayi, Senatore, Silverstein, 1606.00513
C) Higher tempe rature = 2~4 Tong, YW, Zhou 1801.05688 (see also Gilles’ talk)

d) Chemical potential = 1~4 chen, yw, xianyu 1805.02656; LT Wang, Xianyu 1910.12876

e) Isocurvature collider = 4 L, yw, xianyu, 1907.07390; Kumar, Sundrum 1908.11378



Summary:

If we knew cosmological correlations infinitely precisely,
we know mass, spin, CP, width of all heavy fields during inflation.

SM & beyond, chemical potential, isocurvature
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The “cosmological collider” is also a “primordial standard clock”.



SCIENTIFIC AMERICAN FEBRUARY 2017

Cosmic Inflation Theory Faces
Challenges

The latest astrophysical measurements, combined with theoretical problems, cast doubt on the
long-cherished inflationary theory of the early cosmos and suggest we need new ideas

g Observations

A Cosmic Controversy

A Scientific American article about the theory of inflation prompted a reply from a group of 33
physicists, along with a response from the article’s authors



SCIENTIFIC AMERICAN FEBRUARY 2017

Cosmic Inflation Theory Faces
Precision Era: Cha,llenges

Haven't we known our The latest astrophysical measurements, combined with theoretical problems, cast doubt on the

long-cherished inflationary theory of the early cosmos and suggest we need new ideas

universe very well?

g Observations

A Cosmic Controversy

A Scientific American article about the theory of inflation prompted a reply from a group of 33
physicists, along with a response from the article’s authors
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Haven't we known our

universe very well? :
y We know fluctuations as

functions of scales (k) very well.

k ~ —1/1 (conformal time)
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We know fluctuations as
functions of scales (k) very well.
k ~ —1/t (conformal time)
Thus we know

fluctuation & conformal time t
But what about

fluctuation < physical time t?




physical mass

phase
hysical time
changed Py
Thust o t
by e
dt/dt = a
kprod

Classical Clock: Chen, 1104.1323
Quantum Clock: Chen, Namjoo & YW, 1509.03930
2pt: Chen, Loeb & Xianyu, 1809.02603

We know fluctuations as
functions of scales (k) very well.
k ~ —1/t (conformal time)
Thus we know

fluctuation & conformal time t
But what about

fluctuation < physical time t?




physical mass

phase
hysical time
changed Py
Thust &t
by e
dt/dt = a

rod

Classical Clock: Chen, 1104.1323
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a « t? then (P, Px,Px,) ~ cos [ (kl)

gelock

inverse functions

direct probe of expansion history

ks

inflation (fast expansion, |p|>1

matter contraction (fast contraction, O<p~0(1)<1)

IRV AVAVAN

slow expansion (—l<p<0)

Ekpyrosis (slow contraction, O<p<l1)




Impacts on inflation models
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