Particle Physics on the Cosmological Collider

Yi Wang (\pm -), the Hong Kong University of Science and Technology

References:

Quasi-Single Field Inflation and the Cosmological Collider:

Chen, YW 0909.0496, 0911.3380; Arkani-Hamed, Maldacena 1503.08043

Standard Model on the Cosmological Collider:

Chen, YW, Xianyu 1604.07841, 1610.06597, 1612.08122; Kumar, Sundrum 1711.03988 BSM on the Cosmological Collider:

Chen, YW, Xianyu 1805.02656; Kumar, Sundrum 1811.11200

High-Spin: Arkani-Hamed, Maldacena 1503.08043, Lee, Baumann, Pimentel 1607.03735

Parity and CP: Liu, Tong, YW, Xianyu, 1909.01819

Isocurvature: Lu, YW, Xianyu, 1907.07390 & in progress, Kumar, Sundrum 1908.11378

Quantum Primordial Standard Clocks: Chen, Namjoo, YW 1509.03930

Impact on inflation models: An, McAneny, Ridgway, Wise 1706.09971, Tong, YW, Zhou 1708.01709

Why is inflation a cosmological "collider"?

What's needed as a "collider"?

The curvature perturbation $\zeta(\mathbf{x}) \sim \delta N(\mathbf{x}) \sim \frac{H}{\dot{\phi}} \delta \phi \quad (\phi = \phi_0(t) + \delta \phi(\mathbf{x}, t))$

Intuitive (probably too rough)
$$T_{GH} \sim H \rightarrow \delta \phi \sim H$$

Formalism: QFT

Recall Subodh's talk

$$S = \int d^3x \, dt \, a^3(t) \left(\frac{\varphi}{2} + \cdots\right),$$

$$\langle \delta \phi^n(\mathbf{x},t) \rangle = \left\langle \left(\bar{T} e^{i \int^t dt \, H_I} \right) \delta \phi^n_{(I)} \left(T e^{-i \int^t dt \, H_I} \right) \right\rangle, \qquad \langle \delta \phi^2 \rangle \sim H^2 \,, \quad \langle \delta \phi^3 \rangle \cdots$$

PGW & remaining isocurvature fluctuation (if any): similar

Inflation of the
very early universe
$$a(t) \propto \exp(Ht)$$
Classical conserved
quantities, such as:
curvature pert ζ $T_{GH} \sim H$ is up to 10^{13} GeVPGW γ_{ij} , isocurvature

Observations: Correlation functions of primordial --

- Curvature perturbation ζ
 - From CMB $\Delta T/T$, LSS & 21cm $\delta \rho / \rho$
 - Status: 2pt well measured (COBE DMR)
 - 3pt, ... (non-Gaussianity) not yet observed. SphereX: 10X
- GW: From CMB B-mode, not yet observed
- Isocurvature: From details of CMB/LSS, not yet observed

Ever since inflation was proposed, people use inflation to study HEP. What's new about the "cosmological collider"?

Traditional Way

Mass

Mass: from resonance

Image: ATLAS

Dispersion relation for light and heavy particles during inflation

Light: $m \ll H$: $\omega = k/a$ (time dependent)

Heavy:
$$m \sim H$$
 or larger: $\omega = \sqrt{\left(\frac{k}{a}\right)^2 + m^2} \sim m$ (time independent)

Thus can have a "resonant time" if these two coincide

Suppose a heavy particle is produced in de Sitter Let's study its interactions

Heavy particle: mass *m*

(interaction 1)

(interaction 2)

Remark: Quantum nature Heavy field: 1 particle state for m > 3H/2Inflaton: 2p from resonance to H Test of QM during inflation?

Maldacena 1508.01082 Liu, Sou, YW 1608.07909

 $k_2:\frac{k_2}{a_2} \sim m$

(interaction 2)

Spin

The intermediate heavy particle is non-relativistic. Angular distribution is the same as particle decay.

Spin 1 spin & motion parallel/anti-parallel for $m = \pm 1$. m = 0 is forbidden

Figure from Feynman Lecture Notes

Spin 1 What about spin & motion has a general angle?

In general, for integer spin s, the angular distribution is $P_s(\cos \theta)$

Parity and CP

How to observe parity? Compare "left" and "right" configurations Beyond 2D. For scalar correlation: need 4pt.

Parity and CP:

- Since the inflaton is charge neutral, P = CP
- May probe CP for fermions
- No CPT invariance due to universe expansion

Interaction:
$$-\frac{c_0}{4}\theta(t)Z_{\mu\nu}Z_{\rho\sigma}\mathcal{E}^{\mu\nu\rho\sigma}$$
 $\overset{\vec{q}_2}{\square}$ $\overset{\vec{q}_2}{\boxtimes}$ $\overset{\vec{k}_2}{\square}$
Here θ is a rolling field (may or may not be the inflaton)

Liu, Tong, YW, Xianyu 1909.01819

 \vec{q}_1 \vec{n} \vec{k}_1

CP: decay plane correlation

CP arises from the plane correlation of the red and the blue in the early universe

CP: decay plane correlation

CP arises from the plane correlation of the red and the blue in the early universe

Width

Width of peak after Fourier transform: contributions from

- Decay rate:
$$\left(\frac{k_L}{k_S}\right)^{\left(3+\frac{\Gamma}{H}\right)/2\pm i\mu}$$
 (Arkani-Hamed, Maldacena)

- Thermal motion (non-Rel & redshifting, subdominant) (Chemical potential?)
- Higgs mechanism (Higgs fluctuation \Rightarrow Fuzzy mass)

Recap so far

Cosmological collider:

model-independently read off particle mass (resonance), spin (2D angle), CP (3D angle), width (real power law) ... from inflation

Recap so far

Cosmological collider:

model-independently read off particle mass (resonance), spin (2D angle), CP (3D angle), width (real power law) ... from inflation

Any target physics on the cosmological collider?

Accidentally near H?

- Grand unification

Kumar, Sundrum 1811.11200

- Neutrino seesaw

Chen, YW & Xianyu, 1805.02656

Accidentally near H ?

- Grand unification

Kumar, Sundrum 1811.11200

Neutrino seesaw

Chen, YW & Xianyu, 1805.02656

Uplifted to *H* scale: - Standard Model $\langle h^2 \rangle \sim H^2$ $\lambda h^4 \supset \lambda \langle h^2 \rangle h^2 \sim m_{eff}^2 h^2$ also: possible $h^2 R \sim H^2 h^2$ Chen & YW, 0911.3380 Chen, YW & Xianyu, 1610.06597 Kumar & Sundrum, 1711.03988

Accidentally near H ?

- Grand unification

Kumar, Sundrum 1811.11200

- Neutrino seesaw

Chen, YW & Xianyu, 1805.02656

Standard Model
⟨h²⟩ ~ H²
λh⁴ ⊃ λ ⟨h²⟩ h² ~ m²_{eff} h²
h = h_{long} + h_{short}
λh⁴ ⊃ λh²_{long} h²_{short} ~ λ⟨h²⟩h²
Details:
One loop and match IR divergence
PI of Euclidean zero mode

Uplifted to *H* scale:

Accidentally near H?

- Grand unification

Kumar, Sundrum 1811.11200

- Neutrino seesaw

Chen, YW & Xianyu, 1805.02656

Uplifted to *H* scale:

- Standard Model $\langle h^2 \rangle \sim H^2$

 $\lambda h^4 \supset \lambda \left< h^2 \right> h^2 \sim \ m_{\rm eff}^2 \ h^2$

also: possible $h^2 R \sim H^2 h^2$

Chen & YW, 0911.3380

Chen, YW & Xianyu, 1610.06597

Kumar & Sundrum, 1711.03988

Accidentally near H ?

- Grand unification

Kumar, Sundrum 1811.11200

- Neutrino seesaw

Chen, YW & Xianyu, 1805.02656

Uplifted to *H* scale:

- Standard Model $\langle h^2 \rangle \sim H^2$

 $\lambda h^4 \supset \lambda \langle h^2 \rangle h^2 \sim m_{\rm eff}^2 h^2$

also: possible $h^2 R \sim H^2 h^2$

Chen & YW, 0911.3380

Chen, YW & Xianyu, 1610.06597 Kumar & Sundrum, 1711.03988

- SUSY breaking

Baumann & Green, 1109.0292 Delacretaz, Gorbenko & Senatore 1610.04227 So far so good? Difficulties?

- 1. Non-Gaussian f_{NL} too small to observe
- 2. Limited to $m \leq H$
- 3. Challenge for observing very squeezed limits
- 4. Pollution from coupling with inflaton

So far so good? Difficulties?

- 1. Non-Gaussian f_{NL} too small to observe
- 2. Limited to $m \leq H$
- 3. Challenge for observing very squeezed limits
- 4. Pollution from coupling with inflaton

Solutions:

- a) Future experiments \Rightarrow 1 (partially)
- b) Periodic potential $\Rightarrow 2 \sim 4$ Flauger, Mirbabayi, Senatore, Silverstein, 1606.00513
- c) Higher temperature $\Rightarrow 2 \sim 4$ Tong, YW, Zhou 1801.05688 (see also Gilles' talk)
- d) Chemical potential $\Rightarrow 1 \sim 4$ Chen, YW, Xianyu 1805.02656; LT Wang, Xianyu 1910.12876
- e) Isocurvature collider \Rightarrow 4 Lu, YW, Xianyu, 1907.07390; Kumar, Sundrum 1908.11378

Summary:

If we knew cosmological correlations infinitely precisely, we know mass, spin, CP, width of all heavy fields during inflation.

SM & beyond, chemical potential, isocurvature

Acknowledgment

This talk is supported in part by Grants ECS 26300316 and GRF 16301917, 16303819, 16304418 from Research Grants Council (RGC) of Hong Kong

The "cosmological collider" is also a "primordial standard clock".

SCIENTIFIC AMERICAN FEBRUARY 2017

Cosmic Inflation Theory Faces Challenges

The latest astrophysical measurements, combined with theoretical problems, cast doubt on the long-cherished inflationary theory of the early cosmos and suggest we need new ideas

By Anna Ijjas, Paul J. Steinhardt, Abraham Loeb

🛓 Observations

A Cosmic Controversy

A *Scientific American* article about the theory of inflation prompted a reply from a group of 33 physicists, along with a response from the article's authors

SCIENTIFIC AMERICAN FEBRUARY 2017

Cosmic Inflation Theory Faces Challenges

Precision Era:

Haven't we known our universe very well?

The latest astrophysical measurements, combined with theoretical problems, cast doubt on the long-cherished inflationary theory of the early cosmos and suggest we need new ideas

By Anna Ijjas, Paul J. Steinhardt, Abraham Loeb

💈 Observations

A Cosmic Controversy

A *Scientific American* article about the theory of inflation prompted a reply from a group of 33 physicists, along with a response from the article's authors

Precision Era: Haven't we known our universe very well?

We know fluctuations as

- functions of scales (k) very well.
 - $k \sim -1/\tau$ (conformal time)

Thus we know

fluctuation \leftrightarrow conformal time τ

But what about

fluctuation \leftrightarrow physical time t?

We know fluctuations as functions of scales (k) very well. $k \sim -1/\tau$ (conformal time) Thus we know fluctuation \leftrightarrow conformal time τ But what about

fluctuation \leftrightarrow physical time t?

Classical Clock: Chen, 1104.1323 Quantum Clock: Chen, Namjoo & YW, 1509.03930 2pt: Chen, Loeb & Xianyu, 1809.02603 We know fluctuations as functions of scales (k) very well. $k \sim -1/\tau$ (conformal time) Thus we know fluctuation \leftrightarrow conformal time τ But what about fluctuation \leftrightarrow physical time t?

2

4

6

 k_1/k_3

8

10

Classical Clock: Chen, 1104.1323 Quantum Clock: Chen, Namjoo & YW, 1509.03930 2pt: Chen, Loeb & Xianyu, 1809.02603

Impacts on inflation models

Jiang, YW 1703.04477

An, McAneny, Ridgway, Wise 1706.09971 Tong, YW, Zhou 1708.01709