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beamstrahlung

beamline muons

today focus on 2 subjects:
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beamstrahlung

beamline muons
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beamstrahlung
beam particles interact with those other bunch at collision point

radiate photons → convert into e+ e-

typically very low p
T 
e+ e-

high p
T
 tail can directly reach the inner detectors

vast majority have low p
T 
, and “follow” the B-field lines
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beamcal, crossing angle
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because of crossing angle,
magnetic field lines (from detector solenoid) 

from IP do not pass into outgoing beam-pipe

→ bulk of beamstrahlung pairs hit forward calorimeters
→ (back-) scatter, interact
→ detector backgrounds

additional anti-DID field (field in x-direction) 
applied to steer field lines into outgoing beampipe

rather complex system
is it needed ?
how big is its effect on detector backgrounds ?
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simulate beamstrahlung pairs at ILC-250
ILD Geant4-based simulation

detailed field maps of solenoid/yoke, with and without anti-DID field

solenoid only                                                 solenoid + anti-DID
energy deposit in BeamCal sensors

use of anti-DID better centres distribution on outgoing beampipe, 
reduces total energy deposit
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beamstrahlung: hits in vertex detector
“direct” hits → particles directly coming from IP

“back-scattered” hits → secondaries produced 
when e+ e- interact with forward calorimeters

in simulation, distinguish based on hit time: 
“direct” = early / “back-scattered” = late

vertex detector geometry
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early hits, produced by particles coming directly from the IP

solenoid only
sol + anti-DID
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late hits, back-scattered from forward region

solenoid only
sol + anti-DID
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Solenoid field strength

using a stronger detector solenoid better focuses the beamstrahlung pairs

“large” ILD → 3.5 T nominal field [standard ILD model]

“small” ILD → 4.0 T 
[motivation: reduce cost. 

Higher field preserves track momentum resolution for smaller tracker]

using stronger solenoid reduces the “early” hits by 10-20%, 
perhaps a slight increase in the “late” hits 

[strength of anti-DID may need more careful tuning] 
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situation at ILC-500
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250 GeV 3.0 T solenoid only
250 GeV 3.0 T solenoid + anti-DID
500 GeV 3.0 T solenoid + anti-DID
250 GeV 3.5 T solenoid only
250 GeV 3.5 T solenoid + anti-DID
500 GeV 3.0 T solenoid only
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beamstrahlung: hits in TPC central tracker

according to TPC experts,
this looks manageable

~1 bunch train
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anti-DID : summary
First vertex detector layers

with no anti-DID, 
# direct/early hits ~ # back-scattered/late hits

early hits in vertex detector unaffected by anti-DID [as expected]

if anti-DID field is used,
- late hits are reduced by a factor around three to four
- total number of hits reduced by ~40%

we have not yet concluded if we need anti-DID,
but we have information with which to decide...

other detector subsystems less affected
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beamstrahlung

beamline muons
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particles in beam halo interact with collimators etc 
→ can produce muons

very penetrating, can reach the experiment in a linear collider

simulation of muon production, 
transport in Beam Delivery System of ILC 

L. Keller, G. White @ SLAC,
arXiv:1901.06449

with and without use of magnetised-iron muon spoilers

MUCARLO simulation code
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muon wall

toroidal spoilers

beamline muon spoiling
from Keller, White 
  arXiv:1901.06449 

question: is the muon wall needed ?
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data from Keller/White

2625 bunches of ILC-500,
assuming 0.1% of beam interacts in BDS
→ likely very pessimistic

# muons per bunch crossing 
a 6.5m radius disk at IP ~ detector:

no spoilers 130
5 “donut” spoilers 4.3

+ muon wall 0.6

Keller/White
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input these muon momenta into the ILD detector simulation

e.g. hits in the endcap muon detectors: 

5 toroidal spoilers                                         5 toroidal spoilers + “wall”
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thanks to their penetrating nature (ie ~ no showers), 
and rather collimated “beam”,

these muons should be easy to identify with the 
highly segmented readout of ILD subdetectors

→ we’ll be able to subtract their contribution from physics events
on a hit-by-hit basis

a few muons per bunch crossing seems manageable
→ prediction for 5 donut spoilers (no muon wall) ~ 4/BX

muon wall probably not needed,
 from an event reconstruction standpoint
→ probably good idea to reserve space for it,

in case of future need (eg unexpectedly large backgrounds…)
→ should be taken into account for estimating detector data rates
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summary

showed current status of studies into

beamstrahlung, and effect of anti-DID

→ anti-DID reduces hits in innner vertex detector by ~40%

beamline muons, and effect of muon “wall”

→ 5 toroidal spoilers alone seem to reduce 
muon backgrounds to a manageable rate

more effort required to investigate these and 
other background sources in more detail
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backup
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pair backgrounds: hit densities
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after collision, ILC bunches are dumped 
in a shielded water dump, ~300m downstream of the IP

A. Schuetz has simulated this situation using FLUKA code:
full details in DESY-THESIS-2018-017

500 GeV electron bunch (ie ILC-1TeV) into water dump
transmission of neutrons back into detector hall

IP
main beam dump
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A. Scheutz has provided a set of momentum vectors 
of neutrons entering the experimental hall

These were then input into the Geant-4 ILD simulation model

present simulation ILD model does not 
include so-called “pac-man” shielding 
between ILC tunnel and experimental 
hall

→ limits realism of simulation,
so likely to be an overestimate

→ more work needed... 
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endpoint of all stopped simulated particles
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