CEPC Radiation Background Studies

Hongbo Zhu (IHEP)
On behalf of the CEPC MDI Study Group
OUTLINE

• Interaction Region Layout
• Radiation Backgrounds
 • *Synchrotron Radiation*
 • *Pair Production*
 • *Off Energy Beam Particles*
• Summary and Outlook
INTERACTION REGION LAYOUT

- Interaction region layout in CDR (*to be optimized*)

![Diagram of Interaction Region Layout](image-url)
Radiation Background Sources

• Important inputs to the detector (+machine) designs, e.g. detector occupancy, radiation tolerance ...

• Must investigate different sources (beam-induced or luminosity related) of radiation backgrounds
 • Synchrotron radiation
 • Beamstrahlung, Pair production
 • Off-energy beam particles (radiative Bhabha scattering, beamstrahlung, beam-gas interaction, etc.)
SYNCHROTRON RADIATION

• Beam particles bent by magnets (last bending dipole, focusing quadrupoles) can emit synchrotron radiation photons → critical at circular machines

• BDSim to transport beam (core + halo) from the last dipole to the interaction region and record the particles hitting the central beryllium beam pipe

Most of them scattered by the beampipe between [1,2 m] into the central region
Mask Tip Design

Collimator shape

\[
\theta_b = 1.17 \text{ mrad} \\
\theta_y = -127 \pm 7 \mu \text{rad at } Z=-1.51 \text{m} \\
\theta_y = -130 \pm 8 \mu \text{rad at } Z=-1.93 \text{m}
\]

High-Z material required: Au chosen

K-shell photon included in simulation
WITH COLLIMATORS

• **Three masks** located at $|Z|=1.51$, 1.93 and 4.2 m along the beam pipe to the IP to block scattered SR photons → shielding the central beam pipe

• Number of photons per bunch hitting the central beam pipe dropping from 80,000 to **250**
Beamstrahlung & Pair Production

- Estimated as the most important background at Linear Colliders, *not an issue for lower energy/luminosity machines*
- Charged particles attracted by the opposite beam emit photons (*beamstrahlung*), followed by electron-positron pair production (*dominate contributions from the incoherent pair production*)

Most electrons/positrons are produced with low energies and *in the very forward region*, and can be confined within the beam pipe with a strong detector solenoid;

However, a non-negligible amount of electrons/positrons can hit the detector → **radiation backgrounds**

Hadronic backgrounds much less critical

Simulated with GUINEAPIG with external field implemented and cross checked with CAIN
• Using hit density, total ionizing dose (TID) and non-ionizing energy loss (NIEL) to quantify the radiation background levels

• Adopted the calculation method used for the ATLAS background estimation (ATL-GEN-2005-001), safety factor of $\times 10$ applied
PAIR PRODUCTION (UPDATED)

- Estimated backgrounds in the vertex detector (still using the CEPC CDR machine parameters)

Higgs ($\sqrt{s} = 240$ GeV)

<table>
<thead>
<tr>
<th>Layer</th>
<th>Hit Density [cm$^{-2}$BX$^{-1}$]</th>
<th>TID [kRad/yr]</th>
<th>1 MeV Equ. Neu. Fluence [n$_{eq}$cm$^{-2}$yr$^{-1}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.26</td>
<td>591.14</td>
<td>1.11 x 1012</td>
</tr>
<tr>
<td>2</td>
<td>1.70</td>
<td>472.12</td>
<td>8.66 x 1011</td>
</tr>
<tr>
<td>3</td>
<td>0.14</td>
<td>42.63</td>
<td>9.08 x 1010</td>
</tr>
<tr>
<td>4</td>
<td>0.11</td>
<td>35.62</td>
<td>8.09 x 1010</td>
</tr>
<tr>
<td>5</td>
<td>0.02</td>
<td>6.15</td>
<td>2.57 x 1010</td>
</tr>
<tr>
<td>6</td>
<td>0.01</td>
<td>5.37</td>
<td>2.41 x 1010</td>
</tr>
</tbody>
</table>

Z ($\sqrt{s} = 91$ GeV)

<table>
<thead>
<tr>
<th>B = 2 T</th>
<th>Hit Density [hits/cm2.BX]</th>
<th>TID [kRad/year]</th>
<th>NIEL [10^{12} 1 MeV n$_{eq}$/cm2.year]</th>
</tr>
</thead>
<tbody>
<tr>
<td>B = 3 T</td>
<td>0.019</td>
<td>274.09</td>
<td>0.51</td>
</tr>
</tbody>
</table>
OFF-ENERGY BEAM PARTICLES

- Beam particles losing energy (radiative Bhabha scattering, beam-gas interaction, beam-gas interaction, etc.) larger than acceptance kicked off their orbit \(\rightarrow \) lost close or even in the interaction region.
COLLIMATORS

- Two sets of collimators (NOT Sufficient!) placed upstream to stop off-energy beam particles, far away from the beam clearance area (exact aperture size subject to optimization)

Inspired by the BEPCII collimator design
Radiative Bhabha Scattering

- Event generated with BBBrem and particles tracked with SAD
- Hit map in the vertex detector (with collimators)

More hits on the −X side
Nearly uniform along the z-axis
BEAM-GAS INTERACTION

- Generated with *customized code* and tracked with *SAD*
- Hit map in the vertex detector (with collimators)

(c) X-Y plane (Beam-Gas Scattering) (d) R-Z plane (Beam-Gas Scattering)
Beam Thermal Photons

- Generated with **customized code** and tracked with **SAD**
- Hit map in the vertex detector (with collimators)
Off-Energy Beam Particles

- Estimated backgrounds at the first vertex detector layer (still using the CEPC CDR machine parameters)

<table>
<thead>
<tr>
<th></th>
<th>Hit Density [hits/cm²·BX]</th>
<th>TID [MRad/year]</th>
<th>NIEL [10¹² 1 MeV nₑq/cm²·year]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiative Bhabha</td>
<td>0.93</td>
<td>1.2</td>
<td>4.08</td>
</tr>
<tr>
<td>Beam Thermal Photons</td>
<td>2.31</td>
<td>2.3</td>
<td>5.48</td>
</tr>
<tr>
<td>Beam-Gas Interaction</td>
<td>368.37</td>
<td>39.90</td>
<td>965</td>
</tr>
</tbody>
</table>

Vacuum pressure assumed to be 10^{-7} Pa

Beam-gas interaction backgrounds reduce linearly to the vacuum pressure level \rightarrow better vacuum, e.g. 10^{-8} Pa
BETTER UNDERSTANDING OF BEAM-GAS INTERACTION
Verification with BEPC II/BES III

Basic Principles

Single beam mode: three dominant contributions from Touschek, beam-gas and electronics noise (+ cosmic rays)

\[
O_{\text{single beam}} = O_{\text{Touschek}} + O_{\text{beam-gas}} + O_{\text{e-noise, cosmic}}
\]

\[
= S_t \cdot D(\sigma_x') \frac{I_t \cdot I_b}{\sigma_x \sigma_y \sigma_z} + S_g \cdot I_t \cdot P(I_t) + S_e
\]

Double beam mode: additional contributions from luminosity related backgrounds, e.g. radiative Bhabha scattering

\[
O_{\text{double beam}} = O_{e^+} + O_{e^-} + O_L
\]
WHAT CAN BE LEARNT FROM B II/BES III

SINGLE BEAM MODE

- **No Beam**, detector with high voltage on to measure the backgrounds in MDC and EMC → S_e
- Touschek backgrounds: with fixed beam energy and total current (I_t), varying bunch number (changing I_b), bunch size (σ_y, σ_z) → S_t
- Beam-gas backgrounds: with I_b and bunch size fixed, increasing the bunch number (increasing I_t) → S_g

$$S_t \cdot D(\sigma_{x'}) \frac{I_t \cdot I_b}{\sigma_x \sigma_y \sigma_z} + S_g \cdot I_t \cdot P(I_t) + S_e$$

Example plot from SuperKEKB

16-17 January 2020

CEPC Radiation Backgrounds, H. Zhu
WHAT CAN BE LEARNT FROM B II/BES III

DOUBLE BEAM MODE

\[0_{\text{double beam}} = O_{e^+} + O_{e^-} + O_{L} \]

- Fixed **beam energy & current, bunch parameters**, operating
 - Single \(e^+/e^-\) beam
 - Separate \(e^+\) and \(e^-\) beams
 - Colliding \(e^+\) and \(e^-\) beams

- Thorough understanding of the **radiative Bhabha scattering** backgrounds would be vital for optimizing the collimators.

The number of collimators is shown at around 2-4. Taking into account the necessary freedom required for tuning, the number of the collimators is extremely insufficient. According to experience in other colliders such as LEP, KEKB, PEP-II, SuperKEKB, 10-20 of them may be needed per IP.
PROPOSED EXPERIMENTAL STEPS

SuperKEKB background runs

• Propose to repeat the summer studies with longer machine time (extending to 12 hours) to take background with more machine/beam parameter points (details attached)

• Important to improve the communication between the machine and detector operation
Vacuum Pressure Degradation

- Beam-gas backgrounds depending significantly on the vacuum pressure, which can be affected by synchrotron radiation during operation;

- LEP studies back in 1982 with very low photon energy (critical energy ~2 keV);

- Relevant parameters for CEPC:
 - Higgs: ~360 keV on arc, ~25 keV on last bending;
 - Z: ~23 keV on arc.

- To find an end station at the SR facility with the beam energy of ~25 keV, e.g. BSRF.
EXPERIMENTAL SETUP

- CEPC vacuum chamber prototypes (Cu/Al, 2 meters long preferred but depending on the space)
- Gas pressure monitors and gas composition analysis tools
 - Pump the Cu/Al chamber and set incident angle and energy;
 - Record pressure, gas type, pump speed with photon exposure;
 - Stop when reach the stopping condition (accumulated current or pressure); expose the chamber to air;
 - Repeat with different conditions (energy, angle, hitting side...).
SUMMARY & OUTLOOK

• Radiation backgrounds calculated for different sources
 • Pair production, synchrotron radiation, off-energy beam particles (with collimators)

• Validate (partly) the simulation codes with background data from BEPC II, LEP II and SuperKEKB
 • Participate in the background studies for SuperKEKB/Belle II Phase III commissioning, postponed to May ...

• To include machine related backgrounds and provide updates as the machine design evolves ...