

(almost all) studies based on full detector simulation, including beam parameters / lumi. spectrum, backgrounds, realistic reconstruction & analysis

performed by a relatively small number of dedicated (& mostly young) researchers

why measure the Higgs?

deeper physics leaves fingerprints on Higgs TeV-scale new physics \rightarrow few-% deviations in couplings³

Higgs production in electron-positron collisions

Quantity	Symbol Unit		Initial	Upgrades	
Centre-of-mass energy	\sqrt{s}	GeV	250	500	1000
Luminosity	$\mathcal{L} (10^{34} { m cm})$	$m^{-2}s^{-1}$)	1.35	1.8	4.9
Repetition frequency	$f_{ m rep}$	Hz	5	5	4
Bunches per pulse	n_{bunch}	1	1312	1312	2450
Bunch population	$N_{ m e}$	10^{10}	2	2	1.74
Linac bunch interval	$\Delta t_{ m b}$	\mathbf{ns}	554	554	366
Beam current in pulse	$I_{ m pulse}$	mA	5.8	5.8	7.6
Beam pulse duration	$t_{\rm pulse}$	$\mu { m s}$	727	727	897
Average beam power	\hat{P}_{ave}	MW	5.3	10.5	27.2
Norm. hor. emitt. at IP	$\gamma \epsilon_{\mathbf{x}}$	$\mu { m m}$	5	10	10
Norm. vert. emitt. at IP	$\gamma \epsilon_{ m y}$	nm	35	35	35
RMS hor. beam size at IP	σ^*_{x}	nm	516	474	335
RMS vert. beam size at IP	$\sigma_{ m y}^*$	nm	7.7	5.9	2.7
Site AC power	$P_{ m site}$	MW	129	163	300
Site length	$L_{\rm site}$	km	20.5	31	40

~20.5 km

a staged machine & staged physics program

Integrated Luminosities [fb]

TDR design for 250 & 500 GeV, reasonable ideas on how to get to 1 TeV

too early to propose a longer-term future, but one can imagine installing improved and/or new accelerator technologies ILC will provide beams of polarised electrons and positrons electron: 80%, positron: 30% polarisation

energy and sign of polarisation can "easily" be tuned

		$\int \mathcal{L}$	fraction with $sign(P(e^{-}), P(e^{+})) =$				
	E_{CM} (GeV)	$({\rm fb}^{-1})$	(-+)	(+-)	()	(++)	
ILC250	250	2000	45%	45%	5%	5%	
ILC350	350	200	67.5%	22.5%	5%	5%	
ILC500	500	4000	40%	40%	10%	10%	
GigaZ	91.19	100	40%	40%	10%	10%	
ILC1000	1000	8000	40%	40%	10%	10%	

CP violation in Higgs sector

spin correlations between tau leptons from Higgs decay

__=π/4

arXiv:1804.01241

MC-level

arbitrary normalisation

20

15

10

0

ilr

IIL

ILC250 : measure Ψ_{CP} to ~4°

CP violation in Higgs sector : HVV coupling

electro-weak measurements

W-pair production @ 250 GeV

large samples of W bosons:

directly reconstructed mass [~1 MeV] & width [~ 3 MeV] branching ratios [well below per-mille]

dedicated threshold scan @ 161 GeV would give complementary & orthogonal measurements

Z boson:

possibly a dedicated Z-pole run $\sim 5x10^9 Z^0 @ 91 GeV$

electro-weak couplings of beauty

$$\frac{d\sigma}{d\cos\theta_b}(\bar{e_L}e_R^+ \to b\bar{b}) \sim (L_e L_b)^2 (1 + \cos\theta_b)^2 + (L_e R_b)^2 (1 - \cos\theta_b)^2$$
$$\frac{d\sigma}{d\cos\theta_b}(\bar{e_R}e_L^+ \to b\bar{b}) \sim (R_e R_b)^2 (1 + \cos\theta_b)^2 + (R_e L_b)^2 (1 - \cos\theta_b)^2$$

a *beautiful* example of the difference between left- and right-handed couplings

PoS(EPS-HEP2019)624

beam polarisation allows us to see this L-R difference

beam polarisation allows us to see this L-R difference

electro-weak couplings of beauty

$$\frac{d\sigma}{d\cos\theta_b}(\bar{e_L}e_R^+ \to b\bar{b}) \sim (L_e L_b)^2 (1 + \cos\theta_b)^2 + (L_e R_b)^2 (1 - \cos\theta_b)^2$$
$$\frac{d\sigma}{d\cos\theta_b}(\bar{e_R}e_L^+ \to b\bar{b}) \sim (R_e R_b)^2 (1 + \cos\theta_b)^2 + (R_e L_b)^2 (1 - \cos\theta_b)^2$$

PoS(EPS-HEP2019)624

top quark

electroweak couplings

arXiv:1907.10619

+ mass & width from threshold scan @ ~350 GeV

new physics searches

WIMP search with mono-photon signature

BeamCal Layer 8 × [mm] E[GeV] 2.5° e ? e 10~2 strong emphasis on -100 very forward region & hermiticity 150 X' [mm] to reject Bhabha scattering V⁴⁰⁰⁰ V³⁰² S⁶⁰ S⁶⁰ Centre-of-mass energy Vector, 20years ILD Combined # events [a.u.] Signal photon spectrum 1GeV 500GeV, 4000 fb⁻¹ $M_{\gamma} =$ 10² 350GeV, 200 fb⁻¹ M₂ = 140GeV 2000 250GeV, 2000 fb⁻¹ M_y = 220GeV expected WIMP 10 exclusion region 1000 EFT not valid 1 0 50 150 0 100 200 50 150 250 100 200 E_γ [GeV] M, [GeV]

arxiv:2001.03011

appropriate beam polarisation to suppress leading background $e^+ e^- \rightarrow \nu \nu \gamma$, maximises statistical precision

combination of datasets with different polarisations (and therefore different S/B) can provide "in situ" control of systematic uncertainties

sensitivity to natural SUSY arXiv:1912.06643

studied in 3 scenarios of "natural" SUSY LSP is typically Higgsino small mass splitting to NLSP

chargino channel $e_{L}^{-}e_{R}^{+} \rightarrow \widetilde{\chi}_{1}^{+}\widetilde{\chi}_{1}^{-} \rightarrow \widetilde{\chi}_{1}^{0}\widetilde{\chi}_{1}^{0}qqh$

arXiv:1912.06643

	$\sqrt{s} = 500 \text{GeV}$ only		ILC1	ILC2	nGMM1
endpoints of various distributions sensitive to new particle masses	Model mass [GeV]	$m_{\widetilde{\chi}_1^0}$	102.7	148.1	151.4
		$m_{\widetilde{\chi}_2^0}$	124.0	157.8	155.8
		$m_{\widetilde{\chi}_1^\pm}$	117.3	158.3	158.7
	Precision	$\delta m_{\widetilde{\chi}_1^0}/m_{\widetilde{\chi}_1^0}$	0.5 %	0.7~%	1.0 %
	$(\mathcal{P}_{-+}, \mathcal{L} = 500 \text{ fb}^{-1})$	$\delta m_{\widetilde{\chi}^0_2}/m_{\widetilde{\chi}^0_2}$	0.5 %	0.7~%	1.0 %
	\oplus ($\mathcal{P}_{+-}, \mathcal{L} = 500 \text{ fb}^{-1}$)	$\delta m_{\widetilde{\chi}_1^\pm}/m_{\widetilde{\chi}_1^\pm}$	0.5 %	0.7~%	$1.0 \ \%$
	Scaled precision	$\delta m_{\widetilde{\chi}_1^0}/m_{\widetilde{\chi}_1^0}$	0.3 %	0.4 %	0.5%
	$(\mathscr{P}_{-+}, \mathscr{L} = 1600 \text{ fb}^{-1})$	$\delta m_{\widetilde{\chi}^0_2}^{\kappa_1}/m_{\widetilde{\chi}^0_2}^{\kappa_1}$	0.3 %	0.4 %	0.5%
	\oplus ($\mathcal{P}_{+-}, \mathcal{L} = 1600 \text{ fb}^{-1}$)	$\delta m_{\widetilde{\chi}_1^{\pm}}/m_{\widetilde{\chi}_1^{\pm}}$	0.3 %	0.4~%	0.5%

corresponding variations in Higgs couplings

measured parameters of new particles can then be used to extract model parameters and predict masses of other particles in the model

 \rightarrow specific guidance for future studies / facilities $_{26}$

summary

main target: Higgs well-established physics capabilities @ 250 GeV and beyond

electroweak: large numbers of Z & W, orders of magnitude more than LEP/SLC top quarks beam polarisation and wide energy range increase sensitivity to anoumalous couplings

new particle searches:

sensitive to soft or invisible new particle signatures beam polarisation can help find it, and to untangle its nature

