





# CEPC 650MHz Klystron R&D

**Zusheng ZHOU** 

On behalf of High Efficiency RF Source R&D Collaboration Institute of High Energy Physics Jan. 21, 2020









## ◆1<sup>st</sup> prototype tube

- Manufacture completed
- Conditioning progress

## High efficiency design

- High voltage klystron
- Multi-beam klystron







# 1st prototype tube







## 1<sup>st</sup> prototype tube

# Conventional method based on 2nd harmonic cavity in order to investigate the design and manufacture technologies for high power CW klystron.

#### **Design Parameters**

| Main parameters     | Goal  |
|---------------------|-------|
| Freq. (MHz)         | 650   |
| Vk (kV)             | -81.5 |
| Ik (À)              | 15.1  |
| Perveance (µP)      | 0.65  |
| Efficiency (%)      | >60   |
| Output power (kW)   | 800   |
| 1dB bandwidth (MHz) | ±0.5  |







中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

### **Components manufacture**



Modulator anode



Input coupler



Cooling pipe



Gun welding edge



Cavity body



Cavity nose



Coil



Collector 5







# **Gun subassembly**











Modulator anode assembly

Focusing electrode and support assembly





Input coupler loop

1<sup>st</sup> CAV



2<sup>nd</sup> CAV



3<sup>rd</sup> CAV



4<sup>th</sup> CAV











# **Cavity brazing and cold test**



**Cavity brazing** 

Leak test

Cold test

| Parameters        |         | 1st   | 2nd    | 3rd    | 4th    | 5th    | 6th    |
|-------------------|---------|-------|--------|--------|--------|--------|--------|
| Frequency ( MHz ) | Design  | 650.5 | 649.5  | 1293.5 | 669.2  | 668    | 649.5  |
|                   | Measure | 650.2 | 649.29 | 1293.1 | 668.98 | 668.68 | 649.15 |
| Q <sub>e</sub>    | Design  | 291.4 |        |        |        |        | 67     |
|                   | Measure | 292.2 |        |        |        |        | 69.4   |

#### The measured frequency is within design scope.





中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

### **Collector brazing**



**Collector brazing** 





中國科學院為能物加加完所 Institute of High Energy Physics Chinese Academy of Sciences

# **Gun processing**



Temperature measurement





Gun processing

#### HKUST JOCKEY CLUB INSTITUTE FOR ADVANCED STUDY Auxiliary components











#### Oil tank





There is about 3% error between the measurement results and the simulation values. The excitation current of the solenoids will be adjusted to meet the design requirements.

#### HUST JOCKEY CLUB INSTITUTE FOR ADVANCED STUDY Vacuum-Assy assembly





**Component leak test** 





**Cavity assemble** 





#### **Collector assemble**



**Final welding** 



Final assemble is completed on Oct.19

**Completed assembly** 





中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

## **Prototype bake-out**





**Prototype installation** 





**Top view** 

Bake out is started from Oct.26 and finished on Nov.24.



#### **Prototype bake-out**



Almost one month



Filament current(30A)

Vessel pressure(-6Pa)

**Tube Pressure(-8Pa)** 



## **Final assembly**



**Klystron pinch off** 



Lead shield



**Coil installation** 



Water jacket installation



**Horizontal placement** 



**Remove assembly bracket** 



Final placement on Dec. 11

Vertical to horizontal





中国科学院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

## **Packing and Transportation**



**Before delivery** 







Packing

Loading



Leave factory on Dec.24(10:30)



Arrived IHEP on Dec.25(21:00)





中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

## **Unloading and In place**





#### **Unboxing and unloading**





In place at 2<sup>nd</sup> floor of building 1 on Dec. 26

Lifting







# **Test condition preparation**

- High voltage power supply: ADS project High power load: ADS project (400kW max.)
- Interlock and data collection Water cooling and waveguide system connection LLRF and arc detector

High voltage conditioning is started from this year.





# **Test condition preparation**

#### **Test procedure**

- **①** Cathode Low-voltage emission test
- **②** Vacuum treatment and cold voltage conditioning
- **③ High voltage conditioning**
- **④ RF** processing
- **5** Power and stability







# **Conditioning status**

#### **Until Jan.19**

- **1** Cathode Low-voltage emission test-FINISHED
- **2** Vacuum treatment and cold voltage conditioning-FINISHED
- **③ High voltage conditioning-UNDERWAY**
- **④ RF** processing
- **5** Power and stability







# High efficiency design





# High efficiency design

#### GOAL

Scheme 1: With high voltage gun (110kV~120kV/9.1 A), low perveance Scheme 2: MBK, 54 kV/20A electron gun

| Parameter      | Scheme1 | Scheme2    |
|----------------|---------|------------|
| Freq. (MHz)    | 650     | 650        |
| Voltage (kV)   | 110     | 54         |
| Current (A)    | 9.1     | 20(2.5×8)  |
| Beam No.       | 1       | 8          |
| Perveance (µP) | 0.25    | 1.6(0.2×8) |
| Efficiency (%) | ~80     | >80        |
| Power(kW)      | 800     | 800(100×8) |



# High voltage klystron



中國科學院為能物品研究所 Institute of High Energy Physics Chinese Academy of Sciences

#### High efficiency design



AJDISK(1D) EFF: 85.6%



CST(3D) EFF(asymmetrical output): 78.2%

KLYC(1D) EFF: 85.6%

#### EMSYS(2.5D) EFF: 81.4%

The 110kV design is almost finished and 3D efficiency is up to 78.2%. 120kV design is on going and expect higher efficiency.

80







### **Multi-beam klystron**

| Parameters                 | Unit | Value |
|----------------------------|------|-------|
| Gun Voltage                | kV   | 54    |
| Beam number                |      | 8     |
| Beam perveance             | μΡ   | 0.2   |
| Output power               | kW   | 875   |
| Gain                       | dB   | 44.2  |
| Efficiency(3-D simulation) | %    | 80.7  |



#### **MBK Length**

| Component      | Unit | Value |
|----------------|------|-------|
| RF interaction | m    | 1.9   |
| Gun            | m    | 0.5   |
| Collector      | m    | 1.0   |
| Total          | m    | 3.4   |









## **Multi-beam klystron**

#### **3-D PIC simulation predicts bandwidth of** $\pm 0.8$ MHz



MBK bandwidth curve by CST





中國科學院為能物招加完所 Institute of High Energy Physics Chinese Academy of Sciences

# **Multi-beam klystron**

#### Gun design

#### Electric filed on cavities



| Parameters    | Unit | Value |
|---------------|------|-------|
| High voltage  | kV   | 54    |
| Current       | А    | 8*2.5 |
| Beam waist    | mm   | 7.5   |
| Filling ratio |      | 0.625 |



5MV/m







### **Multi-beam klystron**

#### MBK output window design





#### The output window design is almost completed









# **Multi-beam klystron**

#### **Design progress status**

| Design title                      | Status                       |                         |  |
|-----------------------------------|------------------------------|-------------------------|--|
| MPK beam dynamics                 | Goal 1 : output power> 800kW | Goal 2 :efficiency >80% |  |
| MBK beam dynamics                 | Finished                     | Finished                |  |
| Design on input and output cavity | Finished                     |                         |  |
| Gun design                        | Finished                     |                         |  |
| Design on output window           | Finished                     |                         |  |
| Coil design                       | In progress                  |                         |  |
| MBK collector                     | In progress                  |                         |  |

#### We are fully prepared for future possibility of manufacture.







「「版件等院為能物加加完」 Institute of High Energy Physics Chinese Academy of Sciences

- The components machining, brazing, welding and final assembly for 1<sup>st</sup> prototype are finished in collaboration partner.
- The conditioning and commissioning of 1<sup>st</sup> prototype is started at the beginning of this year.
- The both schemes for high efficiency design are progressing well.
- The mechanical design for 2<sup>nd</sup> tube(high efficiency) will be start after completion of design review.
- The design of MBK is fully prepared for next stage.







# Thanks for your attention!