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Anatomy of a collider study
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Object: tagging an electronic top

  6

ν Sensitive New Observables
● Aim to construct observables sensitive to neutrino momentum in 

top decay   => Sensitive to the difference between top and new 

particles decaying to similar final states                                      

(e.g. : t~ -> b l ν χ0  =>  in detector : lepton + b-jet + MET)

● Follow top decay chain using relativistic kinematics

●      

● Another handle =>                        : ratio of neutrino momentum 

perpendicular to and along with lepton direction

● Using masslessness of neutrino : 

● Asuming ‘small R’   

physically

  Calculation is based on :

  i)   4-momentum conservation in top decay 

  ii)  neutrino is massless

  iii) R is small (for the last part)

A boosted top implies all decay products end up in a jet — a top-jet

Inevitable: if top comes from decay of boosted massive particle from new physics


Invaluable: to solve combinatorial problems in events with a number of top particles 
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top decay   => Sensitive to the difference between top and new 
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(e.g. : t~ -> b l ν χ0  =>  in detector : lepton + b-jet + MET)
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●      

● Another handle =>                        : ratio of neutrino momentum 

perpendicular to and along with lepton direction

● Using masslessness of neutrino : 

● Asuming ‘small R’   

physically

  Calculation is based on :

  i)   4-momentum conservation in top decay 

  ii)  neutrino is massless

  iii) R is small (for the last part)

A boosted top implies all decay products end up in a jet — a top-jet

Tagging a hadronic top-jet: 

- Easy, since full reconstruction of decay products possible

- Several techniques exist 


Tagging an electronic top-jet: 

- Difficult: missing neutrinos carry away mass, momenta 

- Difficult to identify electrons inside a jet (especially for overlapping showers)


Tagging muonic top-jet  slightly easier: identifying muon and mini isolation work well  

Rehermann and B. Tweedie (1007.2221), Brust, Maksimovic, Sady, Saraswat, Walters, and Xin (1410.0362), Agashe, Collins, 
Hong, Kim, and Mishra (1809.07334)  
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physically

  Calculation is based on :

  i)   4-momentum conservation in top decay 

  ii)  neutrino is massless

  iii) R is small (for the last part)

A boosted top implies all decay products end up in a jet — a top-jet

Tagging an electronic top-jet: 

- Difficult: missing neutrinos carry away mass, momenta 

- Difficult to identify electrons inside a jet (especially for overlapping showers)


Who do we fear?  
- b-jets, light flavor jets, hadronic top jets 

- Also take a challenge: introduce a stop-jet: 


‣ Ex. decay of a 200 GeV stop to 100 GeV neutralino (  )  t̃ → beνχ0



Object: tagging an electronic top
Tagging an electronic top-jet: 


- Difficult: missing neutrinos carry away mass, momenta 

- Difficult to identify electrons inside a jet (especially for overlapping showers)


Procedure:  

‣ Step1:  Identify an input jet to be interesting (may contain overlapping showers 
due to an electron and a b).


‣ Step2:  Estimate momenta of the electron candidate and the b-candidate

‣ Step3:  Use an ansatz that there exists a massless 4-momentum collimated with 

the electron, that reconstructs a W when combined with the e-candidate and top 
when combined with b+e candidates.


- Allows reconstruction of new observables which have physics interpretations 
only if the interesting jet is an electronic top-jet.



Step 1: What makes a jet interesting?
• The jet should contain a lot of energy deposited in EMCal


     where    


• The jet should have two prongs ideally (i.e. a small )


• One subject should be rich in Hadronic energy and the other in electro-magnetic 




• EM energy deposits not matched to tracks should be small fraction of jet EM-energy 




• Jet should have a decent charge-radius




• Jetmass not too large (like hadronic top) and not too small

f1−h ≡ 1 − fh fh = ∑
k ∈ HCal

Ek /EJ

τ21 ≡ τ2/τ1

where EJ (Ej) and E(k)
J (E(k)

j ) represent the total energy and the energy of the k-

th constituent of the jet J (subjet j) respectively. We also use nonhadronic energy

fraction, labelled by f1-h, and defined as

f1-h ⌘ 1� fh . (2.3)

The variable f1-h is same as fem if the jet does not have any muon as constituent,

otherwise they di↵er by the energy fraction carried by the muons inside the jet.

• We propose a new variable which measures the asymmetry between hadronic energy

deposits of two SD subjets j1 and j2.

Ah ⌘
(f1

h
� f2

h
)2

(f1

h
+ f2

h
)2

, (2.4)

where f1

h
and f2

h
are the hadronic energy fractions of two subjets respectively, as

defined in Eq. (2.2).

• We denote the charge radius of the jet J by rC , and define it by

rC ⌘
1

d0

X

k2tracks
q(k) p(k)T �RkJ , where d0 =

X

k

p(k)T , (2.5)

q(k) and p(k)T are the charge and the transverse momentum of the k-th track inside

the jet J respectively, �RkJ is the angular distance of the track from the jet axis.

• We estimate the neutral fraction of nonhadronic energy of the jet J , denoted by fN
1�h

and defined as

fN

1-h
⌘

1

EJ ⇥ f1�h

X

k2ECal

�q(k),0 E(k)
J , (2.6)

where �q(k),0 ensures that only the constituents with zero charge contributes.

• We also use N -subjettiness variables [55], ⌧N , where N = 1, 2, 3, . . . , defined as

⌧N ⌘
1

R d0

X

k

p(k)T min(�R1,k,�R2,k, ...,�RN,k) , (2.7)

where �Ri,k is the distance of k-th constituent from the i-th axis and R is the jet

radius; we use axes of the exclusive kT subjets as the seed axes, and only do one pass

at minimization.

2.3 Identify four-vectors for the e-candidate and the b-candidate

The purpose of this subsection is to identify the four-vector corresponding to the electron

from the top quark decay. The first step towards this aim is to identify the subjet containing

an electron. We do this by keeping track of the distribution of energy in di↵erent parts of the

calorimeter for the subjets, obtained after SD grooming, at various levels of declustering.

To be specific, given any subjet represented by j, we use f j
h
, defined in Eq. (2.2).

The algorithm we adopt in order to find the electron is as follows:
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Step 2: Identify e-candidate
1. Start with a groomed jet with  history

2. Find the EM rich subjet 

3. Find the hardest track in the EM-subjet

4. Find the  subjet that contains the track

kT

kT

• The subjet with lower f j
h
, is identified to be the one most likely to contain an electron1.

We refer the corresponding subjet by j̃.

• The hardest track in j̃ is denoted by T . In particular, the pseudorapidity and the

azimuthal angle of T are referred to as ⌘e and �e.

• Constituents of j̃ are clustered further to find two exclusive kT subjets. Two exclusive

kT subjets have been used as the electron is likely to participate only in the last stage

of clustering in jet formation with the other particles, coming mostly from underlying

event or neighboring b quark. Among these, the energy of the subjet containing T is

recorded as Ee.

• The four-vector of e candidate, denoted by pe, is defined as

pe ⌘ {Ee, Ee sin ⌘e cos�e, Ee sin ⌘e sin�e, Ee cos ⌘e} , (2.8)

• The four-vector of the b candidate (denoted by pb) is defined using the four-vector of

the full jet (pJ) and pe as follows :

pb ⌘ pJ � pe . (2.9)

2.4 Reconstruct approximate Neutrino momentum

In the limit the W boson from the top quark decay is boosted, all W boson decay products

including the neutrinos are expected to be highly collimated. Starting with a high pT jet,

where a candidate for an electron is identified, one, therefore, should be able to reconstruct

the neutrino energy approximately, with the approximation getting better and better in

the limit of high boost. We begin this subsection with three following central assumptions:

• The four-momentum of the electron candidate inside the jet has already been iden-

tified, using the method described in the previous subsection. We neglect electron

mass throughout this work. Designating the direction of the electron three-vector by

the unit vector ê, we therefore have

pe ⌘ Ee (1, ê) , with ê2 = 1 . (2.10)

• The four-momentum of the b candidate identified in the previous subsection repre-

sents the momentum of the b quark from the top quark decay. Consequently, we will

have non-negligible mass for the b candidate. In this subsection and later in this work

we refer to the mass of the b candidate by mb.

• Without loss of generalization, we decompose neutrino three-momentum vector, namely

~p⌫ , into pk, the component collinear to the direction of the e-candidate, and p?, the

1
This assignment has been checked, using generator-level information, to be correct for more than 85%

of times.
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Step 3: Ansatz of a collimated neutrino component in the plane transverse to the direction of the e-candidate. More specifi-

cally,

p⌫ ⌘ E⌫

✓
1,

~p⌫
E⌫

◆
, with ~p⌫ ⌘ pk ê+ ~p? where ê · ~p? = 0 . (2.11)

The key assumption is that the neutrino is mostly collimated with the e candidate.

More specifically,

r ⌘
|~p?|

pk
=

p?
pk

⌧ 1 . (2.12)

This assumption allows us to simplify and expand neutrino energy in a power series

in r, which would be crucial later.

E⌫ =
⇣p

1 + r2
⌘
pk '

✓
1 +

1

2
r2
◆
pk +O

�
r4
�

(2.13)

We show in discussion below, the set of assumptions itemized above is su�cient in

order to derive the neutrino energy in the high boost regime. The kinematics of W boson

decay forces the following relation:

m2

W = (pe + p⌫)
2 = 2EeE⌫

✓
1�

pk
E⌫

◆
= 2EeE⌫

✓
1�

1
p
1 + r2

◆
' r2EeE⌫ (2.14)

Similarly, top quark decay kinematics renders an additional constraint.

m2

t = (pb + pe + p⌫)
2 = m2

W +m2

b + 2pb · pe + 2EbE⌫ � 2~pb · ~p⌫

= m2

W +m2

b + 2pb · pe + 2E⌫

⇢
Eb �

1
p
1 + r2

✓
~pb · ê+ r ~pb ·

~p?
p?

◆�

' �2 + 2E⌫

✓
Eb � ~pb · ê� r ~pb ·

~p?
p?

+O
�
r2
�◆

,

(2.15)

where �2
⌘

�
m2

W +m2

b + 2pb · pe
�
is a measured quantity. Eq. (2.14) and Eq. (2.15) can

be solved simultaneously to yield expression for r, and therefore E⌫ .

r2 '
2m2

W

m2
t ��2

(Eb � pb · ê)

Ee

E⌫ '
1

2

m2
t ��2

(Eb � pb · ê)

(2.16)

Instead of directly using E⌫ as determined from Eq. (2.16), we rather employ dimensionless

quantities defined as follows:

Zb ⌘
Eb

Ee + E⌫
(2.17)

⇥b/e ⌘
Ee

�
m2

t ��2
�

Ebm2

W

(2.18)

Within the ansatz that the observed jet arises from a top quark decay and contains a mass-

less neutrino collimated with the electron, both these variables have simpler interpretation.
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Similarly, top quark decay kinematics renders an additional constraint.
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where �2
⌘
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is a measured quantity. Eq. (2.14) and Eq. (2.15) can
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Instead of directly using E⌫ as determined from Eq. (2.16), we rather employ dimensionless

quantities defined as follows:
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Within the ansatz that the observed jet arises from a top quark decay and contains a mass-

less neutrino collimated with the electron, both these variables have simpler interpretation.
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Ee

E⌫ '
1

2

m2
t ��2

(Eb � pb · ê)
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Zb represents the ratio of the relative fraction of top energy carried by the b candidate with

respect to that carried by the W boson candidate, and ⇥b/e reduces to the ratio of the size

of the opening angle between the reconstructed neutrino and the b candidate with respect

to the angle between the neutrino and the e candidate.

Zb !
Eb

EW
and ⇥b/e !

1� (~p⌫ · ~pb) /E⌫Eb

1� (~p⌫ · ~pe) /E⌫Ee
'

1� cos ✓⌫b
1� cos ✓⌫e

, (2.19)

where ✓⌫b and ✓⌫e are the opening angles of the reconstructed neutrino from the direction

of the b candidate and the e candidate respectively. Note that the approximate sign in the

Eq.(2.18) arises due to the approximation |~pb| ' Eb. The set of these two variables, Zb and

⇥b/e, is referred as V⌫ .

2.5 Multivariate analysis and vetoing the background

The purpose of all the previous subsections in this methodology section is to calculate a

bunch of variables given an input jet. As mentioned previously, we divide these variables in

two sets. The variables in the set Ve allows us to check whether the given jet may contain

an energetic electron. On the other hand, variables in V⌫ are only interpreted correctly if

and only if the four-momenta corresponding to the electron candidate and the b candidate

reconstruct W and top correctly when an invisible four-momentum corresponding to the

neutrino and roughly collimated to the electron is added.

Instead of treating all the variables on equal footing, we construct two BDT based

multivariate discriminators, which separate electronic top jets (to be treated as signal jets)

from QCD b jets (to be treated as background jets). To be specific, let us define

B
t/b
e ⌘ A BDT to discriminate t from b using variables in Ve ,

B
t/b
⌫ ⌘ A BDT to discriminate t from b using variables in V⌫ .

(2.20)

Upon optimizing on the samples of electronic top jets and QCD b jets, these BDTs learn to

give di↵erent responses for top jets than to QCD b jets. We rescale the BDT responses such

that each of these now range in {�1,+1}; as a result, QCD b jets mostly get characterized

by values close to �1, whereas electronic top jets lie close to +1. Denoting the responses

by re and r⌫ , and defined by

re ⌘ response of Bt/b
e in the range {�1,+1} ,

r⌫ ⌘ response of Bt/b
⌫ in the range {�1,+1} ,

(2.21)

we construct a plane of responses, where any jet is represented by a point. We show the

distributions of BDT responses for electronic top jets and QCD b jets later in the Sec. 4.3.

However, it is easy to visualize that, by construction, all QCD b jets dominantly occupy

locations near (�1,�1) corner of the plane, whereas electronic top jets populate the region

around the corner corresponding to coordinates (+1,+1).

It is therefore a straightforward exercise to construct a tagger for electronic top jets,

which at the same time can find anomalies that can be considered as outliers as far as QCD

b jets as well as electronic top jets are concerned.
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Easy to show that: 

component in the plane transverse to the direction of the e-candidate. More specifi-

cally,
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~p⌫
E⌫

◆
, with ~p⌫ ⌘ pk ê+ ~p? where ê · ~p? = 0 . (2.11)

The key assumption is that the neutrino is mostly collimated with the e candidate.

More specifically,

r ⌘
|~p?|

pk
=

p?
pk

⌧ 1 . (2.12)

This assumption allows us to simplify and expand neutrino energy in a power series

in r, which would be crucial later.

E⌫ =
⇣p

1 + r2
⌘
pk '

✓
1 +

1

2
r2
◆
pk +O

�
r4
�

(2.13)

We show in discussion below, the set of assumptions itemized above is su�cient in

order to derive the neutrino energy in the high boost regime. The kinematics of W boson

decay forces the following relation:

m2

W = (pe + p⌫)
2 = 2EeE⌫

✓
1�

pk
E⌫

◆
= 2EeE⌫

✓
1�

1
p
1 + r2

◆
' r2EeE⌫ (2.14)

Similarly, top quark decay kinematics renders an additional constraint.

m2

t = (pb + pe + p⌫)
2 = m2

W +m2

b + 2pb · pe + 2EbE⌫ � 2~pb · ~p⌫

= m2

W +m2

b + 2pb · pe + 2E⌫
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r2
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,

(2.15)

where �2
⌘

�
m2

W +m2

b + 2pb · pe
�
is a measured quantity. Eq. (2.14) and Eq. (2.15) can

be solved simultaneously to yield expression for r, and therefore E⌫ .

r2 '
2m2

W

m2
t ��2

(Eb � pb · ê)

Ee

E⌫ '
1

2

m2
t ��2

(Eb � pb · ê)

(2.16)

Instead of directly using E⌫ as determined from Eq. (2.16), we rather employ dimensionless

quantities defined as follows:

Zb ⌘
Eb

Ee + E⌫
(2.17)

⇥b/e ⌘
Ee

�
m2

t ��2
�

Ebm2

W

(2.18)

Within the ansatz that the observed jet arises from a top quark decay and contains a mass-

less neutrino collimated with the electron, both these variables have simpler interpretation.
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Figure 1. Distribution of pT (left), and mass (right) of the ungroomed jet for all the event samples.

top quark energy, mass distribution has larger population between W boson mass and

top quark mass; for other samples, as expected, it’s a falling distribution, other than a

threshold because of the pT cut on the jet.

4.1 Variables in Ve

Out of all the variables defined in Sec. 2.2, we use the following 6 variables:

Ve ⌘

⇢
f1-h, Ah, f

N

1-h
, ⌧21 ⌘

⌧2
⌧1
, rC ,mSD

�
. (4.1)

We show the distributions of these variables for di↵erent jet samples in Fig. 2. Out of

the six variables, the first two are rather straightforward to estimate. In order to calculate

the nonhadronic energy fraction, one simply needs the energy deposited in HCal cells, and

subtract it from the total energy of the jet. Note that since we use particle-flow candidates

to construct jets, jet constituents are classified as charged and neutral hadrons, photons,

electrons, and muons. In our case, we simply add energies of all charged and neutral hadrons

within the jet to find total energy deposited in the HCal. Similarly, we add energies of all

electron and photon particle-flow candidates to estimate the ECal energy. In the top left

panel we show the distributions of the nonhadronic energy fraction or f1-h. The t(e) jets

rich in energetic electrons from top quark decays show up with significant larger f1-h as

expected. In case of other jets, mostly consisting of hadrons, one typically expects ⇠ 30%

energy in the original jet carried by photons from ⇡0 production in hadronization. There

could also be a small fraction of energy in the ECal because of semileptonic decays of heavy

flavor quarks or even some energy deposit from nuclear interaction of the hadrons in the

ECal. Still, the fraction of energy deposit in the ECal is smaller as compared to that of

electronic top jets. As shown in the top right panel of Fig. 2, the hadronic asymmetry

among subjets or Ah is clearly one of the most powerful variables that can tell apart a t(e)

jet from the background jets. The asymmetry is maximized in case of t(e) jets, which are

largely characterized by one subjet initiated by a b quark and the other by an electron.

In case of light flavor jets or even for b jets or t(h) jets, we expect both the subjets to be
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photons from ⇡0 decays, which gets demonstrated in the plot neatly where one finds a

sharp peak for fN
1-h

near 1. Note that b jets or t(h) jets are also characterized in a similar

manner, except of little more flattening for small fN
1-h

signifying semileptonic decays of

heavy flavor quarks. Not surprisingly, t(e) jets show rather moderate amount of energy in

photons, which are largely due to bremsstrahlung radiations in case of energetic electrons

from top quark decay, while travelling through the tracker and the calorimeter.

Jets from electronic decay of the top quarks result in two distinct hard subjets, one

of which corresponds to a subjet initiated by the b quark and the other one because of

an energetic electron. The N -subjettiness ratio, in particular, ⌧21 is especially suitable

to find these objects. Since t(e) jets are generically characterized by 2 subjets, one finds

⌧2 ⌧ ⌧1, or in other words, ⌧21 ⌧ 1 as can be seen in the middle right panel of figure 2.

For all other jets we tend to get comparatively larger values of ⌧21. Note that some of the

times t(h) jets end up loosing parts of the decay products from top and end up having 2

hard subjets, and hence small ⌧21. The slight shift of t(h) to the left as compared to b

jets signify these cases. Another manifestation of the similar physics can be seen in the

bottom left panel of figure 2, where we plot the charge radius or rC of for the jets. The

winglike feature observed for t(e) jets signify existence of hard charged constituents of the

jets at the periphery. Finally we plot the soft drop mass (mSD) for jets in the bottom

right panel. Not surprisingly, the distribution for t(h) jets peaks at around the top quark

mass when the top is fully captured inside the fat jet, and also around W boson mass

for partial reconstruction. The mSD distribution for QCD jets are well studied and well

understood [62, 63], whereas those for t(e) jets and t̃(e) jets are characterized by missing

masses because of missing energies due to neutrinos and neutralinos respectively.

Not surprisingly, the set of anomalous jets we consider, namely t̃(e) jets, almost always

lies in between electronic top jets and hadronic top jets, and only f1-h makes these outliers.

This is easy to understand. Since the neutralino carries away a large chunk of energy (and

mass), it decreases total visible jet energy. Energy carried away by the electron from stop

quark decay is also smaller than that of the electron from top quark decay, but that change

is relatively small. This is part of the reason why t̃(e) jets are characterized by larger f1-h
than jets of any other type. Similarly because of larger missing mass, t̃(e) jets contain

smaller mSD than t(e) jets. Since t̃(e) jets contain mostly two hard subjets, one initiated

by the b quark and the other by the electron, the Ah and ⌧21 plots are, in fact, identical

with t(e) jets.

4.2 Variables in V⌫

As described in Sec. 2.4, the set of variables in V⌫ are given as:

V⌫ ⌘
�
Zb,⇥b/e

 
. (4.2)

We show the distributions of these variables in Fig. 3 for various types of jets under con-

sideration. The physics discussion of these variables are already given in Sec. 2.4. Note

that these variables are constructed with the ansatz that if a collimated, massless missing

four-vector is added to the e candidate and the total jet, one reproduces the W particle
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Zb represents the ratio of the relative fraction of top energy carried by the b candidate with

respect to that carried by the W boson candidate, and ⇥b/e reduces to the ratio of the size

of the opening angle between the reconstructed neutrino and the b candidate with respect

to the angle between the neutrino and the e candidate.

Zb !
Eb

EW
and ⇥b/e !

1� (~p⌫ · ~pb) /E⌫Eb

1� (~p⌫ · ~pe) /E⌫Ee
'

1� cos ✓⌫b
1� cos ✓⌫e

, (2.19)

where ✓⌫b and ✓⌫e are the opening angles of the reconstructed neutrino from the direction

of the b candidate and the e candidate respectively. Note that the approximate sign in the

Eq.(2.18) arises due to the approximation |~pb| ' Eb. The set of these two variables, Zb and

⇥b/e, is referred as V⌫ .

2.5 Multivariate analysis and vetoing the background

The purpose of all the previous subsections in this methodology section is to calculate a

bunch of variables given an input jet. As mentioned previously, we divide these variables in

two sets. The variables in the set Ve allows us to check whether the given jet may contain

an energetic electron. On the other hand, variables in V⌫ are only interpreted correctly if

and only if the four-momenta corresponding to the electron candidate and the b candidate

reconstruct W and top correctly when an invisible four-momentum corresponding to the

neutrino and roughly collimated to the electron is added.

Instead of treating all the variables on equal footing, we construct two BDT based

multivariate discriminators, which separate electronic top jets (to be treated as signal jets)

from QCD b jets (to be treated as background jets). To be specific, let us define

B
t/b
e ⌘ A BDT to discriminate t from b using variables in Ve ,

B
t/b
⌫ ⌘ A BDT to discriminate t from b using variables in V⌫ .

(2.20)

Upon optimizing on the samples of electronic top jets and QCD b jets, these BDTs learn to

give di↵erent responses for top jets than to QCD b jets. We rescale the BDT responses such

that each of these now range in {�1,+1}; as a result, QCD b jets mostly get characterized

by values close to �1, whereas electronic top jets lie close to +1. Denoting the responses

by re and r⌫ , and defined by

re ⌘ response of Bt/b
e in the range {�1,+1} ,

r⌫ ⌘ response of Bt/b
⌫ in the range {�1,+1} ,

(2.21)

we construct a plane of responses, where any jet is represented by a point. We show the

distributions of BDT responses for electronic top jets and QCD b jets later in the Sec. 4.3.

However, it is easy to visualize that, by construction, all QCD b jets dominantly occupy

locations near (�1,�1) corner of the plane, whereas electronic top jets populate the region

around the corner corresponding to coordinates (+1,+1).

It is therefore a straightforward exercise to construct a tagger for electronic top jets,

which at the same time can find anomalies that can be considered as outliers as far as QCD

b jets as well as electronic top jets are concerned.
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from QCD b jets (to be treated as background jets). To be specific, let us define

B
t/b
e ⌘ A BDT to discriminate t from b using variables in Ve ,

B
t/b
⌫ ⌘ A BDT to discriminate t from b using variables in V⌫ .

(2.20)

Upon optimizing on the samples of electronic top jets and QCD b jets, these BDTs learn to

give di↵erent responses for top jets than to QCD b jets. We rescale the BDT responses such

that each of these now range in {�1,+1}; as a result, QCD b jets mostly get characterized

by values close to �1, whereas electronic top jets lie close to +1. Denoting the responses

by re and r⌫ , and defined by

re ⌘ response of Bt/b
e in the range {�1,+1} ,

r⌫ ⌘ response of Bt/b
⌫ in the range {�1,+1} ,

(2.21)

we construct a plane of responses, where any jet is represented by a point. We show the

distributions of BDT responses for electronic top jets and QCD b jets later in the Sec. 4.3.

However, it is easy to visualize that, by construction, all QCD b jets dominantly occupy

locations near (�1,�1) corner of the plane, whereas electronic top jets populate the region

around the corner corresponding to coordinates (+1,+1).

It is therefore a straightforward exercise to construct a tagger for electronic top jets,

which at the same time can find anomalies that can be considered as outliers as far as QCD

b jets as well as electronic top jets are concerned.

– 9 –



1− 0.5− 0 0.5 1

νr

1−

0.5−

0

0.5

1

0

0.05

0.1

0.15

0.2

=7
0%

t(e
)

∈

t(e)

1− 0.5− 0 0.5 11−

0.5−

0

0.5

1

0

0.05

0.1

0.15

0.2

>99%j∈

=95%b∈

b

er
1− 0.5− 0 0.5 1

νr

1−

0.5−

0

0.5

1

0

0.05

0.1

0.15

0.2

=95%t(h)∈

=94%t(h)∈ =1
.2%

t(h
)

∈

t(h)

er
1− 0.5− 0 0.5 11−

0.5−

0

0.5

1

0

0.05

0.1

0.15

0.2

>99%j∈

=95%b∈ =7
0%

t(e
)

∈

=54.5%(e)t~∈

(e)t~

Figure 6. Probability distribution of BDT responses over a 2-D plane for various event samples.
Selection e�ciencies for di↵erent samples are also overlaid in regions as defined in Sec. 4.4.2.

black boxes. The only purpose of these are then to map any jet to a number or a response.

See Eqs. (2.20)– (2.21) where we establish the notations for the BDTs (Bt/b
e , Bt/b

⌫ ) and

their responses (re, r⌫). In Fig. 5 the probability distributions in re and r⌫ are shown for

jets of di↵erent kinds. A far better understanding can be reached, however, by rather

observing the joint probability distributions in the re–r⌫ plane. As explained before, once

a jet is characterized by two responses (namely, re and r⌫), it is mapped to a point in the

2-dimensional plane of BDT responses {re, r⌫}. We show the probability distributions of

all types of jets in Fig. 6, except for light flavor jets, since it is largely similar to b jets (as

expected from the distributions shown in Figs. 2-3, and Fig. 5).

As advertised before in Sec. 2, we find t(e) jets around the corner (+1,+1) and b jets

around the corner (�1,�1) and the separation is clear. As far as t(h) jets are concerned,
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jets (99% light flavored jets). Consequently, we find that (shown in Table 1) Case 1 yields

3.8% fake rate from b jets and slightly more that 1% fake rate from light flavor jets. Case

2 with more aggressive cuts gives much better numbers: around 2.1% fake rate from b jets

and less than 1% fake rate from light flavor jets.

E�ciency t(e) zone

Anomalous zone

Case 1 Case 2

✏b < 1% 3.8% 2.1%

✏j < 1% 1.1% < 1%

✏t(h) 1.2% 5.0% 3.4%

✏t(e) 70% 12.1% 10.4%

✏t̃(e) 17.2% 60.0% 54.5%

Table 1. E�ciency values for all the jet samples for di↵erent cuts on the response plane.

The two cases mentioned above warrants a thorough discussion in the philosophy of our

proposed methodology, and especially the role b tagging plays. Of course, to implement

this proposal one requires a control sample of b jets in order to optimize BDTs. After

optimization, however, we may not need to impose b tagging at all – cuts on re and r⌫ are

su�cient to reduce background. Take first the case of tagging electronic top jets. Clearly,

the fake rate in the t(e) zone is less than 1% even for light flavor jets without requiring any

further b tagging. The anomalous zone in Case 2 also provides another example where

even without b tagging the mistag rate from light flavored jets can be controlled well below

1%. Even in Case 1, the anomalous zone has ✏j = 1.1%, which suggests that this operating

point can be useful as long as the fake rate from b jets at order 4% is tolerable.

Before concluding, let us note that, as the name suggests, the construction of “anoma-

lous zone” is not the same as tagging stop particles decaying to electrons. It rather finds

anomalous objects which are less likely to be either light flavor jets or heavy flavor jets

(including top jets). Once a set of events are identified to contain these jets, one can look

into the global event information and attempt to unearth the underlying physics giving rise

to these objects. In this work, we take jets containing decay products of stop particle as

an example of such anomaly and demonstrate that it can be found at good e�ciency. We,

however, emphasize that the anomalous zone as constructed here is not influenced by the

properties of the new physics particle. We simply identify a region, rather rare in standard

jets – it is model-independent. The rate at which new physics jets can be captured in

this zone, of course, is ultimately going to vary depending on the very nature of the new

physics processes. It will be also interesting to explore the dependence of the e�cacy of the

methods presented here, on the polarization of the top quark, which as discussed earlier,

can be a great probe of BSM physics in the top quark production.
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(✏t(e)) is associated with three di↵erent background e�ciencies (namely, ✏b, ✏j and ✏t(h) for

the respective type of jets). Consequently, we obtain three di↵erent ROCs at the same

time (using only cuts on re). As expected, we see for a top quark decaying to an electron,

our tagger is able to provide fantastic separation: & 75% signal e�ciency at 1% mistag

rate from b jets as well as light flavor jets and less than 2% mistag rate from hadronic top

jets.

As long as we are only concerned with backgrounds from SM, clearly a single cut on

re is su�cient. However, as mentioned before, variables in Ve (and therefore re) only take

into account the fact that the jet under consideration contains an energetic electron. Any

jet containing an energetic electron, whether in new physics events (from t̃ decays here) or

even from SM events (because of kinematics) will most likely be misidentified as t(e) jets

by cuts on re alone. This is why we do not show the mistag rates from t̃(e) jets in Fig. 7.

4.4.2 Construction of zones in response plane

As argued before, the correct way to identify the electronic top jets, while at the same

time to minimize the fake rate from other jets containing energetic electrons involves using

more kinematic information associated with top quark decays (i.e., use V⌫). In our second

approach, we consider the two dimensional probability distributions (in the re–r⌫ plane)

for signal and background jets as shown in Fig. 6. It is clear that a rectangular cut that

separates out the top-right corner in the re–r⌫ plane yields a region dense in t(e) jets. The

large value of re ensures small fake rate from b jets, light flavor jets, and t(h) jets, whereas

a cut on r⌫ simply gets rid of large fraction of jets containing remnants of t̃(e) decay. We

denote this region in the re–r⌫ plane to be the electronic top or t(e) zone. As shown in

Fig. 6, we suggest one such demarcation:

t(e) zone ⌘ re > 0.6 and r⌫ > 0 . (4.4)

We show the signal and background e�ciencies for jets of di↵erent kinds in Table 1. At

the operating point of & 70% signal e�ciency we find less than 1% mistag rate from b jets

as well as light flavor jets and around 1.2% mistag rate from hadronic top jets as before.

However, note that we have established su�cient control even on jets due to stop quark

decays (fake rate less than 20%). Of course, harder cuts on r⌫ can yield even purer sample.

An added benefit of this procedure is that one can demarcate a zone in the re–r⌫ plane

where one does not expect jets either due to light flavors or heavy flavors (b jets, t(e),

as well as t(h) jets). Jets that arise here can be termed as anomalous jets in the spirit

of Ref. [67]; in other words, these are less likely to be any of the standard jets. The clue

towards constructing the anomalous zone is also in Fig. 6, which shows that b jets and light

flavored jets occupy mostly the left portions in the re–r⌫ plane. Therefore, using simple

cut on re, as well as excluding the t(e)-zone one can find an anomalous zone:

Anomalous zone ⌘

(
Case 1 : if r⌫ < 0, re > �0.1 else � 0.1 < re < 0.6

Case 2 : if r⌫ < 0, re > +0.1 else + 0.1 < re < 0.6
(4.5)

The two cases we consider primarily di↵er in the lowest cut on re. As shown in Fig. 6,

the blue dotted line (the red dash-dotted line) demarcates a zone that contains 95% of b

– 19 –

(✏t(e)) is associated with three di↵erent background e�ciencies (namely, ✏b, ✏j and ✏t(h) for

the respective type of jets). Consequently, we obtain three di↵erent ROCs at the same

time (using only cuts on re). As expected, we see for a top quark decaying to an electron,

our tagger is able to provide fantastic separation: & 75% signal e�ciency at 1% mistag

rate from b jets as well as light flavor jets and less than 2% mistag rate from hadronic top

jets.

As long as we are only concerned with backgrounds from SM, clearly a single cut on

re is su�cient. However, as mentioned before, variables in Ve (and therefore re) only take

into account the fact that the jet under consideration contains an energetic electron. Any

jet containing an energetic electron, whether in new physics events (from t̃ decays here) or

even from SM events (because of kinematics) will most likely be misidentified as t(e) jets

by cuts on re alone. This is why we do not show the mistag rates from t̃(e) jets in Fig. 7.

4.4.2 Construction of zones in response plane

As argued before, the correct way to identify the electronic top jets, while at the same

time to minimize the fake rate from other jets containing energetic electrons involves using

more kinematic information associated with top quark decays (i.e., use V⌫). In our second

approach, we consider the two dimensional probability distributions (in the re–r⌫ plane)

for signal and background jets as shown in Fig. 6. It is clear that a rectangular cut that

separates out the top-right corner in the re–r⌫ plane yields a region dense in t(e) jets. The

large value of re ensures small fake rate from b jets, light flavor jets, and t(h) jets, whereas

a cut on r⌫ simply gets rid of large fraction of jets containing remnants of t̃(e) decay. We

denote this region in the re–r⌫ plane to be the electronic top or t(e) zone. As shown in

Fig. 6, we suggest one such demarcation:

t(e) zone ⌘ re > 0.6 and r⌫ > 0 . (4.4)

We show the signal and background e�ciencies for jets of di↵erent kinds in Table 1. At

the operating point of & 70% signal e�ciency we find less than 1% mistag rate from b jets

as well as light flavor jets and around 1.2% mistag rate from hadronic top jets as before.

However, note that we have established su�cient control even on jets due to stop quark

decays (fake rate less than 20%). Of course, harder cuts on r⌫ can yield even purer sample.

An added benefit of this procedure is that one can demarcate a zone in the re–r⌫ plane

where one does not expect jets either due to light flavors or heavy flavors (b jets, t(e),

as well as t(h) jets). Jets that arise here can be termed as anomalous jets in the spirit

of Ref. [67]; in other words, these are less likely to be any of the standard jets. The clue

towards constructing the anomalous zone is also in Fig. 6, which shows that b jets and light

flavored jets occupy mostly the left portions in the re–r⌫ plane. Therefore, using simple

cut on re, as well as excluding the t(e)-zone one can find an anomalous zone:

Anomalous zone ⌘

(
Case 1 : if r⌫ < 0, re > �0.1 else � 0.1 < re < 0.6

Case 2 : if r⌫ < 0, re > +0.1 else + 0.1 < re < 0.6
(4.5)

The two cases we consider primarily di↵er in the lowest cut on re. As shown in Fig. 6,

the blue dotted line (the red dash-dotted line) demarcates a zone that contains 95% of b

– 19 –



Conclusion

Tagging a  boosted top where top decays to electron is quite realistic 
and can be done with good efficiency  

- can even pave the way to find anomalous objects (electron-rich 
jets but not due to top)
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Figure 1. Distribution of pT (left), and mass (right) of the ungroomed jet for all the event samples.

top quark energy, mass distribution has larger population between W boson mass and

top quark mass; for other samples, as expected, it’s a falling distribution, other than a

threshold because of the pT cut on the jet.

4.1 Variables in Ve

Out of all the variables defined in Sec. 2.2, we use the following 6 variables:

Ve ⌘

⇢
f1-h, Ah, f

N

1-h
, ⌧21 ⌘

⌧2
⌧1
, rC ,mSD

�
. (4.1)

We show the distributions of these variables for di↵erent jet samples in Fig. 2. Out of

the six variables, the first two are rather straightforward to estimate. In order to calculate

the nonhadronic energy fraction, one simply needs the energy deposited in HCal cells, and

subtract it from the total energy of the jet. Note that since we use particle-flow candidates

to construct jets, jet constituents are classified as charged and neutral hadrons, photons,

electrons, and muons. In our case, we simply add energies of all charged and neutral hadrons

within the jet to find total energy deposited in the HCal. Similarly, we add energies of all

electron and photon particle-flow candidates to estimate the ECal energy. In the top left

panel we show the distributions of the nonhadronic energy fraction or f1-h. The t(e) jets

rich in energetic electrons from top quark decays show up with significant larger f1-h as

expected. In case of other jets, mostly consisting of hadrons, one typically expects ⇠ 30%

energy in the original jet carried by photons from ⇡0 production in hadronization. There

could also be a small fraction of energy in the ECal because of semileptonic decays of heavy

flavor quarks or even some energy deposit from nuclear interaction of the hadrons in the

ECal. Still, the fraction of energy deposit in the ECal is smaller as compared to that of

electronic top jets. As shown in the top right panel of Fig. 2, the hadronic asymmetry

among subjets or Ah is clearly one of the most powerful variables that can tell apart a t(e)

jet from the background jets. The asymmetry is maximized in case of t(e) jets, which are

largely characterized by one subjet initiated by a b quark and the other by an electron.

In case of light flavor jets or even for b jets or t(h) jets, we expect both the subjets to be
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• Find a zone boundary around the corner (�1,�1) of the response plane that de-

marcates a zone containing within itself a pre-assigned fraction of QCD b jets. We

block this zone so that any jet characterized by responses falling within this zone are

“vetoed”.

• In principle, we can tag any jet that fails the veto criteria to be an electronic top

jet, which yields a large tagging e�ciency. However, we rather find another zone

around the corner (+1,+1) of the response plane which contains within itself again

a pre-assigned fraction of electronic top jets. We designate this zone to be the signal

zone and any jet characterized by coordinates in the signal zones would be tagged as

an electronic top jet.

• Jets not belonging to either the veto zone or the signal zone are clearly outliers. We

term these as anomalous jets.

3 Simulations Details

We demonstrate the potency of the methodology proposed in the last section using simu-

lated samples. In this section, we lay out clearly the simulation details and the details of

generated samples we use for benchmarks.

• We generate all the Monte Carlo (MC) samples at partonic level using MadGraph5

(MadGraph5 aMC@NLO V5 2.6.2) [56] at leading order in perturbative QCD with

NNPDF2.3LO [57] parton distribution function at centre-of-mass energy of 13 TeV.

The renormalization scale, at which the strong coupling constant (↵S) is evaluated,

is taken to be Z boson mass; the same value is chosen for the factorization scale also.

We employ pythia8.230 [58] for showering and hadronization. The renormalization

scales for initial- and final-state radiation are taken to be the same as the renormal-

ization scale at matrix element level, i.e. Z boson mass. Additionally, we use 4C

tune [59] to simulate the relevant busy hadronic collider environment.

• In order to provide a semi-realistic environment for high energy collisions, we use

Delphes 3.4.1 software package [60] with CMS geometry [46], where stable par-

ticles from pythia are converted into detector objects such as energy deposits in

calorimeter cells and tracks. The particle-flow (PF) algorithm [47], as implemented in

Delphes uses these detector elements to construct particle-flow candidates, namely

muons, electrons, photons, charged and neutral hadrons.

• We use anti-kT jet clustering algorithm in Fastjet [61] to cluster the particle-flow

candidates into jets. In particular, we use R = 0.8 with pTmin = 500 GeV. The

hardest jet (in pT ) in the event is used in our analysis.

We do not simulate e↵ects from pileup. Since we use a large threshold for the transverse

momentum of jets to be considered, and also perform soft drop grooming, we expect the

e↵ect of pileup to be minimal.
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Figure 2. Distribution of f1-h (top left), Ah (top right), fN
1-h (middle left), ⌧21 (middle right), rC

(bottom left), and mSD (bottom right) of the jet for di↵erent event samples considered.

initiated by quarks or gluons, and, therefore, rather symmetric 2. Estimating the neutral

fraction of nonhadronic energy or fN
1-h

is slightly nontrivial. One way to estimate it would

involve finding energy deposits in ECal cells that don’t correspond to any track matched

to it. Since we already use particle-flow elements, we simply need to find the total energy

carried by the photon components of the particle-flow constituents. In the left figure of the

middle panel we show the distribution of fN
1-h

for di↵erent jet types under consideration.

As argued before, almost all of electromagnetic energy of light flavor jets are because of

2
We have also studied an alternative definition of Ah, where we use the b candidate and the e candidate,

as described in Eqs. (2.8) and (2.9) respectively, in place of two subjets j1 and j2 in Eq. 2.4. However, since

we do not find any improvement in the performance, we employ subjets j1 and j2 in order to define Ah for

simplicity.
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and the top particle respectively. Only t(e) jets justify this ansatz and, therefore, show

vastly di↵erent behavior than any other jets. We expect t(h) jets to satisfy this condition

more often than b jets and light flavor jets. Consequently, we find curves representing t(h)

jets to lie in between t(e) jets and b jets.
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Figure 3. Distribution of Zb (left), and ⇥b/e (right) for di↵erent jet types.

The stop jets considered here also fail the ansatz since the missing momentum is

massive. The most important feature of these plots is that the distributions of t̃ jets are

more closely described by b jets than any of the top jets. This can be understood from the

fact that both b jets and t̃(e) jets fail the ansatz (even though for vastly di↵erent reasons).

As we show later, this feature plays an important role in constructing the anomaly finder.

4.3 Correlations of variables

In general, we expect a decent amount of correlations in studies with multiple variables.

A useful way to represent it is via the linear correlation coe�cient. To be specific, the

linear correlation coe�cient of two variables A and B, denoted by ⇢(A,B), is defined by

the following equation

⇢(A,B) ⌘
E(AB) � E(A)E(B)

�(A)�(B)
, (4.3)

where E(A), E(B), and E(AB) represents the expectation value of the variable A, B, and

AB respectively, and �(A) (�(B)) stands for the standard deviation of A (B). This quantity

is useful to estimate the redundancy in information carried by the variables in a given set.

For the variables listed in sets Ve and V⌫ , we take all possible pairwise combinations (within

each set) and calculate the linear correlation coe�cients for the sample of t(e) jets. We show

the matrices of correlation coe�cients in Fig. 4, which depicts the e�cacy in choosing the

set of variables. The observables are largely uncorrelated. There is only mild correlation

present among the nonhadronic energy fraction f1-h and ⌧21.

4.4 Multivariate analysis

To quantify the discrimination power of our method as described in Sec. 2.5, we proceed to

multivariate analysis using BDT with binary classification, as implemented in Toolkit for
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Figure 4. Linear correlation coe�cients (in %) between the variables in the sets Ve (left), and V⌫

(right) respectively, for the sample of top quarks decaying to electrons.

Multivariate Analysis [64] within the ROOT framework [65]. We weigh each of the samples

so that they have exactly the same pT distribution for the leading jet in the event. The

parameters used in BDT are chosen as follows: NTress, the number of trees in a forest, is

taken as 1000, the minimum percentage of training events required in a leaf node is taken

as MinNodeSize= 2.5%, the maximum depth of the decision tree is taken as MaxDepth= 2,

we use Gradient Boost algorithm [66] for boosting the decision tree with corresponding

parameter Shrinkage= 0.10.

We put the variables in the sets Ve and V⌫ as inputs to two separate BDTs, mentioned

as B
t/b
e and B

t/b
⌫ respectively in Eq. (2.20) for the classification training. We optimize

both the BDTs using the sample of t(e) jets as the signal and the sample of b jets as

the background. We have explicitly checked to make sure that none of the BDTs are

overtrained.
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Figure 5. Distribution of BDT responses re (left), and r⌫ (right) respectively. See Eqs. (2.20)
and (2.21) for the definitions of BDT responses.

Note, however, that once the BDTs are optimized, these simply can be treated as
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The stop jets considered here also fail the ansatz since the missing momentum is

massive. The most important feature of these plots is that the distributions of t̃ jets are

more closely described by b jets than any of the top jets. This can be understood from the

fact that both b jets and t̃(e) jets fail the ansatz (even though for vastly di↵erent reasons).

As we show later, this feature plays an important role in constructing the anomaly finder.

4.3 Correlations of variables

In general, we expect a decent amount of correlations in studies with multiple variables.

A useful way to represent it is via the linear correlation coe�cient. To be specific, the

linear correlation coe�cient of two variables A and B, denoted by ⇢(A,B), is defined by

the following equation

⇢(A,B) ⌘
E(AB) � E(A)E(B)

�(A)�(B)
, (4.3)

where E(A), E(B), and E(AB) represents the expectation value of the variable A, B, and

AB respectively, and �(A) (�(B)) stands for the standard deviation of A (B). This quantity

is useful to estimate the redundancy in information carried by the variables in a given set.

For the variables listed in sets Ve and V⌫ , we take all possible pairwise combinations (within

each set) and calculate the linear correlation coe�cients for the sample of t(e) jets. We show

the matrices of correlation coe�cients in Fig. 4, which depicts the e�cacy in choosing the

set of variables. The observables are largely uncorrelated. There is only mild correlation

present among the nonhadronic energy fraction f1-h and ⌧21.

4.4 Multivariate analysis

To quantify the discrimination power of our method as described in Sec. 2.5, we proceed to

multivariate analysis using BDT with binary classification, as implemented in Toolkit for
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Figure 4. Linear correlation coe�cients (in %) between the variables in the sets Ve (left), and V⌫

(right) respectively, for the sample of top quarks decaying to electrons.

Multivariate Analysis [64] within the ROOT framework [65]. We weigh each of the samples

so that they have exactly the same pT distribution for the leading jet in the event. The

parameters used in BDT are chosen as follows: NTress, the number of trees in a forest, is

taken as 1000, the minimum percentage of training events required in a leaf node is taken

as MinNodeSize= 2.5%, the maximum depth of the decision tree is taken as MaxDepth= 2,

we use Gradient Boost algorithm [66] for boosting the decision tree with corresponding

parameter Shrinkage= 0.10.

We put the variables in the sets Ve and V⌫ as inputs to two separate BDTs, mentioned

as B
t/b
e and B

t/b
⌫ respectively in Eq. (2.20) for the classification training. We optimize

both the BDTs using the sample of t(e) jets as the signal and the sample of b jets as

the background. We have explicitly checked to make sure that none of the BDTs are

overtrained.

er
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Figure 5. Distribution of BDT responses re (left), and r⌫ (right) respectively. See Eqs. (2.20)
and (2.21) for the definitions of BDT responses.

Note, however, that once the BDTs are optimized, these simply can be treated as
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these are characterized by small re. This suggests that a simple use of re may be su�cient

to get rid of background jets due to t(h). Note that this is a bonus feature since B
t/b
e is

optimized to separate t(e) jets from b jets and we did not use any additional information

pertaining to the hadronic decay of top quarks. In the r⌫ direction (y-axis), however, there

is no clear separation of t(e) jets from t(h) jets. This is understandable, since as stated in

Sec. 4.2, we expect t(h) jets to satisfy the critical ansatz made in Sec. 2.4 often.

Note that the true benefit of using variables in V⌫ and, consequently, of the response

r⌫ can be seen in probability distribution of t̃(e) jets in Fig. 5-6. In this direction stop

jets get completely separated from t(e) jets. Not surprisingly, we see that re fails to create

reasonable separation between t̃(e) jets and t(e) jets.

Given the probability distributions in Fig. 6 we can construct a tagger for electronic

top jets in two ways as described below.

4.4.1 Cut on response re

We simply use cuts on re; this turns out to be a powerful discriminant for separating

electronic top jets from background jets in the standard model, such as light flavored jets,

QCD b jets, and hadronic top jets. The main disadvantage of this procedure is that jets

from new physics (in this case, jets containing remnants of boosted stop decays) may fake

these at an alarming rate. In order to benchmark the performance, we provide Fig. 7,
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Figure 7. Receiver operator characteristic (ROC) curves quantifying the performance of the BDT
classifier to identify top jets, where the top quark decays to a final state with electron, from various
backgrounds.

where we show the Receiver Operator Characteristic (ROC) curves for signal (t(e) jets)

and various backgrounds. Note again, in order to produce this plot we only use re, the

response of Be, the BDT trained to separate t(e) jets from b jets using only the observables

in Ve. A cut on re, gives an acceptance for signal (t(e) jets), as well as acceptances for

other jets such as b jets, light flavor jets, and t(h) jets. Therefore, a single signal e�ciency
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