Searching Invisible Higgs with Jet Flavor Tagging

IAS Conference on High Energy Physics

HKUST, Hong Kong Jan 21, 2020

Hyung Do Kim (Seoul National University)

with Won Sang Cho and Dongsub Lee

Contents

Higgs Invisible Branching Ratio from Vector Boson Fusion

Higgs Invisible Branching Ratio from Gluon Fusion

Signals and Backgrounds

Flavors of Initial State Radiations(ISR)

Jet Substructure Variables (Quark vs Gluon Jets)

MET vs Jet Substructure of ISR

New limits on Higgs Invisible Br from Gluon Fusion

Invisible Higgs Decay

is the most useful constraining the invisible Br

as a tagger

Current Limits on Higgs Invisible Branching Ratio

CMS 2018 result

VBF, VH, ggH overlap is removed in order to avoid double counting in the combined analysis

Analysis	Final state	Signal composition	Observed limit	Expected limit
VBF-tag	VBF-jet + $p_{\rm T}^{\rm miss}$	52% VBF, 48% ggH	0.33	0.25
VH-tag	$Z(\ell\ell) + p_T^{miss}$ [72]	79% qqZH, 21% ggZH	0.40	0.42
	$V(qq') + p_T^{miss}$ [73]	39% ggH, 6% VBF, 33% WH, 22% ZH	0.50	0.48
ggH-tag	jets + $p_{\mathrm{T}}^{\mathrm{miss}}$ [73]	80% ggH, 12% VBF, 5% WH, 3% ZH	0.66	0.59

Higgs Invisible Branching Ratio from Gluon Fusion Production

Production Cross Section

ggH > VBF > VH

Invisible Br limit (strongest)

VBF > VH > ggH

ISR + MET for ggH, same for Z to neutrinos Signal : Higgs production from gluon fusion

Main Backgrounds for Higgs Invisible Br from ggH

• $E_T^{\text{miss}} \ge 200 \text{GeV}$

Selection Criteria (arXiv:1610.09218)

- $p_T^{\text{jet}} \ge 100 \text{GeV}$
- $|\eta^{\text{jet}}| \le 2.5$
- $\min\Delta\phi(\vec{p}_T^{\text{miss}}, \vec{p}_T^{\text{jet}}) > 0.5$

E^{miss}_T [GeV]

2.3 fb⁻¹ (13 TeV) Events/GeV 10⁴ 10³ Data **Background processes** CMS Z(→vv)+jets Monojet W(-→(v)+iets $-Z \rightarrow \nu \overline{\nu}$ Dibosons Top quark 10^{2} Z/γ(-→(i)+jets $-W \rightarrow l\nu$ QCD multijet 10 H, B(H → inv)=100% Mainly qq-initiated -di-boson 10⁻¹ -SM top 10⁻² -QCD multi-jet } Mainly gg-initiated Data/Pred. $20\overline{0}$ 400 600 800 1000 1200

ISR for the signal and background

FIG. 3: Parton contents(initial particle) of jets associated to ggH and $Z \rightarrow \nu \overline{\nu}$ process.

The number in the parenthesis () shows the ratio before applying the cuts

Cuts eliminates more gluon jets than quark jets

Conventional invisible Higgs search from ggH

MET is harder for ggH compared to bg(Znunu)

Quark Jet vs Gluon Jet

Jet substructure variables can distinguish quark and gluon jets

- $n_{tk}[8]$: Track multiplicity(the number of charged tracks in jet)
- Girth[8, 9] : $\frac{1}{p_T^{\text{jet}}} \sum_{i \in \{\text{const.}\}} p_T^i \left| \Delta \vec{R}_i \right|$
- Broadening[10] : $\frac{1}{\sum_{i} |\vec{p}^{i}|} \sum_{i} |\vec{p}^{i} \times \hat{p}^{jet}|$
- EEC¹[11] : $C_1^{\beta} = \frac{1}{(\sum_i p_T^i)^2} \sum_{i < j} p_T^i p_T^j (\Delta R_{ij})^{\beta}$ • RMS- $p_T[8]$: $\sqrt{\frac{1}{p_T^{\text{jet}} \sum_i} \sum_i (p_T^i)^2}$

New Ingredients : Jet Substructures

Scores using Jet Substructure Variables

Scores using Jet Substructure & MET

Receiver Operating Characteristics (ROC) Curve

Likelyhood Fitting

Likelihood fitting using 'Scores' as probability distribution fuction(pdf)

```
Integrated luminosity : 36 fb^-1
```

Ensemble : 5,000

Higgs Invisible Br from ggH vs VBF

FIG. 4: Result with 36fb^{-1} with 5K ensembles.

Expected Sensitivity for Higgs Invisible Br from ggH

Combining with VBF, the limit can be stronger by 20~30%

Conclusion

Using jet substructure variables and machine learning, it was demonstrated that the strongest bound on **Higgs invisible branching ratio** can be obtained from **gluon fusion produced Higgs(ggH)** signals.

Different composition of quark and gluon jets in ISR from signal and backgrounds can be used to enhance the signal to background ratio in the analysis.

The idea can be generalized and applied in many processes including Higgs to dimuons(working in progress).