

Status of Higgs physics at CEPC

Yaquan Fang (IHEP) on behalf of CEPC Higgs working group

IAS Program on High Energy Physics 2020 Jan 19, 2020

Higgs related physics at e⁺e⁻ collider

- With the increase of the energy, different Higgs related physics can be explored at e⁺e⁻ collider.
- With the energy around 240 GeV, ZH as well as ww/zz fusion can be intensively studied.
 - the dominant production is from HZ, the WW/ZZ fusions contribute a few percent of the total cross-section.

SM Higgs decay branching ratio, Bkg process

 ✓ e⁺e⁻ collider provides a good opportunity to measure the jj, invisible decay of Higgs.
 ✓ For 5.6 ab⁻¹ data with CEPC, 1M Higgs, 10M Z, 100M W are produced.

Performance

Higgs analyses @CEPC CDR

CEPC-v4: 240 GeV/3T,....

A lot of decay channels can be investigated.

Direct measurement of Higgs cross-section

$$M_{\rm recoil}^2 = (\sqrt{s} - E_{ff})^2 - p_{ff}^2 = s - 2E_{ff}\sqrt{s} + m_{ff}^2$$

- ✓ For this model independent analysis, we reconstruct the recoil mass of Z without touching the other particles in a event.
 ✓ The M_{recoil} should exhibit a resonance peak at m_H for signal; Bkg is expected to smooth.
- ✓ The best resolution can be achieved from $Z(\rightarrow e^+e^-, \mu^+\mu^-)$.

Direct measurement of Higgs cross-section and m_H

- / The combined precision with three channels is $\Delta\sigma/\sigma=0.5\%$
- Similar sub-percent level for ILC/FCC-ee
- ✓ The mass of Higgs can be measured with a precision 5.9 MeV combining Z→ee (14 MeV) and Z→ $\mu\mu$ (6.5 MeV)

Measurement of Higgs width

 Method 1: Higgs width can be determined directly from the measurement of σ(ZH) and Br. of (H->ZZ*)

$$\Gamma_H \propto \frac{\Gamma(H \to ZZ^*)}{\text{BR}(H \to ZZ^*)} \propto \frac{\sigma(ZH)}{\text{BR}(H \to ZZ^*)}$$
 Precision : 5.1%

- But the uncertainty of Br(H->ZZ*) is relatively high due to low statistics.
- Method 2: It can also be measured through:

$$\Gamma_{H} \propto \frac{\Gamma(H \to bb)}{BR(H \to bb)} \qquad \sigma(\nu\bar{\nu}H \to \nu\bar{\nu}b\bar{b}) \propto \Gamma(H \to WW^{*}) \cdot BR(H \to bb) = \Gamma(H \to bb) \cdot BR(H \to WW^{*})$$

$$\Gamma_{H} \propto \frac{\Gamma(H \to bb)}{BR(H \to bb)} \propto \frac{\sigma(\nu\bar{\nu}H \to \nu\bar{\nu}b\bar{b})}{BR(H \to b\bar{b}) \cdot BR(H \to WW^{*})} \qquad 3.0\%$$
Precision : 3.5%

• These two orthogonal methods can be combined to reach the best precision. Precision: 2.8%

Typical individual channels

2020/1/21

Precision for the Measurement of Higgs

	Estimated Precision				
Property	CEF	PC-v1	CEP	PC-v4	
m_H	5.9	MeV	5.9	MeV	
Γ_H	2.	7%	2.8	8%	
$\sigma(ZH)$	0.	5%	0.	5%	
$\sigma(u \bar{ u} H)$	3.	D%	3.1	2%	
Decay mode	$\sigma \times \mathrm{BR}$	BR	$\sigma \times BR$	BR	
$H \rightarrow b \bar{b}$	0.26%	0.56%	0.27%	0.56%	
$H \rightarrow c\bar{c}$	3.1%	3.1%	3.3%	3.3%	
$H \rightarrow gg$	1.2%	1.3%	1.3%	1.4%	
$H \mathop{\rightarrow} WW^*$	0.9%	1.1%	1.0%	1.1%	
$H \rightarrow ZZ^*$	4.9%	5.0%	5.1%	5.1%	
$H \rightarrow \gamma \gamma$	6.2%	6.2%	6.8%	6.9%	
$H \rightarrow Z \gamma$	13%	13%	16%	16%	
$H \rightarrow \tau^+ \tau^-$	0.8%	0.9%	0.8%	1.0%	
$H \rightarrow \mu^+ \mu^-$	16%	16%	17%	17%	
BR_{inv}^{BSM}	_	< 0.28%	_	< 0.30%	

Chinese Physics C Vol. 43, No. 4 (2019) 043002

Precision Higgs Physics at the CEPC

20]

Mar

4

S

Thep

2

10.0903

 $\overline{\mathbf{\infty}}$

Fenfen An^{4,23} Yu Bai⁹ Chunhui Chen²³ Xin Chen⁵ Zhenxing Chen³ Joao Guimaraes da Costa⁴ Zhenwei Cui³ Yaquan Fang^{4,6,34} Chengdong Fu⁴ Jun Gao¹⁰ Yanyan Gao²² Yuanning Gao³ Shao-Feng Ge^{15,29} Jiayin Gu¹³ Fangyi Guo^{1,4} Jun Guo¹⁰ Tao Han^{5,31} Shuang Han⁴ Hong-Jian He^{11,10} Xianke He¹⁰ Xiao-Gang He^{11,10,20} Jifeng Hu¹⁰ Shih-Chieh Hsu³² Shan Jin⁸ Maoqiang Jing^{4,7} Susmita Jyotishmati³³ Ryuta Kiuchi⁴ Chia-Ming Kuo²¹ Pei-Zhu Lai²¹ Boyang Li⁵ Conggiao Li³ Gang Li^{4,34} Haifeng Li¹² Liang Li¹⁰ Shu Li^{11,10} Tong Li¹² Qiang Li³ Hao Liang^{4,6} Zhijun Liang^{4,34} Libo Liao⁴ Bo Liu^{4,23} Jianbei Liu¹ Tao Liu¹⁴ Zhen Liu^{26,30} Xinchou Lou^{4,6,33,34} Lianliang Ma¹² Bruce Mellado^{17,18} Xin Mo⁴ Mila Pandurovic¹⁶ Jianming Qian²⁴ Zhuoni Qian¹⁹ Nikolaos Rompotis²² Manqi Ruan⁴ Alex Schuy³² Lian-You Shan⁴ Jingyuan Shi⁹ Xin Shi⁴ Shufang Su²⁵ Dayong Wang³ Jin Wang⁴ Lian-Tao Wang²⁷ Yifang Wang^{4,6} Yuqian Wei⁴ Yue Xu⁵ Haijun Yang^{10,11} Ying Yang⁴ Weiming Yao²⁸ Dan Yu⁴ Kaili Zhang^{4,6} Zhaoru Zhang⁴ Mingrui Zhao² Xianghu Zhao⁴ Ning Zhou¹⁰ tment of Modern Physics, University of Science and Technology of China, Anhui 230026, China ² China Institute of Atomic Energy, Beijing 102413, China School of Physics, Peking University, Beijing 100871, China
 ⁴ Institute of High Energy Physics, Riesilag 100049, China
 ⁵ Department of Engineering Physics, Physics Bopartment, Tsinghua University, Beijing 100084, China ⁶ University of Chinese Academy of Science (UCAS), Beijing 100049, China ⁷ School of Nuclear Science and Technology, University of South China, Hengyang 421001, China ⁸ Department of Physics, Nanjing University, Nanjing 210038, China ⁹ Department of Physics, Southeast University, Nanjing 210096, China ¹⁰ School of Physics and Astronomy, Shanghai Jiao Tong University, KLIPPAC-MoS, SKLIPPC, Shanghai 200240, China ¹¹ Tsung-Dao Lee Institute, Shanghai 200240, China ¹² Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Qingdao 266237, China
¹³ PRISMA Cluster of Excellence & Mainz Institute of Theoretical Physics, Johannes Gutenberg-Universität Mainz, Mainz 55128, Germany ¹⁴ Department of Physics, Hong Kong University of Science and Technology, Hong Kong ¹⁶ Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japar ⁶ Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade 11000, Serbia ¹⁷ School of Physics and Institute for Collider Particle Physics, University of the Wiwatersrand, Johannesburg 2050, South Africa ¹⁸ iThemba LABS, National Research Foundation, PO Box 722, Somerset West 7129, South Africa ¹⁹ Center for Theoretical Physics of the Universe, Institute of Basic Science, Daeleon 34126, South Korea ³⁰ Department of Physics, National Taiwan University, Taipei 10617, Taiwan nent of Physics and Center for High Energy and High Field Physics, National Central University, Taoyuan City 32001, Taiwan ²² Department of Physics, University of Liverpool. L49 7XX, United Kingdom Department of Fuysics, University of Liverpool, Inverpool, Inversity, American Kinggoon Department of Physics and Astronomy, Iowa State University, America S0011-3160, USA ⁴² Department of Physics, University of Arizona, Arizona 85721, USA ²⁵ Department of Physics, University of Arizona, Arizona 85721, USA ²⁶ Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia 60510, USA 27 Department of Physics, University of Chicago, Chicago 60637, USA ²⁸ Lawrence Berkeley National Laboratory, Berkeley, California 94720, US/ ²⁹ Department of Physics, University of California, Berkeley, California 9120, USA or Fundamental Physics, Department of Physics, University of Maryland, College Park, Maryland 20742, USA Department of Physics & Astronomy, University of Pittsburgh, Pittsburgh 15260, USA ³² Department of Physics, University of Washington, Seattle 98195-1560, USA
 ³³ Department of Physics, University of Texas at Dallas, Texas 75080-3021, USA ³⁴ Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing, 101400, China

- ✓ With combination of σ•Br of vvH(→bb) /Br(H→bb)/Br(H→ww) and the direct measurement, one can obtain the decay width of Higgs with the precision at ~3%.
- The measurement of Br is done by introducing the uncertainty of xsection of ZH from the direct measurement around sub-precent level.
- Most precisions are a few percent or lower (bb, invisible), allowing us to be sensitive to BSM deviation
- CEPC is complementary to LHC at the Higgs precision measurement.
- Higgs white paper are published at CPC (arxiv: <u>1810.09037</u>) and results are included in CDR.

✓ Other publications: $\sigma(ZH)$:1601.05352; bb/cc/gg: 1905.12903; $\tau\tau$:1903.1232

10

Precision for the measurement of Higgs

Property	Estimated Pr	recision
m_H	5.9 Me	V
Γ_H	3.1%	
$\sigma(ZH)$	0.5%	
$\sigma(\nu\bar{\nu}H)$	3.2%	
Decay mode	$\sigma(ZH) \times \mathrm{BR}$	BR
$H \rightarrow b\bar{b}$	0.27%	0.56%
$H \rightarrow c \bar{c}$	3.3%	3.3%
$H \rightarrow gg$	1.3%	1.4%
$H \to WW^*$	1.0%	1.1%
$H \to Z Z^*$	5.1%	5.1%
$H \rightarrow \gamma \gamma$	6.8%	6.9%
$H \rightarrow Z\gamma$	15%	15%
$H \to \tau^+ \tau^-$	0.8%	1.0%
$H ightarrow \mu^+ \mu^-$	17%	17%
$H \rightarrow \text{inv}$	_	< 0.30%

CEPC CDR: arxiv: 1811.10545

Fcc-ee 240 GeV/365 GeV: CERN-ACC-2018-0057

\sqrt{s} (GeV)	240		36	5
Luminosity (ab^{-1})	5	5		5
$\delta(\sigma BR)/\sigma BR$ (%)	HZ	$\nu\overline{\nu}H$	HZ	$\nu\overline{\nu}H$
$\rm H \rightarrow any$	± 0.5		± 0.9	
$H \to b\bar{b}$	± 0.3	± 3.1	± 0.5	± 0.9
$H \to c \bar c$	± 2.2		± 6.5	±10
$\mathrm{H} \to \mathrm{gg}$	± 1.9		± 3.5	± 4.5
$\rm H \rightarrow W^+W^-$	± 1.2		± 2.6	± 3.0
$\mathrm{H} \to \mathrm{ZZ}$	± 4.4		± 12	± 10
$H\to\tau\tau$	± 0.9		± 1.8	± 8
$H\to\gamma\gamma$	± 9.0		± 18	± 22
$\mathrm{H} \rightarrow \mu^{+}\mu^{-}$	± 19		± 40	
${\rm H} \rightarrow {\rm invisible}$	< 0.3		< 0.6	

• Fcc-ee has similar results as CEPC but including a 365 GeV run improving the measurement of Higgs width.

CEPC Higgs physics after CDR

- Improve the analyses with different technologies:
 - MVA, multi-dim fit.
 - Improve the performance b-tagging, photon ID/conversion etc.
 - Test different setup-of the detectors
- Differential xsection measurements
 - Start to do that.
- Interpretation on the results
 - Further cooperation with theorists.
- Wrap up with a post CDR Higgs paper.

MVA H-> $\mu\mu$

• After training with 6 variables: $cos\theta_{ee}$, $cos\theta_{\mu\mu}$, $\Delta_{\mu,\mu}$, M_{qq} , E_{ee} , $E_{qq\mu\mu}$, get the BDTG response

- There is a overtraining in the background due to poor statistics: ~1600
- Scan the total sensitivity $(S/\sqrt{S+B})$ vs BDTG to find the optimal BDTG point
- The sensitivity is estimated in the 90% signal coverage region

	Sig yield	Bkg yield	Sensitivity	Mass range (GeV)
BDTG > 0.45	86.20 +/- 0.51	198.20 +/- 19.82	7.46 +/- 0.27	[120.78 - 125.33]
BDTG < 0.45	29.77 +/- 0.30	1402.95 +/- 52.73	1.08 +/- 0.03	[114.08 - 125.28]
Total	115.97 +/- 0.59	1601.15 +/- 56.33	7.54 +/- 0.38	

> The improvement is ~35% w.r.t cut based one for the signal significance.

MVA H-> $\gamma\gamma$

Impact of variation of B on

- \blacktriangleright Variables having low correlations with $m_{\gamma\gamma}$ are chosen as inputs to MVA
- > Two dimensional fit is implemented to extract the precision of the measurement.
- > The improvement is ~36% in the channel of Z(->qq)H-> $\gamma\gamma$ for the precision measurement with MVA
- The overall precision has been improved from 6.8% to 5.7% with MVA as well as full simulated samples used.

H->invisible, H->ZZ and differential measurement.

For H->invisible, assuming the Br at 0.1%,

the expected measured precision is 63%.

• A note is being prepared.

ZH final state studied	Relative precision on	Upper limit on BR
	$\sigma(ZH) \times BR$	$(H \rightarrow inv.)$
	· · ·	
$Z \rightarrow e^+ e^-$, $H \rightarrow inv$.	403%	0.96%
$Z \rightarrow \mu^+ \mu^-$, $H \rightarrow inv$.	98%	0.31%
$Z \rightarrow q\overline{q}, H \rightarrow inv.$	85%	0.29%
Combination	63%	0.24%

Process	qqh_inv.	2f	single_w	$single_z$	szorsw	$\mathbf{z}\mathbf{z}$	ww	zzorww	$\mathbf{ZH}_{-\mathbf{v}isible}$	total_bkg	$\frac{\sqrt{S+B}}{S}$
Total generated	383068	801152072	19517400	9072952	1397088	6389429	50826213	20440840	1140496	909936490	7.88 %
$100 \text{GeV} < M_{recolil}^{visible} < 150 \text{GeV}$	369001	47294921	1388874	822725	229216	507558	1752824	658200	97384	52751702	1.98 %
$18 \text{GeV} < P_T^{visible} < 60 \text{GeV}$	335572	9165308	1000761	269323	152273	282624	1294263	462027	79965	12706544	1.08 %
$90 \text{GeV} < E_{visible} < 117 \text{GeV}$	319558	5748711	595694	223044	92958	231050	785389	272515	33705	7983066	0.90 %
$85 \text{GeV} < M_{visible} < 102 \text{GeV}$	268930	605788	238190	148842	39280	135635	392275	113043	18282	1691335	0.52 %
$\Delta \phi_{dijet} < 175^{\circ}$	259553	390075	230271	141490	38358	129130	379928	109734	17393	1436379	0.50 %
$30 \text{GeV} < P_{visible} < 58 \text{GeV}$	242860	241508	148607	69450	24392	46800	226881	74780	13465	845883	0.43 %
$N_{neutral} > 15$	242341	18081	22594	64324	149	44338	128425	8616	11852	298379	0.30 %
$N_{IsoMuon} = 0, N_{IsoElectron} = 0$	231374	8423	9604	60645	28	41536	76617	6447	9219	212519	0.29 %
Efficiency	60.40 %	0.00 %	0.05 %	0.67 %	0.00 %	0.65 %	0.15 %	0.03 %	0.81 %	0.02 %	

The differential measurement starts:

- For H->ZZ, more channels will be explored (e.g. Z(->ee) H->ZZ)
- MVA analyses have been implemented.
- Further bkg suppressions will be studied.

Alternative: Global analysis approach on Higgs measurement

Conclusion

- CEPC Higgs CDR is done:
 - Complementary to HL-LHC.
 - Comparable to FCC-ee results.
- The studies post CDR toward TDR start
 - Maximum use of the detector information:
 - Improve electron energy measurement
 - Estimate the sensitivities of missing final states.
 - Improve the existing analyses.
 - Fully exploit kinematic information for signal and background.
 - MVA analyses implemented for different channels.
 - Global analysis approaches.
 - In addition:
 - Different cross section, Spin/CP properties, BSM studies (H->invisible etc...).
 - Impact from physics analyses on the detector design changes.
- Manpower needed

backup slides

High energy (360 GeV) Run

width : 1.3%

WW fusion with 360 GeV

(Hao Liang's talk)

	240GeV, 5.6ab ⁻¹	360Ge\	/, 2ab ⁻¹	
	ZH	ZH	ννΗ	
any	0.50%	1%	١	
$H \rightarrow bb$	0.27%	0.63%	0.76%	
$H \rightarrow cc$	3.3%	6.2%	11%	
$H \rightarrow gg$	1.3%	2.4%	3.2%	
$H \rightarrow WW$	1.0%	2.0%	3.1%	
$H \rightarrow ZZ$	5.1%	12%	13%	
$H \rightarrow \tau \tau$	0.8%	1.5%	3%	
$H \rightarrow \gamma \gamma$	5.4%	8%	11%	
$H \rightarrow \mu\mu$	12%	29%	40%	
$Br_{upper}(H \rightarrow inv.)$	0.2%	١	١	
$\sigma(ZH) * Br(H \rightarrow Z\gamma)$	16%	25%	١	
Width	2.9%			
Combined Width 240/360	1.4%			

Generally, since the extrapolation is not so accurate, results are comparable. For Higgs coupling, also similar performance could be expected.

\sqrt{s} (GeV)	240		36	5
Luminosity (ab^{-1})	5	5	1.5	
$\delta(\sigma BR)/\sigma BR$ (%)	HZ	$\nu\overline{\nu}H$	HZ	$\nu\overline{\nu}\;H$
${\rm H} \rightarrow {\rm any}$	± 0.5		± 0.9	
$H \rightarrow b\bar{b}$	± 0.3	± 3.1	± 0.5	± 0.9
${\rm H} \rightarrow {\rm c}\bar{\rm c}$	± 2.2		± 6.5	± 10
${ m H} ightarrow { m gg}$	± 1.9		± 3.5	± 4.5
$H \rightarrow W^+W^-$	± 1.2		± 2.6	± 3.0
$\mathrm{H} \rightarrow \mathrm{ZZ}$	± 4.4		± 12	± 10
$H\to\tau\tau$	± 0.9		± 1.8	± 8
$H \rightarrow \gamma \gamma$	± 9.0		± 18	± 22
$\mid H \rightarrow \mu^+ \mu^-$	± 19		± 40	
$\mathrm{H} \rightarrow \mathrm{invisible}$	< 0.3		< 0.6	

For $H \rightarrow \gamma \gamma$ and $H \rightarrow \mu \mu$, resolution changes considered. Keep diphoton resolution ~(2.5GeV) : 9%

2.5GeV to 2GeV: 8%

Fcc-ee:

> Keep the resolution of di-muon \sim (0.3GeV): 23%

0.3GeV to 1GeV: 29%

For the measurement of Higgs width, CEPC can reach 1.4% combining 240 GeV and 360 GeV measurement

- Comparable to FCC-ee: 1.3%
- If we take the same assumption as Fcc-ee, one can reach 1.2%

CEPC: 240-250GeV ere* Higgs Factory

- ✓ A CEPC (phase I)+ Super proton-proton
 Collider (SPPC) was proposed
- ✓ Ecm ~240-250 GeV, Lum 5.6 ab⁻¹ for 10 years

Table 2. Key characteristic/performance of a conceptual CEPC detector.

Geometry acceptance	TPC (97%), FTD (99.5%)
Tracking efficiency	$\sim 100\%$ within geometry acceptance
Tracking performance	$\Delta(1/p_T) \sim 2 \times 10^{-5} (1/\text{GeV})$
ECAL intrinsic energy resolution	$16\%/\sqrt{E} \oplus 1\%$ (GeV)
HCAL intrinsic energy resolution	$60\%/\sqrt{E} \oplus 1\%$ (GeV)
Jet energy resolution	3-4%
Impact parameter resolution	$5~\mu{ m m}$

Status of H-> $\tau\tau$

- Develop signal strength analysis with and without jets
 - MVA for the former
 - TAURUS package
- Study BMR dependency
- Decay modes ID....

	$\delta(\sigma imes BR)/(\sigma imes BR)$
$\mu\mu H$	2.8%
eeH	5.1%
VVH	7.9%
qqH	0.9%
combined	0.8%

Dan Yu's talk

Status of H->bb,cc,gg

- Wrap the analysis into <u>a note</u> and submit to CPC.
- Flavor tagging used in the fit (3 dim)

10000-500-CEPC CEPC CEPC 60-400-8000 Preliminary 50-3 Preliminary Preliminary H->bb H->gg 6000-300 H->cc 40-30-200 4000 20-2000-100 0.90.80.70.60.50.40.30.20.1 0 0.1 0 0.90.8 *Uteness* 0.70.6 0.50.4 0.30.2 0.1 0.2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 B CLikeness 0.2 0.3 0.4 0.5 0.6 0.7 0.8 BLikeness

• Start to consider the systematics.

Decay mode	$\sigma(ZH) \times BR$	BR	
$H \rightarrow b\bar{b}$	0.28%	0.57%	
$H \rightarrow c\bar{c}$	2.2%	2.3%	
$H \rightarrow gg$	1.6%	1.7%	

More at Yu Bai's talk

HL-LHC: Differential xsection measurement

The precision can reach a few percent for different p_T bins.

HL-LHC H-> $\gamma\gamma$: one example

Scenario S1: Total uncertainty is half of the one used for the result of 80 fb⁻¹. Scenario S2: Total uncertainty is 1/3 of the one for 80 fb⁻¹.

HL-LHC H-> $\gamma\gamma$: very advanced analyses (example)

- The inclusive analysis is very simple :
 - Photon ID, Isolation, Kinematic cuts on leading/subleading photon.
- Explore other possible improvements ?
 - Divide events into different categories.

Higgs white paper @ CDR

Chinese Physics C Vol. 43, No. 4 (2019) 043002

Precision Higgs Physics at the CEPC^{*}

Fenfen An^{4,23} Yu Bai⁹ Chunhui Chen²³ Xin Chen⁵ Zhenxing Chen³ Joao Guimaraes da Costa⁴ Zhenwei Cui³ Yaquan Fang^{4,6,34} Chengdong Fu⁴ Jun Gao¹⁰ Yanyan Gao²² Yuanning Gao³ Shao-Feng Ge^{15,29} Jiayin Gu¹³ Fangyi Guo^{1,4} Jun Guo¹⁰ Tao Han^{5,31} Shuang Han⁴ Hong-Jian He^{11,10} Xianke He¹⁰ Xiao-Gang He^{11,10,20} Jifeng Hu¹⁰ Shih-Chieh Hsu³² Shan Jin⁸ Maoqiang Jing^{4,7} Susmita Jyotishmati³³ Ryuta Kiuchi⁴ Chia-Ming Kuo²¹ Pei-Zhu Lai²¹ Boyang Li⁵ Congqiao Li³ Gang Li^{4,34} Haifeng Li¹² Liang Li¹⁰ Shu Li^{11,10} Tong Li¹² Qiang Li³ Hao Liang^{4,6} Zhijun Liang^{4,34} Libo Liao⁴ Bo Liu^{4,23} Jianbei Liu¹ Tao Liu¹⁴ Zhen Liu^{26,30} Xinchou Lou^{4,6,33,34} Lianliang Ma¹² Bruce Mellado^{17,18} Xin Mo⁴ Mila Pandurovic¹⁶ Jianming Qian²⁴ Zhuoni Qian¹⁹ Nikolaos Rompotis²² Mang Lian-You Shan⁴ Jingyuan Shi⁹ Xin Shi⁴ Shufang Su²⁵ Dayong Wang³ Lian-Tao Wang²⁷ Yifang Wang^{4,6} Yuqian Wei⁴ Yue Xu⁵ Haijun Yang^{10,} — Weiming Yao²⁸ Dan Yu⁴ Kaili Zhang^{4,6} Zhaoru Zhang⁴ Mingrui Zhao² Xiang ¹ Department of Modern Physics, University of Science and Technology of China, Anhui 230 ² China Institute of Atomic Energy, Beijing 102413, China ³ School of Physics, Peking University, Beijing 100871, China ⁴ Institute of High Energy Physics, Beijing 100049, China ⁵ Department of Engineering Physics, Physics Department, Tsinghua University, Beijing 100 — ⁶ University of Chinese Academy of Science (UCAS), Beijing 100049, China ⁷ School of Nuclear Science and Technology, University of South China, Hengyang 42100. ⁸ Department of Physics, Nanjing University, Nanjing 210093, China ⁹ Department of Physics, Southeast University, Nanjing 210096, China ¹⁰ School of Physics and Astronomy, Shanghai Jiao Tong University, KLPPAC-MoE, SKLPPC, Shar ¹¹ Tsung-Dao Lee Institute, Shanghai 200240, China University, Qingdao 266237, China

¹² Institute of Frontier and Interdisciplinary Science and Key Laboratory of Particle Physics and Particle Irr ¹³ PRISMA Cluster of Excellence & Mainz Institute of Theoretical Physics, Johannes Gutenberg-Universi Germany ¹⁴ Department of Physics, Hong Kong University of Science and Technology, Hong K ¹⁵ Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, J ¹⁶ Vinca Institute of Nuclear Sciences, University of Belgrade, Belgrade 11000, Sert ¹⁷ School of Physics and Institute for Collider Particle Physics, University of the Witwatersrand, Johanne ¹⁸ iThemba LABS, National Research Foundation, PO Box 722, Somerset West 7129, Sou ¹⁹ Center for Theoretical Physics of the Universe, Institute of Basic Science, Daejeon 34126, 1 ²⁰ Department of Physics, National Taiwan University, Taipei 10617, Taiwan ²¹ Department of Physics and Center for High Energy and High Field Physics, National Central University, T ²² Department of Physics, University of Liverpool, Liverpool L69 7ZX, United Kinge ²³ Department of Physics and Astronomy, Iowa State University, Ames 50011-3160, USA ²⁴ Department of Physics, University of Michigan, Ann Arbor, Michigan 48109, USA ²⁵ Department of Physics, University of Arizona, Arizona 85721, USA ²⁶ Theoretical Physics Department, Fermi National Accelerator Laboratory, Batavia 60510, USA ²⁷ Department of Physics, University of Chicago, Chicago 60637, USA ²⁸ Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA ²⁹ Department of Physics, University of California, Berkeley, California 94720, USA ³⁰ Maryland Center for Fundamental Physics, Department of Physics, University of Maryland, College Park, Maryland 20742, USA ³¹ Department of Physics & Astronomy, University of Pittsburgh, Pittsburgh 15260, USA

³² Department of Physics, University of Washington, Seattle 98195-1560, USA
 ³³ Department of Physics, University of Texas at Dallas, Texas 75080-3021, USA

³⁴ Physical Science Laboratory, Huairou National Comprehensive Science Center, Beijing, 101400, China

V2 is at arxiv. CPC : Vol 43, No.4 (2019) 043002

Thanks to those colleagues for great efforts. Welcome to new colleagues to join in.

		Esti	imated Precision	
Property	CEF	PC-v1	CEI	PC-v4
m_H	5.9	MeV	5.9	MeV
Γ_H	2.	7%	2	.8%
$\sigma(ZH)$	0.	5%	0	.5%
$\sigma(\nu \bar{\nu} H)$	3.	0%	3	.2%
Decay mode	$\sigma \times \mathrm{BR}$	\mathbf{BR}	$\sigma \times BR$	BR
$H \rightarrow b \bar{b}$	0.26%	0.56%	0.27%	0.56%
$H \rightarrow c\bar{c}$	3.1%	3.1%	3.3%	3.3%
$H \rightarrow gg$	1.2%	1.3%	1.3%	1.4%
$H \mathop{\rightarrow} WW^{\star}$	0.9%	1.1%	1.0%	1.1%
$H \rightarrow ZZ^*$	4.9%	5.0%	5.1%	5.1%
$H \rightarrow \gamma \gamma$	6.2%	6.2%	6.8%	6.9%
$H \rightarrow Z \gamma$	13%	13%	16%	16%
$H\!\rightarrow\!\tau^+\tau^-$	0.8%	0.9%	0.8%	1.0%
$H \rightarrow \mu^+ \mu^-$	16%	16%	17%	17%
$\mathrm{BR}^{\mathrm{BSM}}_{\mathrm{inv}}$	-	$<\!0.28\%$	-	$<\!0.30\%$

该二维码7天内(7月8日前)有效,重新进入将更新

Mailing list: cepc-physics@maillist.ihep.ac.cn

6

One example

Category	Events	B_{90}	S_{90}	<i>f</i> 90	Z_{90}	S_{90}^{fit}
Central low- p_{Tt}	31907	3500	180	0.05	3.04	120
Central high- p_{Tt}	1319	140	20	0.13	1.66	15
Forward low- p_{Tt}	85129	13000	310	0.02	2.73	200
Forward high- p_{Tt}	3977	540	33	0.06	1.38	25

The improvement of significance w.r.t. inclusive one is from 4.0 to 4.6, corresponding 13% improvement on the precision.

Results and systematics for H->bb,cc,gg

Combination of the 4 channels:

Statistic precision of σ (ZH)*Br(H->bb/cc/gg) is 0.3% 3.3% and 1.3%

Consistent with the goal expected in pre-CDR with full simulation samples

Decay mode	$\sigma(ZH) \times BR$	BR		
$H \rightarrow b\bar{b}$	0.28%	0.57%		
$H \rightarrow c\bar{c}$	2.2%	2.3%		
$H \rightarrow gg$	1.6%	1.7%		

IIH with 3D fit and systematic uncertainties considered:

	$\mu^+\mu^-H$			e^+e^-H		
	$H \rightarrow b \bar{b}$	$H \rightarrow c \bar{c}$	$H \rightarrow gg$	$H \rightarrow b \bar{b}$	$H \to c \bar c$	$H \rightarrow gg$
Statistic Uncertainty	1.1%	10.5%	5.4%	1.6%	14.7%	10.5%
Fixed Background	-0.2% +0.1%	+4.1% -4.2%	7.6%	-0.2% +0.1%	+4.1% -4.2%	7.6%
Event Selection	+0.7% -0.2%	+0.4%	+0.7%	+0.7% -0.2%	+0.4%	+0.7%
Flavor Tagging	-0.4% +0.2%	+3.7% -5.0%	+0.2% -0.7%	-0.4% +0.2%	+3.7% -5.0%	+0.2%
Non uniformity	< 0.1%			< 0.1%		
Combined Systematic Uncertainty	+0.7% -0.5%	+5.5% -6.6%	+7.6% -7.8%	+0.7% -0.5%	+5.5% -6.6%	+7.6% -7.8%

Table 2. Uncertainties of $H \rightarrow b\bar{b}$, $H \rightarrow c\bar{c}$ and $H \rightarrow gg$

Analysis with more reliable approaches. Systematic uncertainties considered.

Measurement of Higgs width

 Method 1: Higgs width can be determined directly from the measurement of σ(ZH) and Br. of (H->ZZ*)

$$\Gamma_H \propto \frac{\Gamma(H \to ZZ^*)}{\text{BR}(H \to ZZ^*)} \propto \frac{\sigma(ZH)}{\text{BR}(H \to ZZ^*)}$$
 Precision : 5.1%

- But the uncertainty of Br(H->ZZ*) is relatively high due to low statistics.
- Method 2: It can also be measured through:

$$\Gamma_{H} \propto \frac{\Gamma(H \to bb)}{BR(H \to bb)} \qquad \sigma(\nu\bar{\nu}H \to \nu\bar{\nu}b\bar{b}) \propto \Gamma(H \to WW^{*}) \cdot BR(H \to bb) = \Gamma(H \to bb) \cdot BR(H \to WW^{*})$$

$$\Gamma_{H} \propto \frac{\Gamma(H \to bb)}{BR(H \to bb)} \propto \frac{\sigma(\nu\bar{\nu}H \to \nu\bar{\nu}b\bar{b})}{BR(H \to b\bar{b}) \cdot BR(H \to WW^{*})} \qquad 3.0\%$$
Precision : 3.5%

• These two orthogonal methods can be combined to reach the best precision. Precision: 2.8%