2020 IAS program on High Energy physics

Higgs self-coupling prospect

Yanping Huang

Institute of High Energy Physics, China

2020.1.21

$V(\Phi) = \frac{1}{2}\mu^2 \Phi^2 + \frac{1}{4}\Lambda \Phi^2$

The Higgs particle is responsible for the masses of elementary particles.

Higgs potential approximation:

$$V(h) = \frac{1}{2} \frac{1}{m_H^2} \frac{1}{R^2 v_+^2} \frac{1}{\lambda_3 v h^3 + \frac{1}{4} \lambda_4 h^4}}{\frac{1}{4} \lambda_4 h^4} \quad \text{with} \quad \lambda_3^{\text{SM}} = \lambda_4^{\text{SM}} = \frac{m_H^2}{2v^2}}{\kappa_\lambda = \kappa_3 = \frac{\lambda_{HHH}}{\lambda_{HHH}^{\text{SM}}}}$$

The measurement of Higgs self-coupling is a high priority goal for all the future colliders

How to measure the tri-linear self-coupling

Timeline of various collider projects

	T ₀	+5			+10		+15			+20		••••	+26
ILC	0.5/ab 250 GeV		1.5/ab 250 GeV		ab eV	1.0/ab 0.2/ab 2m _{top}		0.2/ab 2m _{top}	3/ab 500 GeV				
CEPC	5.6/ 240 (5.6/ab 16/ab 240 GeV Mz		.6/ab M _z	2.6 /ab 2M _w				SppC =>				
CLIC	1 38	1.0/ab 380 GeV				2.5/ab 1.5 <u>TeV</u>			5.0/ab => until +28 3.0 <u>TeV</u>				
FCC	150/ab ee, M _z	10/ab ee, 2M _w	5/a ee, 240	nb) GeV		1.7/ab ee, 2m _{top}					ĥ	h.eh =>	
LHeC	0.06/ab			0.2/a	b	0.72/ab							
HE- LHC	10/ab per experiment in 20y												
FCC eh/ <u>hh</u>	20/ab per experiment in 25y												

- Hadron colliders: double Higgs production, Single Higgs production with NLO-EW correction
- Low-energy lepton colliders: Single Higgs production with NLO-EW correction
- High-energy lepton colliders: double Higgs-strahlung, vector boson fusion

Hadron collider: Di-Higgs production

Hadron collider

Lepton collider

Destructive interference between triangle- and box- diagrams ($\sigma(HH)/\sigma(H)=0.1\%$)

Hadron collider: Di-Higgs production

Current measurement

Assume all kinematic properties of HH pair are same as SM prediction, and only ggF XS can deviate from SM (the cross section uncertainty ~10% was not included in the fitting.)

Getting close to 10*SM rate for Di-Higgs production Obs (Exp) κ_λ @ 95% CL: [-5.0,12.0] ([-5.8, 12.0]) for ATLAS , [-11.8, 18.8](-7.1, 13.6) for CMS

Prospect @ HE-LHC

- Extrapolate ATLAS HL-LHC results to HE-LHC:
 - scale cross-section (*4) from 14TeV to 27TeV and luminosity (*5) to 15ab-1
 - **bbyy**: 7.1 σ with the precison on κ_{λ} of ~20%
 - **bbtt**: 10.7 σ with the precision on κ_{λ} of ~40%
 - Combination: the precision on κ_λ of 10-20%

Prospect @ FCC-hh

	σ [100 TeV](fb)		σ[27 TeV](fb)
$gg \rightarrow HH$	$1.22 \times 10^{3} {}^{+0.9\%}_{-3.2\%} \pm 2.4\% \pm 4.5\%_{m_t}$		$140^{+1.3\%}_{-3.9\%} \pm 2.5\% \pm 3.4\%_{m_t}$
HHjj	$80.5 \pm 0.5\% \pm 1.8\%$		$1.95 \pm 2\% \pm 2.4\%$
W^+HH	$4.7 \pm 1\% \pm 1.8\%$		$0.37 \pm 0.4\% \pm 2.1\%$
W ⁻ HH	$3.3 \pm 4\% \pm 1.9\%$		$0.20 \pm 1.3\% \pm 2.7\%$
ZHH	$8.2 \pm 5\% \pm 1.7\%$		$0.41 \pm 3\% \pm 1.8\%$
tīHH	$82.1 \pm 8\% \pm 1.6\%$		$0.95^{+1.7\%}_{-4.5\%}\pm 3.1\%$
	FCC-hh Simulation (Delphes)	dơ/dm _{HH} [ab]	Significance
-2∆ In	$16 \qquad \sqrt{s} = 100 \text{ TeV} \qquad \Delta m_{\gamma\gamma} = 1.3 \text{ GeV}$ $14 \qquad L = 30 \text{ ab}^{-1}$ $12 \qquad HH \rightarrow bb \gamma \gamma$	10 ³	Cross Section: BG $\dots \kappa_{\lambda}=0$ $\dots \kappa_{\lambda}=1$ $\dots \kappa_{\lambda}=2$ Significance: $-\kappa_{\lambda}=0$ $-\kappa_{\lambda}=2$ 10

10

300

400

500

600

700

m_{нн} [GeV] $k_{\lambda} = \lambda_{obs} / \lambda_{sh}$ Most sensitivity from bbyy channel: different variation scenarios on photon ۲ efficiency, resolution, background level etc —> 5-7% uncertainty on κ_{λ} .

2 σ

1σ

1.15 1.2

1.05 1.1

1

6Ē

0.8 0.85 0.9 0.95

More sensitivity can be achieved via kinematic exploration: mHH, Higgs pT and ۲ various angular correlation

	b̄bγγ	$b\bar{b}ZZ^*[\rightarrow 4\ell]$	$b\bar{b}WW^*[\rightarrow 2j\ell\nu]$	4b + jet
$\delta\kappa_{\lambda}$	6.5%	14%	40%	30%

Constraint Higgs trilinear self-coupling

- Using STXS framework, constrain Higgs boson self-coupling using NLO EW corrections on the single Higgs boson production and decay.
- Complement direct measurement from HH channels and provide more stringent constraint.

Limited access to possible BSM effect

- No consideration of the kinematic dependence on $k\lambda$ in the single Higgs process
- No consistent EFT predicts only SM coupling variation without new contact interactions.
- Combine LO and NLO effects in the two measurements with a k-framework

11

Indirect probes through differential distributions of single Higgs processes

$p_T(H)$ [GeV]	[0, 45]	[45, 80]	[80, 120]	[120, 200]	[200, 350]	> 350
ttH	5.31	4.73	3.92	2.79	1.42	0.42
tH	1.32	1.19	1.00	0.75	0.40	0.06
VH	1.66	1.23	0.77	0.35	0.02	-0.09

Lepton collider: Di-Higgs production

Exclusive measurement for high-energy lepton colliders

	$68 \ \% CL$	95% CL
ILC $500 \mathrm{GeV}$	[-0.31, 0.28]	[-0.67, 0.54]
ILC $1 \mathrm{TeV}$	[-0.25, 1.33]	$[-0.44, \ 1.52]$
ILC combined	$[-0.20, \ 0.23]$	[-0.37, 0.49]
CLIC $1.4 \mathrm{TeV}$	[-0.35, 1.51]	[-0.60, 1.76]
CLIC $3 \mathrm{TeV}$	$[-0.26, 0.50] \cup [0.81, 1.56]$	[-0.46, 1.76]
CLIC combined	$[-0.22, 0.36] \cup [0.90, 1.46]$	$[-0.39, \ 1.63]$
+Zhh	$[-0.22, 0.34] \cup [1.07, 1.28]$	$[-0.39, \ 1.56]$
2 bins in $\nu \bar{\nu} h h$	$[-0.19, \ 0.31]$	[-0.33, 1.23]
4 bins in $\nu \bar{\nu} h h$	$[-0.18, \ 0.30]$	[-0.33, 1.11]

- Secondary solution @ δκ_λ~1 for the vvHH process
- m_{HH} differential analysis can help for the exclusion of the secondary solution

 Zhh is useful to enhance the precision

Indirect measurement from single Higgs processes

Processes for the global fit :

- ♦ Higgsstrahlung production: ee→hZ
- ♦ WW-funsion production: ee→vvh
- ♦ Weak boson pair production: ee→WW
- Parameter list with new physics parametrization through dimension-6 operators with EFT framework and simplicity assumption (CP-conserving, theory uncertainty etc.)
 - Higgs couplings to the gauge bosons: $\delta c_Z, c_{ZZ}, c_{Z\Box}, c_{\gamma\gamma}, c_{Z\gamma}, c_{gg}$
 - * Yukawa couplings: $\delta y_t, \, \delta y_c, \, \delta y_b, \, \delta y_\tau, \, \delta y_\mu$
 - * Trilinear gauge couplings: λ_Z
 - Trilinear Higgs self-coupling: $\delta \kappa_{\lambda}$

Indirect measurement from single Higgs processes

Based on very good precision on cross section eg CEPC / FCC-ee:
 σ(ZH) :~ 0.5%, σ(vvH) : 2-3%
 The potential of constraining κ_λ with a precision better than O(1)

Comparison

- Constraint set by the HH production has a small impact from global analysis
- Single Higgs analysis can complement the results from HH analysis and global analysis is important to get robust results
- FCC-ee / CEPC can reach a sensitivity of ~20%, CLIC3000 / FCC-hh can reach a sensitivity of ~10%/5%.

Summary

- Prospective measurement of the tri-linear coupling at Future Colliders through the HH and single-Higgs production
- HL-LHC: 4σ evidence of the HH process with ATLAS and CMS combination. More room for the further improvement by exploring the kinematic dependence on κ_λ
- Sensitivity from Future colliders and combination with HL-LHC: 40% for CEPC/FCC-ee, further improvement to ~20% with the increasing of the collider energy, 2-5% for FCC-hh.