Mini-Workshop Summary: Physics Requirements for e⁺e⁻ Collicers

THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

IAS PROGRAM

High Energy Physics

January 6-24, 2020

Institute of High Energy Physics Chinese Academy of Sciences

João Guimarães da Costa (for the Mini-workshop Speakers and Participants)

Why a physics requirements workshop?

- Current physics requirements on detectors for eter Circular Colliders mostly inherited from Linear Collider studies
 - There have been some discussions/thoughts about them, but no systematic re-analysis of their validity
 - Conditions are similar but not exactly the same (energy, backgrounds, ...)

Requirements:

Constraints from physics (similar to LC but not exactly!)

Physics process	Measurands
$ZH, Z \rightarrow e^+e^-, \mu^+\mu^-$ $H \rightarrow \mu^+\mu^-$	$m_H, \sigma(ZH)$ BR $(H \to \mu^+ \mu^-)$
$H \rightarrow b \bar{b} / c \bar{c} / g g$	$BR(H \rightarrow b\bar{b}/c\bar{c}/gg)$
$H \rightarrow q \bar{q}, WW^*, ZZ^*$	$BR(H \to q\bar{q}, WW^*, ZZ^*)$
$H \to \gamma \gamma$	${\rm BR}(H \to \gamma \gamma)$

Excellent acceptance and luminosity control PID & π^0 ID for HF/ τ physics Low B field to avoid emittance blow up Power pulsing not allowed

FCC Phys. & Det. Workshop, Jan. 2020

CEPC/FCC-ee

Not present at LC F. Bedeschi, INFN-Pisa 19

Why a physics requirements workshop?

- Current physics requirements on detectors for eter Circular Colliders mostly inherited from Linear Collider studies
 - There have been some discussions/thoughts about them, but no systematic re-analysis of their validity
- Idea:
 - Bring together principals from the Linear Collider community, theorists and experimentalists from CEPC/FCC-ee to discuss how we got here, and what needs to be reevaluated and re-considered.
 - Explore new ideas and consequent detector requirements that were not considered before

Workshop intended to be a kick-off of this work

Agenda

Session 1

Chairs: Paolo GIACOMELLI and Joao GUIMARAES DA COSTA

09:00 - 10:00	Physics at a Circular Collider (sqrt(s) = 91-365 GeV) [SI Jiavin GU	ides]			
	Johannes Gutenberg University Mainz	Session 2 Chairs: Paolo GIACOMELLI and Joao GUIMARAES DA COSTA			
10:00 - 10:30	Discussion	14:00 - 14:45	CLIC Detector Requirements [Slides]		
10:30 - 11:00	- 11:00 Group Photo and Coffee Break (Venue: Open Area, 1/F)		Andre SAILER CERN		
11:00 - 11:45 Theoretical Tools [Slides] Alessandro VICINI University of Milan		14:45 - 15:25	Tracking Requirements [Slides] Zhijun LIANG Institute of High Energy Physics, Chinese Academy of Sciences		
11:45 - 12:30 ILC D Jim B	ILC Detector Requirements [Slides] Jim BRAU University of Oregon	15:25 - 16:05	Calorimeter Requirements [Slides] Yong LIU Institute of High Energy Physics, Chinese Academy of Sciences		
		16:05 - 16:25	Coffee Break (Venue: Open Area, 1/F)		
12:30 - 14:00	Lunch (Self-arranged)	16:25 - 16:55	Future Activities at FCC [Slides] Paolo GIACOMELLI		
			National Institute for Nuclear Physics (INFN, Bologna)		
		16:55 - 17:40	Future Activities and Discussion [Slides] Moderators: Paolo GIACOMELLI, Joao GUIMARAES DA COSTA and Ma		

http://iasprogram.ust.hk/hep/2020/workshop_experiment.php

What can circular e^+e^- colliders do for us

 \blacktriangleright Z factory (~ 91 GeV)

- Z mass, width, Zff couplings
- Z Exotic decays, flavor...
- W factory (~ 157-172 GeV) W mass, width, Wff couplings
- Higgs factory! (240 GeV) Higgs mass, width, Couplings

 - Triple Higgs coupling (indirect)
 - Higgs Exotic decays
- **Top factory** ($\sim 340-365$ GeV) Top mass, width, couplings
 - Higgs couplings, triple Higgs coupling (indirect & global)
 - WW measurements (TGCs)
 - top exotic decays, (direct searches?)

Implications: Hierarchy problem, dark matter, baryogenesis, ...

Jiayin Gu

WW measurements (largest WW sample, also Triple Gauge Couplings)

JGU Mainz

Photon benchmark: good angle separation

Dark matter / ALPs [arXiv:1712.07237] Liu, Wang, Wang, Xue

Left: Higgs portal dark matter (sin α is the dark Higgs mixing angle).

Right: Axion-like particle, $Z \rightarrow \gamma a, a \rightarrow \gamma \gamma$.

Flavor, radiative return and detector forward region

Flavor

			CEPC C
Particle	Tera-Z	Belle II	LHCb
b hadrons			
B^+	6×10^{10}	$3 imes 10^{10}$ (50 ab^{-1} on $\Upsilon(4S)$)	3×10^{13}
B^0	6×10^{10}	$3 imes 10^{10} (50 \mathrm{ab}^{-1} \ \mathrm{on} \ \Upsilon(4S))$	$3 imes 10^{13}$
B_s	2×10^{10}	$3 imes 10^8$ (5 ab^{-1} on $\Upsilon(5S)$)	8×10^{12}
b baryons	1×10^{10}		1×10^{13}
Λ_b	1×10^{10}		1×10^{13}
c hadrons			
D^0	2×10^{11}		
D^+	$6 imes 10^{10}$		
D_s^+	$3 imes 10^{10}$		
Λ_c^+	$2 imes 10^{10}$		
$ au^+$	$3 imes 10^{10}$	$5 imes 10^{10}~(50~{ m ab}^{-1}~{ m on}~\Upsilon(4S))$	

CEPC CDR

$$\begin{split} & \mathrm{BR}(Z \to \mu e)_{\mathrm{CEPC}} \lesssim 3 \times 10^{-9} \; \left[1/\sqrt{N} \; \mathrm{scaling} \right], \; 7 \times 10^{-12} \; \left[1/N \; \mathrm{scaling} \right], \\ & \mathrm{BR}(Z \to \tau e)_{\mathrm{CEPC}} \lesssim 2 \times 10^{-8} \; \left[1/\sqrt{N} \; \mathrm{scaling} \right], \; 4 \times 10^{-11} \; \left[1/N \; \mathrm{scaling} \right], \\ & \mathrm{BR}(Z \to \tau \mu)_{\mathrm{CEPC}} \lesssim 2 \times 10^{-8} \; \left[1/\sqrt{N} \; \mathrm{scaling} \right], \; 5 \times 10^{-11} \; \left[1/N \; \mathrm{scaling} \right], \; . \end{split}$$

Tera Z factory is also a flavor factory!

- A lot of b, c hadrons and r leptons from Z decays.
- Cleaner environment, larger boost.
- Flavor violating Z decay.
- Covering lower √s via radiative returns.
 - Most events are in the forward region.

[arXiv:1503.07209] Karliner, Low, Rosner, Wang

JGU Mainz

Alessandro Vicini University of Milano, INFN Milano

Hong Kong, January 16th 2020

Alessandro Vicini - University of Milano

Theoretical tools and open issues for EW precision studies at a future e+e- collider

Hong Kong, January 16th 2020

Relevance of new high-precision measurement of EW parameters

In the case a BSM particle had been discovered a very precise MW value would offer a strongly discriminating tool about the mass spectra in BSM models

different dependence on the neutralino mass M₂ of the MW prediction in the MSSM and NMSSM

- The precision measurement of MW and $sin^2\theta_{\text{eff}}$
- with an error of 0.7 MeV and 0.000004
- (5 MeV and 0.000100 at a hadron collider)
- (formidable challenges!)
- would offer a very stringent test of the SM likelihood

W Mass determination from WW Scan

W Mass from Threshold Scan

Similar to LEP technique Use 3 √s points: 157.5, 161.5 and 162.5 GeV

> Beam energy spread: <0.1% E_{CM} uncertainty: <0.5 MeV

$L = 2.6 \text{ ab}^{-1} \rightarrow \Delta M_W \sim 1 \text{ MeV}$

with E₁=157.1 GeV E₂=162.3 Δm_w=0.62 ΔΓ_w=1.5 (MeV)

$$\sigma_0(s) \approx \frac{\pi \alpha^2}{s} \frac{1}{4s_W^4} 4\beta + O(\beta^3)$$

 $\Delta \sigma = 0.1\% \rightarrow \Delta MW = 1.5 MeV$ Experimentally: $\Delta \sigma = 0.02 \%$

Theoretical goal: prediction $\Delta \sigma = 0.01 \%$

Will require the full NNLO-EW calculation $(2 \rightarrow 4 \text{ process!})$ with 3-loop contributions

Considerable theory work required to match experimental uncertainties

ILC Detector Energy Range

Center-of-mass energies:

- * 200 GeV up to 1 TeV.
- Special running at the Z-pole and WW threshold.
- Higgs Factory, Giga-Z, Top Yukawa couplings, di-boson production, SUSY, other new physics motivated by alternative models.
- Each physics topic creates a particular set of requirements.
- * Detector designs developed for the full energy range.

ILC Detector Requirements

J. Brau - Hong Kong Univ. S&T - 16 January 2020

TDR ILC at 500 GeV ILC at 250 GeV milder conditions 12

Clean events with low backgrounds motivate unprecedented detector performance

<u>Physics</u> <u>Process</u>	Measured Quantity	<u>Critical</u> System	<u>Critical Detector</u> <u>Characteristic</u>	Required Performance
$\begin{array}{c} H \rightarrow b\overline{b}, c\overline{c}, \\ gg, \tau\tau \\ b\overline{b} \end{array}$	Higgs branching fractions b quark charge asymmetry	Vertex Detector	Impact parameter ⇒ Flavor tag	$\delta_b \sim 5\mu m \oplus 10\mu m/(p\sin^{3/2}\theta)$
$ZH \rightarrow \ell^{+} \ell^{-} X$ $\mu^{+} \mu^{-} \gamma$ $ZH + H \nu \overline{\nu}$ $\rightarrow \mu^{+} \mu^{-} X$	Higgs Recoil Mass Lumin Weighted E _{cm} BR (H →µµ)	Tracker	Charge particle momentum resolution, $\sigma(p_t)/p_t^2$ \Rightarrow Recoil mass	$\sigma(p_t) / p_t^2 \sim few \times 10^{-5} GeV^{-1}$

• Physics Drives Dete

Clean events with low backgrounds motiv

$\overline{1 \overline{1} \overline{1}} - \overline{\text{Uiggs h}}$			
$H \rightarrow bb, cc, \operatorname{Higgs b}$	ranching fractions	Vertex	Impa
$b\overline{b}$ $gg, \tau\tau$ b quark	charge asymmetry	Detector	
$ZH \rightarrow \ell^+ \ell^- X$ Higgs R	ecoil Mass		
$ \begin{array}{ccc} \mu^{+}\mu^{-}\gamma & \text{Lumin V} \\ ZH + H\nu\overline{\nu} & \text{BR (H -)} \end{array} $	Weighted E _{cm} →μμ)	Tracker	Chai resol
$\rightarrow \mu^+ \mu^- X$			

$\delta p_T/(p_T)^2 = a \oplus b/(pT \sin \theta)$

Events /

• Physics Drives Detector Requirements

Clean events with low backgrounds motivate unprecedented detector performance

<u>Physics</u> <u>Process</u>	Measured Quantity	<u>Critical</u> System	<u>Critical Detector</u> <u>Characteristic</u>	Required Performance
$\begin{array}{c} H \rightarrow b\overline{b}, c\overline{c}, \\ gg, \tau\tau \\ b\overline{b} \end{array}$	Higgs branching fractions b quark charge asymmetry	Vertex Detector	Impact parameter ⇒ Flavor tag	$\delta_b \sim 5 \mu m \oplus 10 \mu m / (p \sin^{3/2} \theta)$
$ZH \rightarrow \ell^{+} \ell^{-} X$ $\mu^{+} \mu^{-} \gamma$ $ZH + H \nu \overline{\nu}$ $\rightarrow \mu^{+} \mu^{-} X$	Higgs Recoil Mass Lumin Weighted E _{cm} BR (H →µµ)	Tracker	Charge particle momentum resolution, $\sigma(p_t)/p_t^2$ \Rightarrow Recoil mass	$\sigma(p_t) / p_t^2 \sim few \times 10^{-5} GeV^{-1}$
ZHH $ZH \rightarrow q\bar{q}b\bar{b}$ $ZH \rightarrow ZWW^*$ $\nu\bar{\nu}W^+W^-$	Triple Higgs Coupling Higgs Mass BR (H → WW*) σ(e+e- → νν W+W-)	Tracker & Calorimeter	Jet Energy Resolution, σ_E/E \Rightarrow Di-jet Mass Res.	~3% for $E_{jet} > 100 \text{ GeV}$ 30%/ $\sqrt{E_{jet}}$ for $E_{jet} < 100 \text{ GeV}$
SUSY, eg. $\tilde{\mu}_{decay}$	$ ilde{\mu}_{ m mass}$	Tracker, Calorimeter	Momentum resolution, Hermiticity ⇒ Event Reconstruction	Maximal solid angle coverage

High granularity, dense integration, super light materials, low power, air cooling, power pulsing

ILC Detector Requirements

J. Brau - Hong Kong Univ. S&T - 16 January 2020

• Physics Drives Detector Requirements

Clean events with low backgrounds motivate unprecedented detector performance

<u>Physics</u> <u>Process</u>	Measured Quantity	<u>Critical</u> <u>System</u>	<u>Critical Detector</u> <u>Characteristic</u>	Required Performance
$\begin{array}{c} H \rightarrow b\overline{b}, c\overline{c}, \\ gg, \tau\tau \\ b\overline{b} \end{array}$	Higgs branching fractions b quark charge asymmetry	Vertex Detector	Impact parameter ⇒ Flavor tag	$\delta_b \sim 5\mu m \oplus 10\mu m/(p\sin^{3/2}\theta)$
$ZH \rightarrow \ell^{+} \ell^{-} X$ $\mu^{+} \mu^{-} \gamma$ $ZH + H \nu \overline{\nu}$ $\rightarrow \mu^{+} \mu^{-} X$	Higgs Recoil Mass Lumin Weighted E _{cm} BR (H →µµ)	Tracker	Charge particle momentum resolution, $\sigma(p_t)/p_t^2$ \Rightarrow Recoil mass	$\sigma(p_t) / p_t^2 \sim few \times 10^{-5} GeV^{-1}$
ZHH $ZH \rightarrow q\bar{q}b\bar{b}$ $ZH \rightarrow ZWW^*$ $\nu\bar{\nu}W^+W^-$	Triple Higgs Coupling Higgs Mass BR (H → WW*) σ(e+e- → νν W+W-)	Tracker & Calorimeter	Jet Energy Resolution, σ_E/E \Rightarrow Di-jet Mass Res.	~3% for $E_{jet} > 100 \text{ GeV}$ 30%/ $\sqrt{E_{jet}}$ for $E_{jet} < 100 \text{ GeV}$
SUSY, eg. $\tilde{\mu}_{ m decay}$	$ ilde{\mu}_{ m mass}$	Tracker, Calorimeter	Momentum resolution, Hermiticity ⇒ Event Reconstruction	Maximal solid angle coverage

High granularity, dense integration, super light materials, low power, air cooling, power pulsing

ILC Detector Requirements

J. Brau - Hong Kong Univ. S&T - 16 January 2020

CEPC

$$\sigma_{r\phi} = 5 \oplus rac{10}{p({
m GeV}) imes \sin^{3/2}}$$

$$\Delta(1/p_T) =$$

 $2 \times 10^{-5} \oplus rac{0.}{p({
m GeV})}$

$$\sigma_E^{\text{jet}}/E =$$

3 ~ 4% at 100

 $\overline{A}(\mu m)$

Unprecedented Detector Challenges

- Requirements for ILC
 - Impact parameter resolution

 $\sigma_{r\varphi} \approx \sigma_{rz} \approx 5 \oplus 10/(p \sin^{3/2} \vartheta) \, \mu m$

- Momentum resolution $\sigma\left(\frac{1}{p_T}\right) \sim \text{few} \times 10^{-5} (GeV^{-1})$
- * Jet energy resolution goal $\frac{\sigma_E}{E_{jet}} = \sim 3\%$ for $E_{jet} > 100$ GeV
- Maximal solid angle coverage

Compared to best performance to date

ution Requires 3 times better than SLD

Requires >10 (3) times better than LEP (CMS)

Requires 2 times better than ZEUS

verage Beyond prior experiments, LHC, LEP or SLD.

CLIC Detector: Design for physics up to 3 TeV

Detector for CLIC

Momentum resolution

SiD

5 Tesla

CEPC FCC-ee 2 - 3 Tesla

ILD 3.5 Tesla

CLICdet 4 Tesla

Challenging to achieve same momentum resolution

Jet Energy Resolution

- Reaching 3.5% jet energy resolution for high energy jets in the barrel [6]
- Endcap region more affected by $\gamma\gamma \rightarrow$ hadron backgrounds, which are forward peaked

central jet energy resolution: 7% (50 GeV jets) 3.5% (1 TeV jets)

- Jet energy resolution good enough for $\approx 2\sigma$ separation between jets from W and Z bosons [6]
- For different boson energies and including backgrounds

Background	E _{W,Z}	σ _{m(W)} /m(W)	σ _{m(Z)} /m(Z)	<i>ε</i>	Separation
	[GeV]	[%]	[%]	[%]	[σ]
no BG	125	5.5	5.3	88	2.3
	250	5.3	5.4	88	2.3
	500	5.1	4.9	90	2.5
	1000	6.6	6.2	84	2.0
3 TeV BG	125	7.8	7.1	80	1.7
	250	6.9	6.8	82	1.8
	500	6.2	6.1	85	2.0
	1000	7.9	7.2	80	1.7
380 GeV BG	125	6.0	5.5	87	2.2

W/Z-Separation

Challenges in vertex detectors

Vertex detector design driven by needs of flavor tagging

- Extremely accurate/precise
- Extremely light

Circular colliders: continuous operation \rightarrow more cooling \rightarrow more material

Large surfaces: ~ 1 m²

Single point resolution $\sigma < 3 - 5 \mu m$

Pixel pitch ~ 16 – 25 µm

Low material budget < 0.1 — 0.3%X₀ per layer Thin sensors and ASICs Light-weight support

Power pulsing (LC) Air cooling

Low power dissipation $\leq 50 \text{ mW/cm}^2$

Time stamping ~10 ns (CLIC) ~300 ns - µs (ILC/CC)

Measurements of Higgs branching ratio ($H \rightarrow \tau \tau$)

Use Impact parameters to separate signal H $\rightarrow \tau \tau$ from WW background • 90% efficiency on τ reconstruction, and 70~90% purity

Zhijun Liang

REQUIREMENT ON MATERIAL (2)

- CEPC study on material of vertex detector :
 - Increase material budget by 300%
 - 20~30% impact worse on 1GeV track very small impact on 10GeV track (<10%)
- Fcc-ee study on material of vertex detector :
 - Increase material budget by 50%, small impact on impact parameter resolution

CEPC baseline detector

Zhijun Liang

Material requirement can be relaxed!

Zhijun requirements wishes:

Increase material budget

Reduce single point resolution, $\sigma_{sp} < 3 \mu m$?

Reduce beam pipe radius:

30~40%

Long barrel detector without endcap design can have good air cooling performance

FCC-ee reduced beampipe radius from 17mm to 12mm —> Improve d0 resolution by

Radiation harness: 1 MRad/year (although new studies indicate 6 MRad/year)

Calorimetry Requirements with a focus on circular colliders

Yong Liu (Institute of High Energy Physics, Beijing)

for e+e- Colliders, Hong Kong, Jan. 16-17, 2020

Yong Liu (liuyong@ihep.ac.cn)

中国科学院高能物理研究所

Institute of High Energy Physics Chinese Academy of Sciences

HKIAS Mini-Workshop: Experiment/Detector-Software and Physics Requirements

- Boson Mass Resolution: relative mass resolution of vvH, $H \rightarrow gg$ events
 - Free of Jet Clustering _
 - Be applied directly to the Higgs analyses
- The CEPC baseline reaches 3.8%

16.01.2020

optimization underway

	BMR = 2%	4%	6%	8%
σ(vvH, H→bb)	2.3%	2.6%	3.0%	3.4%
σ(vvH, H→inv)	0.38%	0.4%	0.5%	0.6%
σ(qqH, H→ττ)	0.85%	0.9%	1.0%	1.1%
		Mano	qi Rua	n, CEF

Resolution of SiW ECAL CEPC Higgs mass resolution ~2.2% in H $\rightarrow \gamma\gamma$

- **Crystal ECAL being consider:** Homogeneous structure • Optimal intrinsic energy resolution:~3%/ $\sqrt{E} \oplus ~1\%$ Fine-segmented crystal for PFA under study

FCC-ee CLD Photon resolution vs # layers

FCC-ee detector requirements future activities

FCC Phys. & Det. Workshop, Jan. 2020

Design guidelines: Momentum resolution

Z or H decay muons in ZH events have rather small pt Transparency more relevant than asymptotic resolution

FCC Phys. & Det. Workshop, Jan. 2020

Design guidelines: Momentum resolution

Hadron PID: $p/K/\pi$ separation

Clear benchmark still needed

CP violation in $Bs \rightarrow DsK$ Tau physics Lepton-flavor violation Z decays

TORCH (RICH+TOF)

Drift Chamber: dE/dX

Time of flight

Muon Systems

ILD: 12-14 sensitive layers

SiD: 9-10 sensitive layers

CEPC: 8 sensitive layers

FCC-ee - CLD: 6 sensitive layers

(CLIC: Efficiency 99.8% for > 200 MeV muons)

CLICdet: 6 sensitive layers

IDEA: 6 sensitive layers

Plans and Future Activities

- Need to identify all relevant physics benchmark channels
 - Higgs decays and coupling measurements well identified
 - Special needs for high-statistics measurements, especially at the Z peak
 - Flavour physics processes Particularly interesting exotic channels
 - Unique channels, e.g. long-lived particles that could arise from beyond SM physics
- Many physics channels and consequences on detector requirements can be studied using fast simulations
 - Some channels will need to use full simulation of detectors and will therefore take more time to be studied
- A complete optimisation of proposed detectors should wait for the proper validation of the detector requirements

Adapted from Paolo's slides

Plans and Future Activities

- The FCC-ee and CEPC physics landscape is huge
- statistics, no power pulsing, etc.)
- excluded from a possible CEPC physics program upgrade)
- It seems very natural, from a scientific point of view, to study and define the detector requirements with a joint FCC-CEPC effort!

Adapted from Paolo's slides

 Detector requirements are partly similar to ILC and CLIC, but are different in several aspects (lower centre-of-mass-energy, lower momentum, higher luminosity and

Detector requirements for FCC-ee and CEPC are identical, apart from ttbar (not

Challenges in tracking detectors

Goal: very good momentum resolution

Different detector, each with large $B \times R^2$

- SiD, CLICdet, CEPC: all silicon tracker
- ILD, IDEA, CEPC: silicon + gaseous tracking

Silicon tracker challenges

Large surface area of O(100 m²) Solution: Integrated sensors with large pixels/strips (~ 30 µm × 1-10 mm)

Maintain efficiency and good timing (despite large detector area)

> **Mechanical stiffness** with low-mass materials

Light-weight cooling methods

TPC challenges

lon backflow \rightarrow affects resolution Solution: Gating concepts and new readout modules under study

Hit timing and momentum resolution **Solution: Silicon wrapper around TPC**

Occupancies at high event rates Meets requirements for ILC Under study for Z-pole running at CEPC

Track Reconstruction

- Full silicon tracking due to timing and occupancy
- Momentum resolution of 2×10^{-5} /GeV for central high momentum tracks
 - Needed for, e.g., slepton measurements [4], Higgs to muons [1]

11 / 29

Track Reconstruction

- Full silicon tracking due to timing and occupancy
- Momentum resolution of 2 × 10⁻⁵/GeV for central high momentum tracks
 - Needed for, e.g., slepton measurements [4], Higgs to muons [1]

11 / 29

Updated Parameters of Collider Ring since CDR

	Hig	ggs	Z (2T)	
	CDR	Updated	CDR	Updated
Beam energy (GeV)	120	-	45.5	-
Synchrotron radiation loss/turn (GeV)	1.73	1.68	0.036	-
Piwinski angle	2.58	3.78	23.8	33
Number of particles/bunch N _e (10 ¹⁰)	15.0	17	8.0	15
Bunch number (bunch spacing)	242 (0.68µs)	218 (0.68µs)	12000	15000
Beam current (mA)	17.4	17.8	461.0	1081.4
Synchrotron radiation power /beam (MW)	30		16.5	38.6
Cell number/cavity	2		2	1
$β$ function at IP $β_x^* / β_y^*$ (m)			minosity	increas
Emittance ε _x /ε _y (nm)	1.21/0.0031	0.89/0.0018	0.18/0.0016	
Beam size at IP σ _x /σ _y (μm)	a ove n	ot yet be		bed int
Bunch length σ _z (mm)	3.26	ice dind c	ete ^{8.5} tor c	
Lifetime (hour)				
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	2.93	5.2	32.1	101.6

× 1.8

Luminosity increase factor:

× 3.2

Physics requirements (from benchmark processes)

under discussion \rightarrow started yesterday (QCD+performance session) \rightarrow aim at workshop in Hong Kong

ds	Detector subsystem	Performance requirement
$I)$ $\mu^-)$	Tracker	$\Delta(1/p_T) = 2 \times 10^{-5} \oplus \frac{0.001}{p(\text{GeV}) \sin^{3/2} \theta}$
$\overline{c}/gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus \frac{10}{p(\text{GeV}) \times \sin^{3/2} \theta} (\mu\text{m})$
$^{\prime*}, ZZ^*)$	ECAL HCAL	$\sigma_E^{\text{jet}}/E = 3 \sim 4\%$ at 100 GeV
$\gamma)$	ECAL	$\frac{\Delta E/E}{\frac{0.20}{\sqrt{E(\text{GeV})}} \oplus 0.01}$

CEPC CDR: Particle Flow Conceptual Detector

Major concerns being addressed

- 1. MDI region highly constrained $L^* = 2.2 m$ **Compensating magnets**
- 2. Low-material Inner Tracker design
- **3. TPC as tracker in high-luminosity Z-pole scenario**
 - 4. ECAL/HCAL granularity needs Passive versus active cooling **Electromagnetic resolution**

Magnetic Field: 3 Tesla

VTX

CEPC CDR: IDEA Conceptual Detector (CEPC + FCC-ee)

Inspired on work for 4th detector concept for ILC

Calorimeter outside the coil

* Dual-readout calorimeter: 2 m/8 λ_{int} * Preshower: ~1 X₀

Magnet: 2 Tesla, 2.1 m radius

Thin (~ 30 cm), low-mass (~ $0.8 X_0$)

Drift chamber: 4 m long; Radius ~30-200 cm, ~ 1.6% X₀ , 112 layers * (yoke) muon chambers

Vertex: Similar to CEPC default

Time Projection Chamber (TPC) – Challenges

Mini-workshop, Hong Kong, IAS Jan 2019: http://iasprogram.ust.hk/hep/2019/workshop_cc.phg

Position resolution: ~100 μ m in r ϕ dE/dx resolution: 5%

- 3 Tesla magnetic field —> reduces diffusion of drifting electrons
- **Problem:** Ion Back Flow —> track \bullet distortion

Assumes, for each primary ionization, 5 ions backflow from readout into main gas system

Hybrid: GEM and Micromegas readout

y Berkeley and Argonne mited particle identification (dE/dx)

New Ideas: Crystal Calorimeters

Topical Workshop on CEPC Calorimetry at IHEP • March 11-14, 2019 https://indico.ihep.ac.cn/event/9195/

Concern: Electromagnetic resolution of PFA calorimeter not optimal

Physics motivations:

- Electrons' Bremsstrahlung: energy recovery
- Improve angular resolution, and gamma counting
- Recoil photons: new physics and neutrino counting

ting unting

Concepts parameter comparison

Concept

Tracker

Solenoid B Solenoid Ir Solenoid L L* (m) VTX Inner Tracker Ou Calorimete Calorimeter ECAL Cell ECAL Tim ECAL X_0 HCAL Lay HCAL Abs HCAL λ_I DRCAL C DRCAL Ti DRCAL A Overall He Overall Let

	ILD	CEPC baseline	IDEA
	TPC/Silicon	TPC/Silicon	Drift Chamber/Sili
		or FST	
B-Field (T)	3.5	3	2
nner Radius (m)	3.4	3.2	2.1
length (m)	8.0	7.8	6.0
	3.5	2.2	2.2
Radius (mm)	16	16	16
ter Radius (m)	1.81	1.81	2.05
er	PFA	PFA	Dual readout
$\mathrm{er}\lambda_I$	6.6	5.6	7.5
l Size (mm)	5	10	_
ne resolution (ps)	_	200	-
	24	24	-
ver Number	48	40	-
sorber	Fe	Fe	-
	5.9	4.9	-
ell Size (mm)	-	_	6.0
ime resolution (ps)	_	_	100
bsorber	-	_	Pb or Cu or Fe
eight (m)	14.0	14.5	11.0
ngth (m)	13.2	14.0	13.0

46

ALPIDE CMOS Pixel Sensor

		เท่) uc	7
	ALPIDE	<i>lesolutio</i>	6
Pixel dimensions	26.9 µm × 29.2 µm		5
Spatial resolution	~ 5 µm		3
Time resolution	5-10 µs		
Hit rate	~ 10 ⁴ /mm ² /s		0
Power consumption	< ~20-35 mW/cm ²	iciency (%)	98
Radiation tolerance	300kRad 2×10 ¹² 1 MeV n _{eq} /cm ²	etection Eff	96 94 94 94

Almost OK specifications Need lower resolution Higher radiation tolerance

⁸ F

Ê

