

Institute of High Energy Physics Chinese Academy of Sciences

CEPC Parameter, Booster and Damping Ring Status

Dou Wang on behalf of CEPC AP group

Many Thanks to: K. Oide, M. Koratzinos, N. Iida

IAS Program on High Energy Physics, Jan. 20-22, 2020. Hong Kong.

Outline

- ≻ New goals after CDR: higher lumi. for Higgs & Z
- Booster progress
 - Refine of CDR design
 - Lower emittance booster study
 - Feedback system design status
- Damping ring progress
 - Damping ring
 - EC / BC

Beam-beam limit @Higgs

- Beam beam limit: ~0.113 (H)
- Analytical estimation agree well with beam-beam simulation.
- Reduce βy* and emittance synchronously

CEPC high lum. Higgs parameter after CDR

	Higgs	W	Z (3T)	Z (2T)		
Number of IPs		2				
Beam energy (GeV)		80	45.5			
Circumference (km)		100				
Synchrotron radiation loss/turn (GeV)	1.68	0.33	0.03	5		
Crossing angle at IP (mrad)		16.5×2				
Piwinski angle	3.78	8.5	27.7	1		
Number of particles/bunch N_e (10 ¹⁰)	(17.0)	12.0	8.0			
Bunch number (bunch spacing)	218 (0.76μs)	1568 (0.20μs)	12000 (25ns+	- 10%gap)		
Beam current (mA)	17.8	90.4	461.	00		
Synchrotron radiation power /beam (MW)	30	30	16.5	5		
Bending radius (km)		10.7	10.7			
Momentum compact (10 ⁻⁵)	\frown	0.91	L			
β function at IP $\beta_{x}^{*}/\beta_{y}^{*}(\mathbf{m})$	_0.3 3/0.001)	0.33/0.001	0.2/0.0	001		
Emittance $\varepsilon_x/\varepsilon_v$ (nm)	(0.89/0.0018	0.395/0.0012	0.13/0.003	0.13/0.00115		
Beam size at IP σ_x/σ_y (µm)	17.1/0.042	11.4/0.035	5.1/0.054	5.1/0.034		
Beam-beam parameters ξ_x / ξ_y	0.024/0.113	0.012/0.1	0.004/0.053	0.004/0.085		
RF voltage V_{RF} (GV)	2.4	0.43	0.08	2		
RF frequency f_{RF} (MHz) (harmonic)		650 (216816)				
Natural bunch length σ_{z} (mm)	2.2	2.98	2.42	2		
Bunch length σ_{z} (mm)	3.93	5.9	8.5			
HOM power/cavity (2 cell) (kw)	0.58	0.77	1.94	ļ		
Energy spread (%)	0.19	0.098	0.08	0		
Energy acceptance requirement (%)	(1.7)	0.90	0.49			
Energy acceptance by RF (%)	3.0	1.27	1.55			
Photon number due to beamstrahlung	0.104	0.050	0.023			
Beamstruhlung lifetime /quantum lifetime* (min)	30/50	>400				
Lifetime (hour)	0.22	1.2	3.2	2.0		
<i>F</i> (hour glass)	0.85	0.92	0.92 0.98			
Luminosity/IP L (10 ³⁴ cm ⁻² s ⁻¹)	5.2	14.5	23.6	37.7		

*include beam-beam simulation and real lattice

DA optimization for the $\beta_v * = 1mm$ @ Higgs

$15\sigma_x \times 20\sigma_y \times 1.5\%$ Strong limitation @ NP=11E10

We have strong requirement to understand fluctuation, beamstruhlung and beam-beam during the simulations.

lifetime [min]

- Good for the injected beam
- Worse for the circulating

beam

CEPC high lum. Z parameter after CDR

				1
	CEPC-CDR	CEPC-30MW	CEPC-39MW	
Number of IPs	2	2	2	
Energy (GeV)	45.5	45.5	45.5	
Circumference (km)	100	100	100	• Anti-chamber
SR loss/turn (GeV)	0.036	0.036	0.036	
Half crossing angle (mrad)	16.5	16.5	16.5	
Piwinski angle	23.8	27.9	33.0	\ Higher oost
N_{e} /bunch (10 ¹⁰)	8.0	12.0	15.0	\rightarrow inglier cos
Bunch number	12000	14564 (20.6ns+10%gap)	15000	
Beam current (mA)	461	839.9	1081.4	
SR power /beam (MW)	16.5	30	38.6	
Bending radius (km)	10.7	10.7	10.7	
Momentum compaction (10 ⁻⁵)	1.11	1.11	1.11	
$\beta_{IP} x/y (m)$	0.2/0.001	0.2/0.001	0.2/0.001	
Emittance x/y (nm)	0.18/0.0016	0.18/0.0016	0.18/0.0016	
Transverse σ_{IP} (um)	6.0/0.04	6.0/0.04	6.0/0.04	
$\xi_x / \xi_y / \text{IP}$	0.004/0.079	0.004/0.093	0.004/0.098	
$V_{RF}(\text{GV})$	0.1	0.10	0.10	
f_{RF} (MHz) (harmonic)	650	650	650	
Nature bunch length σ_z (mm)	2.42	2.42	2.42	
Bunch length σ_{z} (mm)	8.5	10.0	11.8	
HOM power/cavity (kw)	1.94 (2cell)	2.29 (1cell)	3.15 (1cell)	
Energy spread (%)	0.08	0.1	0.115	
Energy acceptance (DA) (%)	1.5	0.6	0.7	
Energy acceptance by RF (%)	1.7	1.7	1.7	
Lifetime by rad. Bhabha scattering (hour)	2.9			
Lifetime (hour)	2.5	2.0	1.8	
L_{max} /IP (10 ³⁴ cm ⁻² s ⁻¹)	32.1	74.5	101.6	

Single cell cavities for Z are essential to control the HOM power.

CEPC injector chain

- 10 GeV linac provides electron and positron beams for booster.
- Top up injection for collider ring ~ 3% current decay
- Booster is in the same tunnel as collider ring, above the collider ring.
- Booster has the same geometry as collider ring except for the two IRs.
- Booster bypasses the collider ring from the outer side at two IPs.

Booster parameters (CDR)

		Н	W	Z	
Beam energy	GeV		10		
Bunchnumber		242 1524 600			
Threshold of single bunch current	μA		25.7		
Threshold of beam current (limited by coupled bunch instability)	mA		100		
Bunch charge	nC	0.78	0.63	0.45	
Single bunch current	μA	2.3	1.8	1.3	
Beam current	mA	0.57	2.86	7.51	
Energy spread	%		0.0078		
Synchrotron radiation loss/turn	keV	73.5			
Momentum compaction factor	10 ⁻⁵	2.44			
Emittance	nm	0.025			
Natural chromaticity	H/V		-336/-333		
RF voltage	MV		62.7		
Betatron tune 11/13/13		26	3.2/261.2/0	D.1	
RF energy acceptance	%	1.9			
Dampingtime	S		90.7		
Bunch length of linac beam	mm	1.0			
Energy spread of linac beam	%		0.16		
Emittance of linacbeam	nm		40~120		

Main parameters of CEPC booster at injection energy

9 cell & 1.3GHz RF cavity

Main parameters of CEPC booster at extraction energy

		Н		W	Z	1
		Off axis injection	On axis injection	Off axis injection	Off axis injection	
Beam energy	GeV	12	0	80	45.5	
Bunchnumber		242	235+7	1524	6000	
Maximum bunch charge	nC	0.72	24.0	0.58	0.41	
Maximum single bunch current	μΑ	2.1	70	1.7	1.2	
Threshold of single bunch current	μΑ	30	0			
Threshold of beam current (limited by REpower)	mA	1.0	b	4.0	10.0	
Beam current	mA	0.52	1.0	2.63	6.91	
Injection duration for top-up (Both beams)	s	25.8	35.4	45.8	275.2	
Injection interval for top-up	s	47.0		153.0	504.0	
Current decay during injection interval			3	3%		
Energy spread	%	0.09	94	0.062	0.036	
Synchrotron radiation loss/turn	GeV	1.5	2	0.3	0.032	
Momentum compaction factor	10 ⁻⁵		2	.44		
Emittance	nm	3.5	7	1.59	0.51	
Natural chromaticity	H/V		-336	5/-333		
Betatron tune v _s / y,			263.2	2/261.2		
RF voltage	GV	1.9	7	0.585	0.287	
Longitudinal tune		0.1	3	0.10	0.10	
RF energy acceptance	%	1.0	С	1.2	1.8	
Dampingtime	ms	52	2	177	963	
Natural bunch length	mm	2.8	3	2.4	1.3	
Injection duration from empty ring	h	0.1	7	0.25	2.2	

8

Booster optics (CDR)

- $90^{\circ}/90^{\circ}$ FODO cell
- 2 cells @ booster = 3 cells @ collider
- Noninterleave sextupole scheme

• Low average beta to reduce the multibunch instability

Booster error studies

- Gaussian distribution and cut-off at 3σ
- Relax misalignment error: $50um \rightarrow 100um$
- Relax field error for dipole: $3 \times 10^{-4} \rightarrow 1 \times 10^{-3}$

Parameters	Dipole	Quadrupole	Sextupole
Transverse shift x/y (µm)	(100)	(100)	(100)
Longitudinal shift z (µm)	100	150	100
Tilt about x/y (mrad)	0.2	0.2	0.2
Tilt about z (mrad)	0.1	0.2	0.2
Nominal field	(1×10^{-3})	2×10^{-4}	3×10^{-4}

Errors Setting

	Accuracy (m)	Tilt (mrad)	Gain	Offset after BBA(mm)
BPM	1×10-7	10	5%	30×10 ⁻³

D. Ji

Dynamic aperture with errors

- With only COD corrections, DA is nearly two thirds of bare lattice
- At 120GeV, radiative damping and sawtooth was considered.
- DA requirement @ 10GeV determined by the beam stay clear region
- DA requirement @ 120GeV: 1) H- quantum lifetime, 2) V- re-injection process from the collider in the on-axis injection scheme

	DA requirement		DA re	sults
	Н	V	Н	V
$10 \text{GeV} (\epsilon_x = \epsilon_y = 40 \text{nm})$	$4\sigma^x + 5mm$	$4\sigma^{y}$ +5mm	$12\sigma^{x}$ +5mm	$21\sigma^{y}$ +5mm
120GeV ($\epsilon^{x}=3.57$ nm, $\epsilon^{y}=\epsilon^{x}*0.005$)	$6_{\sigma^x} + 3mm$	49_{σ^y} +3mm	11.5 ₀ x +3mm	173 ₀ y +3mm

• RMS Orbit ~ 180um, RMS betabeat ~15%, RMS disp. ~29mm, RMS coupling: <0.5%

Dipole uniformity requirement@10Gev

- Quadrupole error on the dipoles was studied.
- Scan K1 to see the influence (cut-off at 3σ)
 - Working point small change
 - Emittance growth
 - DA reduction
 - Transfer efficiency
- Emittance & DA was tested w/o optics correction

Dipole uniformity requirement@120Gev

- Quadrupole error on the dipoles was studied.
- Scan K1 to see the influence (cut-off at 3σ)
 - Working point small change
 - Emittance growth
 - DA reduction small (radiation damping & fluctuation included)
 - injection efficiency (Off-axis injection, DA for collider: $15\sigma_x \times 20\sigma_y$)
- Emittance & injection efficiency was tested w/o optics correction

Multipole errors @ booster

dipole	quadrupole	sextupole
$B1/B0 \le 3 \times 10^{-4}$		
$B2/B0 \le 2 \times 10^{-4}$	$B2/B1 \le 4 \times 10^{-4}$	
$B3/B0 \le 2 \times 10^{-5}$	$B3/B1 \le 1 \times 10^{-4}$	B3/B2≤ 1×10 ⁻³
$B4/B0 \le 8 \times 10^{-5}$	$B4/B1 \le 1 \times 10^{-4}$	$B4/B2 \le 3 \times 10^{-4}$
$B5/B0 \le 2 \times 10^{-5}$	$B5/B1 \le 1 \times 10^{-4}$	$B5/B2 \le 1 \times 10^{-3}$
$B6/B0 \le 8 \times 10^{-5}$	$B6/B1 \le 5 \times 10^{-5}$	$B6/B2 \le 3 \times 10^{-4}$
$B7/B0 \le 2 \times 10^{-5}$	$B7/B1 \le 5 \times 10^{-5}$	$B7/B2 \le 1 \times 10^{-3}$
$\text{B8/B0} \le 8 \times 10^{-5}$	$\text{B8/B1} \le 5 \times 10^{-5}$	$B8/B2 \le 3 \times 10^{-4}$
$B9/B0 \le 2 \times 10^{-5}$	$B9/B1 \le 5 \times 10^{-5}$	$B9/B2 \leq 1 \times 10^{-3}$
$B10/B0 \le 8 \times 10^{-5}$	$\texttt{B10/B1} \leq 5{\times}10^{\text{-5}}$	$B10/B2 \leq 3 \times 10^{-4}$

• 10GeV

Y [m]

- Reference radius: 27.5mm
- w/o optics correction

Dipole reproducibility requirement@10Gev

- Increase/decrease the strength of all the dipoles by the same amount.
- Decrease/increase the strength of quadrupoles & sextupoles \rightarrow energy mismatch
- Evaluate the influence: working point, closed orbit, DA, energy acceptance
- Working point should not pass through the lower order resonance
- No shrink for dynamic aperture
- Reproducibility requirement for dipoles: ~0.02%
- Stability requirement for power supply: ~0.01%

	original	+0.01%	-0.01%	+0.05%	-0.05%
nux	263.18	263.12	263.25	262.84	263.52
nuy	261.28	261.21	261.34	260.94	261.61
Δx (um)	0	-54	54	-270	270
DA (%)	100	100	100	90	90

Power supply stability@120Gev

- Increase/decrease the strength of all the dipoles by the same amount.
- Decrease/increase the strength of quadrupoles & sextupoles \rightarrow energy mismatch
- Evaluate the influence: working point, closed orbit, DA, energy acceptance
- Working point should not pass through the lower order resonance
- No shrink for dynamic aperture
- Including SR damping, excitation and sawtooth effect

• Stability requirement: ~0.02%

	original	+0.01%	-0.01%	+0.02%	+0.02%	+0.05%	-0.05%
nux	263.18	263.12	263.25	263.32	263.05	262.84	263.52
nuy	261.28	261.21	261.35	261.41	261.15	260.95	261.61
Δx (um)	0	0	0	0	0	0	0
DA (%)	100	100	100	100	100	100	100

Effect of earthfield @10GeV

- ~20% vacuum pipe (drift) is exposed in earthfield directly.
- treat drifts as week dipole to simulate the effect of earthfield
- Assume earthfield: 0.3~0.6 gauss (simple model: perpendicular component only)
- Working point can be corrected by weaken the dipoles systematically (-0.07%)
- Global COD correction was tested for 0.3 gauss earthfield.
- DA is acceptable after COD correction.

D. Ji

Ramping dynamic simulation

- Energy: **10GeV** ~ **120 GeV** by **2.6s**
- Tracking by **elegant**, w/o error
- 360 particles
- Linear ramping for magnets
- RF ramping curve: vs=0.13
- including SR damping & excitation

Reduction the size of beam pipe

- use smaller beam pipe thanks to smaller Linac emittance with DR
 - Emittance of Linac: $120nm \rightarrow 40nm$
 - BSC: 4σ +5mm \rightarrow d= 34mm
 - Size of beam pipe: $55mm \rightarrow 44mm$
- 44mm inner diameter is enough for future high lum. Z
 - Max bunch current potential: 2.2 uA
 - Max beam current potential: 16.2mA
 - Instability was checked at both 10GeV & 120GeV
- Power for magnets and power supply is reduced by ~50%
- Cost of power supply is reduced by ~30%

Lower emittance booster study

- off-axis injection for collider (Higgs mode in CDR) can work
- on-axis injection for collider (Higgs high lumi. mode) can work

- Emittance: $3.57 \text{nm} \rightarrow 1.29 \text{nm}$
- Coupling requirement: $0.5\% \rightarrow 1.4\%$

New lattice design based on TME

- emittance=1.29nm @120GeV
- TME lattice
- Cell length: 110m
- Interleave sextupole scheme

DA of booster new lattice

- Same DA for on-momentum particles
- Two times of off-momentum DA

Sawtooth effect @120GeV

- 2 RF stations
- Maximum sawtooth orbit: 1.1 mm
- Maximum optics distortion: ~1.5%, Maximum dispersion distortion: ~20 mm
- Emittance growth: ~1.7% (1.288nm→1.310nm)
- No DA reduction due to sawtooth effect
- Magnets energy tapering is unnecessary

Dynamic aperture w/o errors

	DA requ	irement	DA results		
	Н	V	Н	V	
$10 \text{GeV} (\epsilon^x = \epsilon^y = 40 \text{nm})$	$4\sigma^x + 5mm$	$4\sigma^{y}$ +5mm	$14\sigma^x + 5mm$	$18\sigma^{y}$ +5mm	
120GeV ($\epsilon^{x}=1.29$ nm, $\epsilon^{y}=\epsilon^{x}=0.014$)	$6\sigma^x + 3mm$	$13\sigma^{y}$ +3mm	$9.4\sigma^{x}$ +3mm	$22\sigma^{y}$ +3mm	

Multipole errors for new lattice

- Requirement of field uniformity for low field dipoles is harder than CDR lattice
- Analyze multipole error effect order by order
- Further DA optimization

Booster new parameters

Diameter of beam pipe: 44mm

Injection	ą	H_{e^2}	W	Z ⇔	
Beam energy 🐰	<u>GeV</u> ⊷		104		
Bunch number.₀	ę.	242.0 1524.0 600			
Threshold of single bunch current.	μA₽		3.06+		
Threshold of beam current. (limited by coupled bunch instability),	mA₽		33.3₽		
Bunch charge.	<u>nC</u> +2	<mark>0.78</mark> ₽	0.63 ~	<mark>0.45</mark> ₽	
Single bunch current.	μA₽	2.30	1.80	1.30	
Beam current.	mA₽	0.57~	2.860	7.51.	
Energy spread.	‰₊⊃		0.0081		
$Synchrotronradiationloss/turn_{e^2}$	<u>keV</u> .	79.5≁			
Momentum compaction factor.	10 ⁻⁵ ₄	1.064ø			
Emittance	nm₽	0.00895			
Natural chromaticity.	H/V_{e^2}		-610/-228	,	
RF voltage?	$MV^{\rm cl}$	78.7	38	3.2₽	
Betatron tune $v_x/v_{y^{s^2}}$	ą	3	19.14/131.2	23₽	
Longitudinal tune.	¢	0.076	0.0)53₽	
RF energy acceptance₀	‰	3.29+ 2.29+			
Damping time.	S⇔	83.90			
Bunch length of linac beam.	mm₽	1.04			
Energy spread of linac beam.	‰₊⊃	0.16+			
Emittance of linac beam.	nm₽		40⊷		

сь С	ę	H₽		₩₽	Z(3T) ₽	Z(2T)↔
Extraction	ę	Off axis injection4	On axis injection«	Off axis injection43	Off axis	injection₽
Beam energy +?	<u>GeV</u> +2	12	0+ ²	80⊷	45.5+2	
Bunch number₽	ą	242₽	235+7+2	1524₽	<mark>6000</mark> ₽	
Maximum bunch chargee	nC+2	0.72₽	24.0₽	0.58 ₽	0.41	
Maximum single bunch current=	μA₽	2.1¢	70₽	1.7¢	1.2+2	
Threshold of single bunch current+2	μA₽	(77.33¢) ¢ ¢		φ,		
Threshold of beam current+' (limited by RF power)+'	mA₽	10		40	1043	
Beam current₽	mA₊⊃	0.52₽	1.0 ₽	2. 6 3₽	6.	91@
Injection duration for top-up (Both beams)+?	S4 ^J	26.64	35.8₽	51.9₽	27:	5.8+2
Injection interval for top-up ²	S¢⊃	47.043		153.040	504.0¢	276.0
Current decay during injection intervale	đ	3%+3			4	
Energy spread₽	‰	0.098		0.065+2	0.037+2	
Synchrotron radiation loss/turn4 ²	<u>GeV</u> ₽	1.65+3		0.326¢	0.0326+3	
Momentum compaction factor	10 ⁻⁵ ¢	1.064+2		4		
Emittance	nm₽	1.29+ 0.57+ 0.1		180		
Natural chromaticity+2	H/V₊∂	-610/-228+2				
Betatron tune 14/1542	¢	319.14/131.234				
RF voltage₽	GV₽	1.97₽		0.45₽	0.177+2	
Longitudinal tune	¢	0.076+2		0.053₽	0.0)53 <i>⊷</i>
RF energy acceptance₽	‰≁⊃	1.00		1.0+2	1.	96+2
Damping time⇔	ms⇔	48.7₽		164+	920.7+2	
Natural bunch length₽	mm₽	2.15₽		2.08	1.	18+2
Injection duration from empty ring₽	h⊷	0.17+3		0.25¢	2.	2e [,] 26

Geometry design of new lattice

Multi-bunch instability

- **Feedback system is essential** @10 GeV.
 - Damping time: 90s -
 - Growth time (T): 3.1ms
 - Growth time (L): 6.3ms -

CEPC Booster TESLA 9-cavity HOM CBI growth time H-injection W-injection Z-injection 29.6 11.3 TM011 2.45 149 156 5.9E4 6.3 TM012 3.845 44 2.4E5 82.7 16.4609 120.9 46.1TE111 1.739 4283 3.4E3 5.9 TM110 1.874 2293 5.0E4 77.4 15.4 40.9 3.1 8.1 TM111 2.577 4336 5.0E4 77.8 1028.4 204.1 TE121 3.087 196 4.4E4

- tap number always more than 2.
- Quick feedback + large ring \rightarrow low order filter

Transverse feedback status

parameter	Value
tune	263.2/261.2
Beta function (m)	120
Energy (GeV)	10
Rising time (ms)	3.1
Revolution time (ms)	0.33
Bunch spacing (ns)	25
Bunch frequency (MHz)	40
Kicker shunt impedance $(k\Omega)$	125@40MHz
Damping time (ms)	1.78
Amplitude of oscillation (mm)	0.3

- 4-tap filter was considered
- One BPM and One kicker, 90 degree phase shift and DC rejection both are got in FPGA.
- 2 amplifiers, 300W for each

$$\frac{1}{\tau_{FB}} = \frac{f_{rf}\sqrt{\beta_m\beta_k}}{2\cdot h\cdot E/e} \cdot G \qquad P = \frac{1}{2} \cdot \frac{\Delta V_{FB}^2}{R_K}$$

E=10GeV, $\beta_m = \beta_k = 120$ m, $\Delta x = 0.3$ mm, τ_{FB} =1.45 ms, so $\Delta V_{FB\perp} = 9.27$ kV, P=344w.

J. Yue, Y Sui et al.

Longitudinal feedback status

J. Yue, Y Sui et al.

Energy (GeV)	10
RF frequency (GHz)	1.3
Alphap (10 ⁻⁵)	2.44
Transverse tune	260/260
Longitudinal tune	0.1
Growth time (ms)	$6.5 \rightarrow 65$

- 20-tap filter was considered
- One BPM and One kicker
- 90 degree phase shift and DC rejection both are got in FPGA.
- 4 amplifiers, 250W for each

$$\frac{1}{\tau_{FB}} = \frac{f_{rf}\alpha}{2v_s E/e} \cdot G \qquad P = \frac{1}{2} \cdot \frac{\Delta V_{FB}^2}{R_K}$$

E=10GeV, α =0.0000244, *vs*=0.1, τ_{FB} =50

ms, so $\Delta V_{FB//} = 2144$ V, P=884W.

Layout of damping ring system

DR parameters

- Linac repetition: 100Hz
- two-bunch storage scheme
- Storage time: 20 ms
- Emittance (norm.): $2500 \rightarrow 530$ mm.mrad
- Large trans. acceptance \rightarrow inj. efficiency

	DR V2.0
Energy (Gev)	1.1
Circumference (m)	75.4
Bending radius (m)	3.6
Dipole strength $B_0(T)$	1.03
U ₀ (kev/turn)	36.3
Damping time x/y/z (ms)	15.2/15.2/7.6
δ ₀ (%)	0.05
ε_0 (mm.mrad)	376.7
injection σ_z (mm)	5
Extract σ_z (mm)	7.5
ε_{inj} (mm.mrad)	2500
$\varepsilon_{\text{ext x/y}}$ (mm.mrad)	530/180
$\delta_{inj}/\delta_{ext}$ (%)	0.18 /0.05
Energy acceptance by RF(%)	1.0
$f_{\rm RF}$ (MHz)	650
$V_{\mathrm{RF}}(\mathrm{MV})$	2.0

DR optics

- 60°/60° FODO
- interleave sextupole scheme

- 2 sextupole families
- $DA > 5 \times injection$ beam size

Impedance threshold

Y. D. Liu

- BSC: 4σ +5mm \rightarrow d= 33mm (including dispersion effect)
- Size of beam pipe: 44mm, Al, 2mm thickness
- Circular beam pipe (SR power density=5W/m)

parameters	damping ring for SuperKEKB	damping ring for CEPC
Energy	1.1Gev	1.1Gev
circumference	135.5	75.4
Beta tune	8.24/7.265	3.84/4.81
Bunch lenght	11.12mm	5mm
Bunch number	4	2
synchtron tune	0.0153	0.062
Beam current	70 mA	10 mA

CSR threshold

- The beam is assumed to be moving in a circle of radius ρ between two parallel plates at locations $y=\pm h$
- The threshold of bunch population for CSR is given by $S^{\text{th}} = 0.50 + 0.12\Pi$ $S = \frac{r_e N_b \rho^{1/3}}{2\pi v \, v \sigma_s \sigma^{4/3}}, \quad \Pi = \frac{\sigma_z \rho^{1/2}}{h^{3/2}}$
- For CEPC DR, σ_zρ^{1/2}/h^{3/2}=4.4 (=> CSR shielded)
 Inner diameter of beam pipe: 44 mm
- The CSR threshold in CEPC DR is $N_{\rm b,Th} = 1.46 \times 10^{11} >> N_{\rm b} = 9.36 \times 10^{9}.$

IBS effect

S. K. Tian

- Equilibrium emittance (H/V): 359/18 mm·mrad
- No emittance growth at design bunch current (1.5nC/bunch)
- IBS threshold: ~100nC/bunch
- IBS is not a concern in CEPC DR.

EC/BC parameters

	EC
E ₀ (Gev)	1.1
δ ₀ (%)	0.6
σ_{z0} (mm)	1.5
f _{RF} (MHz)	2860
V _{RF} (MV)	22.0
Length of acc. Structure (m)	0.82
$\phi_{\rm RF}$ (degree)	89.7
R ₅₆ (m)	-0.833
E _f (Gev)	1.1
$\delta_{\rm f}$ (%)	0.18
σ_{zf} (mm)	5

	BC
E ₀ (Gev)	1.1
δ ₀ (%)	0.05
$\sigma_{z0} (mm)$	7.5
f _{RF} (MHz)	2860/1300
V _{RF} (MV)	13.1/29
Length of acc. Structure (m)	0.48/2.5
$\phi_{\rm RF}$ (degree)	89.6
R ₅₆ (m)	-1.4
E _f (Gev)	1.1
$\delta_{\rm f}$ (%)	0.54
σ_{zf} (mm)	0.7

Beam simulation on transport lines

Emittance evolution on transport lines

- Dipole strength for the chicane: 0.49T
- No error included
- No emittance growth due to radiation effect

X. H. Cui

Summary

- Propose new parameters with higher luminosity after CDR.
- Booster design in CDR was refined. Become more solid.
- A lot of effort to find a new design for booster with lower emittance
 - Higgs off-axis injection in CDR
 - Higgs on-axis injection in high lumi. mode
- No principle difficulties to use the new booster. Still comprehensive assessment of error effect is necessary.
- Both transverse and longitudinal feedback system has substantive progress.
- DR system was specified. Key beam parameters can be realized. Error studies on the way.

Thanks for your attention!

Back up

Off-momentum DA of booster (CDR)

