Inflation, Primordial Black Holes, Dark Matter, and Gravitational Waves

Kin-Wang Ng (吳建宏)

Institute of Physics & Institute of Astronomy and Astrophysics, Academia Sinica, Taiwan

High Energy Physics Conference Jan 20-22, 2020 IAS HEP Program, HKUST

Collaborators: Shu-Lin Cheng (ASIoP), Da-Shin Lee (NDHU), Wolung Lee (NTNU), Wei-Can Syu (NDHU)

Outline

- Gravitational waves (tensor modes)
- Standard slow-roll inflation and CMB B-mode polarization
- Beyond slow-roll ?!
- Anisotropic stress τ_{ij} during inflation
 Classical source particle production
 <τ_{ij}>=0, vacuum fluctuations of stress tensor
- Primordial black holes (a candidate for dark matter)
- Gravitational waves due to second-order effects

Gravitational Waves in Expanding Universe

$$ds^{2} = dt^{2} - a^{2}(t)d\mathbf{x}^{2}$$
 conformal time
$$= a^{2}(\eta) \left(d\eta^{2} - d\mathbf{x}^{2}\right) \qquad \qquad d\eta = dt/a(t)$$

$$g_{\mu\nu} = a^2(\eta)(\eta_{\mu\nu} + h_{\mu\nu}), \quad h_{\mu\nu} \ll 1$$

gravitational waves are ripples of space-time

GWs Observation

LIGO interferometry experiment

Detection of Gravitational Waves in Binary Black Hole Merger

Spectrum of the primordial curvature perturbation Scalar mode

A generic
$$V(\underline{\overline{P}})$$
 for inflation
 $V(\underline{\overline{P}})$ Very flat for slow-rolling (enough inflation)
 V_0
 V_0
 V_0
 V_0
 $\overline{\overline{P}}$
 V_0
 $\overline{\overline{P}}$
 \overline{P}
 \overline

Slow-roll inflation

$$H^{2} \simeq \frac{V(\phi)}{3M_{Pl}^{2}},$$
$$3H\dot{\phi} \simeq -V'(\phi),$$
$$\mathcal{P}_{\mathcal{R}}(k) = \left(\frac{H}{\dot{\phi}}\right)^{2} \left(\frac{H}{2\pi}\right)^{2}$$

 $P_{\rm R}(k) = (\delta \rho / \rho)^2$

large scale structure of the Universe

Tensor mode

$$I_{\text{graviton}} = \frac{1}{16\pi G} \int d^4x \ a^2(\eta) \ \frac{1}{2} \left[(\partial_\mu h(x; \mathbf{k}, +))^2 + (\partial_\mu h(x; \mathbf{k}, \times))^2 \right]$$

$$h(x; \mathbf{k}, \lambda) = (2\pi)^{-\frac{3}{2}} h_{\lambda}(\eta; \mathbf{k}) e^{i\mathbf{k}\cdot\mathbf{x}} + \text{H.c.}$$

equation of motion for the wave amplitude

$$\ddot{h_{\lambda}} + 2\frac{\dot{a}}{a}\dot{h_{\lambda}} + k^2h_{\lambda} = 0$$

Inflation \longrightarrow Radiation-dominated \longrightarrow matter-dominated choose Bunch-Davis vacuum or positive-energy solution Almost scale-invariant power spectrum $P_{h}(k)$ \longrightarrow matter-dominated $|h_{\lambda}(\eta;k)|^{2}k^{3} \simeq 8\pi GH^{2} \left[\frac{3j_{1}(k\eta)}{k\eta}\right]^{2}$ $\frac{3j_{1}(k\eta)}{k\eta} \simeq 1$ as $k\eta \ll 1$.

spectral energy density of gravitational waves

$$\rho_{g} \equiv \sum_{\lambda=+,\times} k' \frac{d\rho_{\lambda}}{dk'} = \sum_{\lambda=+,\times} \frac{1}{32\pi Ga^{2}(\eta')} \left(\frac{k'}{2\pi}\right)^{3} \left[k'^{2}|h_{\lambda}|^{2} + \left|\frac{dh_{\lambda}}{d\eta'}\right|^{2}\right]$$

$$\Omega_{g} \equiv \frac{\rho_{g}}{\rho_{c}}, \quad \rho_{c} = \frac{3H^{2}(\eta')}{8\pi G}$$

$$v = 3GH^{2}/8\pi = V_{0}/m_{\mathrm{Pl}}^{4}$$

$$\int_{10^{14}} \frac{10^{14}}{10^{14}}$$

Primordial gravitational waves

CMB Anisotropy and Polarization

- On large angular scales, matter imhomogeneities or primordial gravitational waves generate gravitational redshifts
- On small angular scales, acoustic oscillations in plasma on last scattering surface generate Doppler shifts
- Thomson scatterings with electrons generate polarization

CMB Measurements

- Point the telescope to the sky
- Measure CMB Stokes parameters:

$$T = T_{CMB} - T_{mean}$$

 $Q = T_{EW} - T_{NS}, U = T_{SE-NW} - T_{SW-NE}$

- Scan the sky and make a sky map
- Sky map contains CMB signal, system noise, and foreground contamination including polarized galactic and extra-galactic emissions
- Remove foreground contamination by multi-frequency subtraction scheme
- Obtain the CMB sky map

CMB Anisotropy and Polarization Angular Power Spectra

Decompose the CMB sky into a sum of spherical harmonics: $T(\theta, \phi) = \sum_{lm} a_{lm} Y_{lm}(\theta, \phi)$ $(Q - iU) (\theta, \phi) = \sum_{lm} a_{2,lm} {}_{2}Y_{lm} (\theta, \phi)$ $(Q + iU) (\theta, \varphi) = \Sigma_{lm} a_{-2,lm} Y_{lm} (\theta, \varphi)$ $I = 180 \text{ degrees} / \theta$ $C_{l}^{T} = \Sigma_{m} (a_{lm}^{*} a_{lm})$ anisotropy power spectrum $C_{l}^{E} = \Sigma_{m} (a_{2,lm}^{*} a_{2,lm}^{*} + a_{2,lm}^{*} a_{2,lm}^{*})$ E-polarization power spectrum $C_{l}^{B} = \Sigma_{m} (a_{2,lm}^{*} a_{2,lm} - a_{2,lm}^{*} a_{2,lm})$ B-polarization power spectrum $C_{l}^{TE} = -\Sigma_{m} (a_{lm}^{*} a_{2,lm})$ TE correlation power spectrum magnetic-type electric-type (Q,U)/_ _`|

PGWs and CMB temperature anisotropy

Planck CMB Anisotropy $D^{TT}_{l} = l(l+1) C^{T}_{l}$ 2018

Planck CMB Polarization Power Spectra 2018

Gravity-wave induced B-mode

Current B-mode measurements

Joint Planck+BICEP2/Keck Array constraint on r by removal of dust contamination (2018)

Beyond Standard Slow-roll ?!

 Slow-roll inflation for the first 7 e-foldings (61>N>54)

Planck CMB + LSS + Sne +

- Flat inflaton potential? Interacting inflaton? trapped inflation in which back reaction effectively make inflaton slow-rolling down a steep potential
- Binary black holes detected by aLIGO/VIRGO are primordial black holes produced during inflation (N ~ 40) ?

PBHs may be dark matter and aLIGO has seen dark matter!

Primordial Black Holes

- Formed at high-density contrasts (δρ/ρ~0.5) over a wide range of scales or masses in the radiation-dominated Universe
- There have been stringent astrophysical and cosmological constraints on M_{PBH}
- 10M_☉PBHs could be the binary BHs observed by aLIGO gravity-wave detectors

Bird et al. 16., Clesse et al. 16, Sasaki et al. 16

• PBHs behave like cold dark matter

García-Bellido, Linde, Wands 96

• They, although being of baryonic origin, do not participate in big-bang nucleosynthesis

Astrophysical and Cosmological Constraints on PBHs

PBH Production in Inflation

- Single-field slow-roll inflation models, matter density perturbation ($\delta \rho / \rho \sim 10^{-5}$) too small
- Modified inflation potential to achieve blue-tilted matter power spectra or running spectral indices, leading to large density perturbation at the end of inflation, but mostly M_{PBH}<< M_☉ García-Bellido, Linde, Wands 96
- To boost M_{PBH}, hybrid inflation, double inflation, curvaton models by inflating small-scale density perturbation to the size of a stellar-mass to supermassive PBH Kawasaki, Kohri, Yokoyama, Yanagida....
- Inflation with an inflecton point Garcia-Bellido, Morales,...
- Trapped inflation Peloso, Unal, Ng+,...

Trapped axion Inflation

We consider a version of the trapped inflation driven by a pseudoscalar φ that couples to a U(1) gauge field A_{μ} :

$$\mathcal{S} = \int d^4x \sqrt{-g} \left[\frac{M_p^2}{2} R - \frac{1}{2} \partial_\mu \varphi \partial^\mu \varphi - V(\varphi) - \frac{1}{4} F^{\mu\nu} F_{\mu\nu} - \frac{\alpha}{4f} \varphi \tilde{F}^{\mu\nu} F_{\mu\nu} \right], \qquad (3)$$

$$\varphi = \phi(\eta) + \delta \varphi(\eta, \vec{x})$$

 $d\eta = dt/a$

 $k/(aH) < 2|\xi|$

Spinoidal

instability

Under the temporal gauge, $A_{\mu} = (0, \vec{A})$, we decompose $\vec{A}(\eta, \vec{x})$ into its right and left circularly polarized Fourier modes, $A_{\pm}(\eta, \vec{k})$, whose equation of motion is then given by

$$\left[\frac{d^2}{d\eta^2} + k^2 \mp 2aHk\xi\right] A_{\pm}(\eta,k) = 0, \quad \xi \equiv \frac{\alpha}{2fH} \frac{d\phi}{dt}.$$
 (5)

$$\begin{split} &\frac{d^2\phi}{dt^2} + 3H\frac{d\phi}{dt} + \frac{dV}{d\phi} = \frac{\alpha}{f}\langle \vec{E}\cdot\vec{B}\rangle,\\ &3H^2 = \frac{1}{M_p^2}\left[\frac{1}{2}\left(\frac{d\phi}{dt}\right)^2 + V(\phi) + \frac{1}{2}\langle \vec{E}^2 + \vec{B}^2\rangle\right] \end{split}$$

$$\begin{split} \langle \vec{E} \cdot \vec{B} \rangle &\simeq -2.4 \cdot 10^{-4} \frac{H^4}{\xi^4} \, \mathrm{e}^{2\pi\xi}, \\ \left\langle \frac{\vec{E}^2 + \vec{B}^2}{2} \right\rangle &\simeq 1.4 \cdot 10^{-4} \frac{H^4}{\xi^3} \, \mathrm{e}^{2\pi\xi}. \end{split} \quad \frac{1}{2} \langle \vec{E}^2 + \vec{B}^2 \rangle = \int \frac{dk \, k^2}{4\pi^2 a^4} \sum_{\lambda = \pm} \left(\left| \frac{dA_\lambda}{d\eta} \right|^2 + k^2 |A_\lambda|^2 \right), \\ \langle \vec{E} \cdot \vec{B} \rangle &= -\int \frac{dk \, k^3}{4\pi^2 a^4} \frac{d}{d\eta} \left(|A_+|^2 - |A_-|^2 \right). \end{split}$$

Background

 $\beta \equiv 1 - 2\pi\xi \frac{\alpha}{f} \frac{\langle \vec{E} \cdot \vec{B} \rangle}{3H(d\phi/dt)}$

$$\frac{\text{Perturbation}}{\left[\frac{\partial^2}{\partial t^2} + 3\beta H \frac{\partial}{\partial t} - \frac{\vec{\nabla}^2}{a^2} + \frac{d^2 V}{d\phi^2}\right] \delta\varphi(t, \vec{x}) = \frac{\alpha}{f} \left(\vec{E} \cdot \vec{B} - \langle \vec{E} \cdot \vec{B} \rangle\right)$$

$$\delta \varphi = \frac{\alpha}{3\beta f H^2} \left(\vec{E} \cdot \vec{B} - \langle \vec{E} \cdot \vec{B} \rangle \right)$$

 $\Delta_{\zeta}^2(k) = \langle \zeta(x)^2 \rangle = \frac{H^2 \langle \delta \varphi^2 \rangle}{(d\phi/dt)^2} = \left[\frac{\alpha \langle \vec{E} \cdot \vec{B} \rangle}{3\beta f H (d\phi/dt)} \right]^2$

e.g. Trapped axion inflation with a steep potential Cheng, Lee, Ng 16

all rescaled by M_p

Anisotropy Stress

energy-
momentum
$$\delta T_{ij} = \bar{p} h_{ij} + a^2 \delta_{ij} \delta p + a^2 \pi_{ij}$$

tensor
perfect fluid anisotropic
stress tensor

$$\ddot{h}_{ij} + 2\frac{\dot{a}}{a}\dot{h}_{ij} + k^2h_{ij} = 16\pi G a^2\pi_{ij}.$$

traceless transverse anisotropic stress tensor $\pi_{ii}=0, \quad \partial_i\pi_{ij}=0$

Associated Gravitational Waves in Trapped Inflation

Production of PBHs realized in axion monodromy inflation with sinusoidal modulations

GWs associated with PBHs in modulated axion inflation

PBH seeds or Large Curvature Perturbation Associated Gravitational Waves (continue)

$$\left[\frac{\partial^2}{\partial\eta^2} + \frac{2}{a}\frac{da}{d\eta}\frac{\partial}{\partial\eta} - \vec{\nabla}^2\right]h_{ij} = \left[\mathbf{0}\right]$$

Free gravitational wave equation

De Sitter vacuum fluctuations during inflation lead to almost scale-invariant primordial gravitational waves $P_h = 8\pi G H^2$ and $\Delta_{\zeta}^2 = \langle \zeta \zeta \rangle = (\delta \rho / \rho)^2 \sim 2x10^{-9}$ on CMB scales

$$\left[\frac{\partial^2}{\partial\eta^2} + \frac{2}{a}\frac{da}{d\eta}\frac{\partial}{\partial\eta} - \vec{\nabla}^2\right]h_{ij} = 16\pi \text{GT}_{ij}$$

Stress due to transverse traceless part of 2nd order curvature perturbation $T_{ij}(\zeta^2)$ $\Delta_{\zeta}^2 = \langle \zeta \zeta \rangle = (\delta \rho / \rho)^2 \sim 10^{-3}$

When large curvature perturbation re-enter the horizon during the radiation-dominated era and collapse to form PBHs, they induce gravitational waves at short wavelengths Ananda, Clarkson, Wands 2007, Baumann, Steinhardt, Takahashi, Ichiki 2007

Broader spectrum of PBHs and GWs in other inflation models

Broad vs narrow spectrum

How many and how big PBHs from Inflation

Biggest PBH with $M_{BH} \sim 10-100 M_{\odot}$

Vacuum Anisotropic Stress

Generation of gravity waves by a fluctuating source:

Integrate $\Box_S h_\mu^{\
u} = -16\pi\,G\,S_\mu^{\
u}$

using a retarded Green's function

Hsiang,Ford,Ng,Wu 2011,2017

and form the metric correlation function

 $K_{\mu \ \rho}^{\nu \ \sigma}(x,x') = \langle h_{\mu}^{\nu}(x) \ h_{\rho}^{\sigma}(x') \rangle - \langle h_{\mu}^{\nu}(x) \rangle \langle h_{\rho}^{\sigma}(x') \rangle$

in terms of a stress tensor correlation function

$$C_{\mu \rho}^{\nu} {}_{\rho} {}^{\sigma}(x,x') = \langle S_{\mu}^{\nu}(x) S_{\rho}^{\sigma}(x') \rangle - \langle S_{\mu}^{\nu}(x) \rangle \langle S_{\rho}^{\sigma}(x') \rangle$$

Conformally invariant fields:

$$C^{RW}_{\mu\nu\alpha\beta}(x,x') = a^{-4}(\eta) a^{-4}(\eta') C^{flat}_{\mu\nu\alpha\beta}(x,x')$$

Take spatial Fourier transforms:

$$\hat{A}(\eta,\mathbf{k})\equivrac{1}{(2\pi)^3}\int\!\!d^3x\,e^{i\mathbf{k}\cdot\mathbf{x}}A(\eta,\mathbf{x})$$

and take \mathbf{k} to be in the z-direction.

Need only x & y components of $\hat{C}_{\mu \rho}^{\nu} \sigma(\eta_1, \eta_2, k)$

Note: "power spectrum" in cosmology usually refers to $\mathcal{P}(k) = 4\pi k^3 P(k)$

Here P(k) is a spatial component of $\hat{K}_{\mu \rho}^{\nu} \sigma(\eta, \eta, k)$ equal time correlation

First model: assume that the gravity wave fluctuations vanish at some initial time $\eta = \eta_0$ (the beginning of inflation) and then integrate forward in time to the end of inflation at $\eta = \eta_r$

Power spectrum:

$$P_s(k) = 64(2\pi)^8 \int_{\eta_0}^{\eta_r} d\eta_1 \int_{\eta_0}^{\eta_r} d\eta_2 \, \hat{G}(\eta,\eta_1,k) \, \hat{G}(\eta,\eta_2,k) \; \hat{C}_{flat}(\eta_1-\eta_2,k)$$

Result:

$$P_s(k) = -rac{H^2 S^2}{3\pi^2 k} (1 + k^2 H^{-2})$$

S = expansion factor during inflation

Conclusion

- Primordial gravitational waves probe inflationary paradigm
- Long-wavelength GWs induced by metric vacuum fluctuations
 CMB B-mode polarization
- Primordial black hole seeds and short-wavelength GWs induced by particle production during inflation
- Short-wavelength GWs induced by 2nd order curvature perturbation during radiation era
- The binary BHs observed by aLIGO/VIRGO gravity-wave detectors may be primordial BHs PBHs could be dark matter!

How to distinguish PBHs from astrophysical BHs?

 Associated GWs in the frequency ranges of PTAs, LISA, aLIGO/VIRGO, KAGRA polarized (+ mode / - mode) GWs in axion inflation