

The IDEA Drift Chamber

F. Grancagnolo

IAS PROGRAM

High Energy Physics

January 6-24, 2020

OUTLINE

- Tracker requirements
- Genesis and evolution of the proposal
- Innovations introduced
- Layout and Material Budget
- The IDEA tracking system
- Fast simulation performance
- Full (standalone) Geant4 simulation
- Particle Identification
- Conclusions

F. Grancagnolo - IDEA DCH

4

• Large angular coverage

F. Grancagnolo - IDEA DCH

- Large angular coverage
- High granularity (to cope with occupancy at inner radii)

F. Grancagnolo - IDEA DCH

- Large angular coverage
- High granularity (to cope with occupancy at inner radii)
- High angular resolution ($\Delta \vartheta \le 0.1$ mrad for monitoring beam spread ($Z \rightarrow \mu \mu$))

7

F. Grancagnolo - IDEA DCH

- Large angular coverage
- High granularity (to cope with occupancy at inner radii)
- High angular resolution ($\Delta \vartheta \le 0.1$ mrad for monitoring beam spread ($Z \rightarrow \mu \mu$))

8

- High momentum resolution δp/p² ≤ few x 10⁻⁵, small wrt 0.136% beam spread for
 - Higgs mass recoil

F. Grancagnolo - IDEA DCH

- Large angular coverage
- High granularity (to cope with occupancy at inner radii)
- High angular resolution ($\Delta \vartheta \le 0.1$ mrad for monitoring beam spread ($Z \rightarrow \mu \mu$))
- High momentum resolution
 δp/p² ≤ few x 10⁻⁵, small wrt 0.136% beam spread for
 - Higgs mass recoil
 - cLFV processes like Z → eµ ,et, µt (BR ≈ $10^{-54} 10^{-60}$) current exp. limits (≤ 10^{-6}) can be improved by > 5 orders of magnitude

F. Grancagnolo - IDEA DCH

- Large angular coverage
- High granularity (to cope with occupancy at inner radii)
- High angular resolution ($\Delta \vartheta \le 0.1$ mrad for monitoring beam spread ($Z \rightarrow \mu \mu$))
- High momentum resolution
 δp/p² ≤ few x 10⁻⁵, small wrt 0.136% beam spread for
 - Higgs mass recoil
 - cLFV processes like Z → eµ ,eτ, μτ (BR ≈ $10^{-54} 10^{-60}$)
 - current exp. limits ($\leq 10^{-6}$) can be improved by > 5 orders of magnitude
- V⁰ and kink capability for CPV (CP eigenstates usually long-lived particles)

F. Grancagnolo - IDEA DCH

- Large angular coverage
- High granularity (to cope with occupancy at inner radii)
- High angular resolution ($\Delta \vartheta \le 0.1$ mrad for monitoring beam spread ($Z \rightarrow \mu \mu$))
- High momentum resolution
 δp/p² ≤ few x 10⁻⁵, small wrt 0.136% beam spread for
 - Higgs mass recoil
 - cLFV processes like Z → eµ ,eτ, μτ (BR ≈ 10^{-54} 10^{-60})
 - current exp. limits ($\leq 10^{-6}$) can be improved by > 5 orders of magnitude
- V⁰ and kink capability for CPV (CP eigenstates usually long-lived particles)
- High resolution Particle Identification capability
 - Flavor Physics

F. Grancagnolo - IDEA DCH

- Large angular coverage
- High granularity (to cope with occupancy at inner radii)
- High angular resolution ($\Delta \vartheta \le 0.1$ mrad for monitoring beam spread ($Z \rightarrow \mu \mu$))
- High momentum resolution
 δp/p² ≤ few x 10⁻⁵, small wrt 0.136% beam spread for
 - Higgs mass recoil
 - ο cLFV processes like Z → eµ ,eτ, μτ (BR ≈ 10^{-54} 10^{-60})
 - current exp. limits ($\leq 10^{-6}$) can be improved by > 5 orders of magnitude
- V⁰ and kink capability for CPV (CP eigenstates usually long-lived particles)
- High resolution Particle Identification capability
 - Flavor Physics
 - CPV (e.g. $B_s \rightarrow D_s K$)

F. Grancagnolo - IDEA DCH

- Large angular coverage
- High granularity (to cope with occupancy at inner radii)
- High angular resolution ($\Delta \vartheta \le 0.1$ mrad for monitoring beam spread ($Z \rightarrow \mu \mu$))
- High momentum resolution
 δp/p² ≤ few x 10⁻⁵, small wrt 0.136% beam spread for
 - Higgs mass recoil
 - cLFV processes like Z → eµ ,eτ, μτ (BR ≈ 10^{-54} 10^{-60})
 - current exp. limits ($\leq 10^{-6}$) can be improved by > 5 orders of magnitude
- V⁰ and kink capability for CPV (CP eigenstates usually long-lived particles)
- High resolution Particle Identification capability
 - Flavor Physics
 - CPV (e.g. $B_s \rightarrow D_s K$)
 - \circ A_{FB}(b), exclusive b-hadron decays reconstruction

F. Grancagnolo - IDEA DCH

Genesis and evolution

- **KLOE** ancestor chamber at INFN LNF Daφne φ factory (commissioned in 1998 and operating for the last 20 years)
- **CluCou** chamber proposed for the 4th-Concept at ILC (2009)
- **III.** I-tracker chamber proposed for the Mu2e experiment at Fermilab (2012)
- **IV.** DCH for the MEG upgrade at PSI (designed in 2014, now and under commissioning)

V. IDEA drift chamber proposal for FCC-ee and CEPC (2016)

F. Grancagnolo - IDEA DCH

19

Innovations introduced

١.

 $\mathbf{H}_{\mathbf{a}}$

20

with **KLOE**

- I. Wire configuration fully stereo (no axial layers)
- II. new light Aluminum wires
- III. Very light gas mixture 90% He – 10% iC₄H₁₀
- IV. Mechanical structure entirely in Carbon Fiber
- V. Largest volume **drift chamber** ever built (45 m³)

F. Grancagnolo - IDEA DCH

after KLOE

Separating gas containment from wire support functions

- New concepts for wire tension compensation
- III. Using a larger number of thinner (and lighter wires)
- IV. No feed-through wiring
- V. Using **cluster timing** for improved spatial resolution
- VI. Using **cluster counting** for particle identification

21

F. Grancagnolo - IDEA DCH

INFN

Conservative estimates:

•	Inner wall (from CMD3 drift chamber)	8.4×10 ⁻⁴ X ₀
	200 μm Carbon fiber	
•	Gas (from KLOE drift chamber)	7.1×10 ⁻⁴ X ₀ /m
	90% He – 10% iC ₄ H ₁₀	
•	Wires (from MEG2 drift chamber)	1.3×10 ⁻³ X ₀ /m
	20 μ m W sense wires 4.2×10 ⁻⁴ X ₀ /m	-
	40 μ m Al field wires 6.1×10 ⁻⁴ X ₀ /m	
	50 μ m Al guard wires 2.4×10 ⁻⁴ X ₀ /m	
•	Outer wall (from Mu2e I-tracker studies)	1.2×10 ⁻² X ₀
	2 cm composite sandwich (7.7 Tons)	
•	End-plates (from Mu2e I-tracker studies)	4.5×10 ⁻² X ₀
	wire cage + gas envelope	
	incl. services (electronics, cables,)	

14 co-axial super-layers, 8 layers each (112 total) with alternating sign stereo angles ranging from 50 to 250 mrad, in 24 equal azimuthal (15°) sectors

The IDEA Tracking system

Vertex Detector

Layer	R [mm]	L [mm]	Si e	eq. thick. [µm]	X ₀ [%]		pi	xel size [mm²]	6 [1	area cm²]	# of channels
1	17	±110		300	0.3		0.	02×0.02		235	60M
2	23	±150		300	0.3		0.0	02×0.02		434	110M
3	31	±200		300	0.3		0.02×0.02		780		200M
4	320	±2110		450	0.5		0.	.05×1.0	1	35K	170M
5	340	±2245		450	0.5		0.	.05×1.0	96K		190M
			1		1994	2.5				4	
Disks	R _{in} [mm]	R _{out} [mm]	z [mm]	Si eq. th [µm]	lick.	X ₀ [%]]	pixel siz [mm ²]	ze	area [cm²]	# of channels
1	62	300	±400	300		0.3	3	0.05×0.	05	5.4K	220M
2	65	300	±420	300		0.3	3 0.05×0.		05 5.4K		220M
3	138	300	±900	300		0.3	.3 0.05×0.		05	4.4K	180M
4	141	300	±920	300		0.3	3	0.05×0.	05	4.4K	180M

Drift Chamber

Si wrapper

		R _{in} [mm]		R _{out} [mm]		t 1]	[n			
drift chamber		35	50	2	200	0	±2	000		
service area		350		2	2000		±(2000			
		214			L	:11	83111			
	inn wa	inner wall gas		6	wire		outer wall	service area		
thickness [mm]	0.	2	1000		100		20	250		
X ₀ [%]	0.0	8(0.0	7	0.13		1.2	4.5		
# of layers		112			min 11.8 mm – max 14.9 mm					
# of cells		564	48		1	92 at 1	st - 816 at	last layer	t de la composition de la composition de la comp	
average cell size		13.9 mm			min 11.8 mm - max 14.9 mm					
average stereo angle		134 mrad			min 43 mrad – max 223 mrad					
transverse resolution		100	μm			80 µm	n with cluste	er timing		
longitudinal resolution		750 µm			600 µm with cluster timing					
active volume		50 m ³								
readout channels		1	12,89	6		r.c	o. from b	oth ends		
max drift time		2	100 ns	8		800 × 8 bit at 2 GHz				

Laye	er R[n m]	n L [mr	n]	eq. thick. [µm]	X ₀ [%]	pix]	kel size mm²]	are [cm	a 1²] (# of channels
1	204	0 ±24	00	450	0.5	0.0	05×100	616	δK	12.3M
2	206	0 ±24	00	450	0.5	0.0	05×100	620	Ж	12.4M
Disks	R _{in} [mm]	R _{out} [mm]	z [mm]	Si eq. thi [µm]	ck. [X ₀ [%]	pixel s [mm	ize ²]	area [cm ²]	# of channels
1	350	2020	±2300	450	(0.5	0.05×1	100	250K	5M
~										

F. Grancagnolo - IDEA DCH

Fast Simulation Performance

IDEA: Material vs. cos(0)

Tracking performances

Fast Simulation Performance

Conclusions

Conceptual design of tracking system adequate for the physics requirements.

Ready for transition from CDR to TDR, but still missing ...

- full software integration within a common framework
- performance optimization on benchmark physics
- detector design optimization (cost/performance analysis)
- construction of full scale prototypes (4 m length!)
 - to test materials and mechanical engineering solutions
 - to develop cost effective electronics (given the number of channels)

Critical mass far from being reached: ample space for additional international contributions on all the listed items.

F. Grancagnolo - IDEA DCH

Back up Slides

F. Grancagnolo - IDEA DCH

30

The "brilliant" IDEA Detector F. Grancagnolo - IDEA DCH 31 Jan. 20, 2020

isolated track reconstruction efficiency

efficiency to find 0.6nhits at 1 turn(|cos th|<0.8 over all tracks

efficiency to find 0.6nhits at 1 turn(P>1GeV) over all tracks

INFN

INFN

III. Cluster Timing

From the **ordered sequence of the electrons arrival times**, considering the average time separation between clusters and their time spread due to diffusion, **reconstruct the most probable sequence of clusters drift times:** $\{t_i^{a}\} = i = 1, N_{ai}\}$

For any given first cluster (FC) drift time, the **cluster timing technique** exploits the drift time distribution of all successive clusters $\{r_i^{d}\}$ to determine the most probable impact parameter, thus reducing the **bias** and the average **drift distance resolution** with respect to those obtained from with the FC method alone.

37

INFN

III. Cluster Timing: exploit signal digitization

N_{cl} doesn't depend on **b** in square drift cell case, but only on the track angle

38

Jan. 20. 2020

- t_{last} constant in the ideal case => defines the trigger time $t_0 = t_{last} t_{max}$ INFN F. Grancagnolo - IDEA DCH

III. Cluster Timing: exploit signal digitization

III. Cluster Timing: exploit signal digitization

IV. Cluster Counting

$$\frac{\sigma_{dE/dx}}{\left(dE/dx\right)} = 0.41 \cdot n^{-0.43} \cdot \left(L_{track} \left[m\right] \cdot P\left[atm\right]\right)^{-0.32}$$

dE/dx

truncated mean cut (70-80%) reduces the amount of collected information

n = 112 and a 2m track at 1 atm give

 $\sigma \approx 4.3\%$

from Walenta parameterization (1980)

versus

from Poisson distribution

 dN_{cl}/dx

 δ_{cl} = 12.5/cm for He/iC₄H₁₀=90/10 and a 2m track give

σ ≈ 2.0%

A small increment of iC_4H_{10} from 10% to 20% (δ_{cl} = 20/cm) improves resolution by 20% ($\sigma \approx 1.6\%$) at only a reasonable cost of multiple scattering contribution to momentum and angular resolutions.

Increasing **P** to 2 atm improves resolution by 20% ($\sigma \approx 3.4\%$) but at a **considerable** cost of multiple scattering contribution to momentum and angular resolutions.

INFN

F. Grancagnolo - IDEA DCH

IV. Cluster Counting

140

The data shown refer to a beam of μ and π at 200 MeV/c, taken with a gas mixture He/iC₄H₁₀=95/5, δ_{cl} = 9/cm, 100 samples, 2.6 cm each at 45° (for a total track length of 3.7 m, corresponding to N_{cl} = 3340, 1/vN_{cl} = 1.7%).

(NIM A386 (1997) 458-469 and references therein)

dE/dx

LISTATE Razdonale di Fisica Nacionale

F. Grancagnolo - IDEA DCH

42