TPC at CEPC and how to address its limitations and feasibility

Huirong Qi
Yulan Li, Zhi Deng, Haiyun Wang, ZhiYang Yuan, Yiming Cai, Liu Ling, Hui Gong, Yuyan Huang, Xinyuan Zhao, Wei Liu, Yulian Zhang, Manqi Ruan, Ouyang Qun, Jian Zhang

Institute of High Energy Physics, CAS
Tsinghua University
Mini-Workshop: Experiment/Detector - Tracking and Calorimetry at Colliders, Jan., 18, 2019
TPC at CEPC and how to address its limitations and feasibility

Huirong Qi
Yulan Li, Zhi Deng, Haiyun Wang, ZhiYang Yuan, Yiming Cai, Liu Ling, Hui Gong, Yuyan Huang, Xinyuan Zhao, Wei Liu, Yulian Zhang, Manqi Ruan, Ouyang Qun, Jian Zhang

Institute of High Energy Physics, CAS
Tsinghua University
Mini-Workshop: Experiment/Detector - Tracking and Calorimetry at Colliders, Jan.,18, 2019
Outline

- Baseline design
- Requirements and challenges
- Feasibility study of TPC detector
- R&D activities
- Summary
Three Detector Concepts (CEPC CDR)

- **Baseline**: Silicon + TPC
- **FST**: all-silicon tracker
- **IDEA**: Silicon+Drift chamber (DCH)

Table

<table>
<thead>
<tr>
<th></th>
<th>Higgs</th>
<th>W</th>
<th>Z (3T)</th>
<th>Z (2T)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of IPs</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beam energy (GeV)</td>
<td>120</td>
<td>80</td>
<td>45.5</td>
<td></td>
</tr>
<tr>
<td>Circumference (km)</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Synchrotron radiation loss/turn (GeV)</td>
<td>1.73</td>
<td>0.34</td>
<td>0.636</td>
<td></td>
</tr>
<tr>
<td>Crossing angle at IP (mrad)</td>
<td>16.5 × 2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagrams

- Detector dimensions and layout
- Schematic of detector components (Silicon Wrapper, Dual Readout Calorimeter, VTX, Preshower, DCH R = 200 cm, DCH R_in = 30 cm, Cal R_in = 250 cm, Cal R_out = 450 cm)

ArXiv:1811.10545

<table>
<thead>
<tr>
<th>Operation mode</th>
<th>\sqrt{s} (GeV)</th>
<th>L per IP (10^{34} cm$^{-2}$s$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>240</td>
<td>3 (32 (*))</td>
</tr>
<tr>
<td>Z</td>
<td>91.2</td>
<td>10</td>
</tr>
<tr>
<td>$W^+ W^-$</td>
<td>158–172</td>
<td></td>
</tr>
</tbody>
</table>
TPC detector at CEPC

TPC could directly provide three-dimensional space points; the gaseous detector volume gives a low material budget; and the high density of such space points enables excellent pattern recognition capability.

Why use TPC detector as the tracker detector?

- Motivated by the H tagging and Z
- TPC is the perfect detector for HI collisions …(ALICE TPC…)
- Almost the whole volume is active
- Minimal radiation length (field cage, gas)
- Easy pattern recognition (continuous tracks)
- PID information from ionization measurements (dE/dx)
- Operating under high magnetic field
- MPGD as the readout
TPC requirements for CEPC

TPC detector concept:

- Under 3 Tesla magnetic field
 (Momentum resolution: $\sim 10^{-4}$/GeV/c with TPC standalone)
- Large number of 3D space points (~ 220 along the diameter)
- dE/dx resolution: $<5\%$
- $\sim 100 \mu m$ position resolution in rϕ
 - $\sim 60 \mu m$ for zero drift, $<100 \mu m$ overall
 - Systematics precision ($<20 \mu m$ internal)
- TPC material budget
 - $<1X_0$ including outer field cage
- Tracker efficiency: $>97\%$ for $pT>1$GeV
- 2-hit resolution in rϕ : ~ 2mm
- Module design: ~ 200mm \times 170mm
- Minimizes dead space between the modules: 1-2mm
Gas amplification detector module and pad size

Micro pattern detector:

- GEM and Micromegas detector
- Electron cluster using Center-of-Gravity
 - Pitch: ~1mm
 - Pad Size: ~1mm × 6mm
- High gain (5000-10000)
- High rate capability: MPGDs provide a rate capability over 10^5 Hz/mm² without discharges that can damage electronics.
- Intrinsic ion backflow suppression: Most of the ions produced in the amplification region will be neutralized on the mesh or GEM foil and do not go back to the drift volume.
- A direct electron signal, which gives good time resolution (< 100 ps) and spatial resolution (100 μm).

The profile of an electron cluster in GEMs detector
TPC possible limitations

- Ions back flow in chamber
- Calibration and alignment
- Low power consumption FEE ASIC chip
Feasibility study of TPC

- Would it be Limited by
 - Voxel occupancy
 - Primary ions along the track in the chamber
 - Amplification ions create the ions disk back to the chamber (× Gain)
 - Charge Distortion induced by the ions: Mainly from Ion back flow

Voxel size defined (3D space bucket):

\[\text{Pad size} \times T_{\text{sample}} \times V_{\text{drift}} \]

Total ions in chamber: \(~ Back flow ions \sim (1 + k), k = \text{Gain} \times \text{IBF} + \text{Primary}~\)
Occularity simulation

- **Gain × IBF** refers to the number of ions that will escape the end-plate readout modules per primary ionization, obtained by the multiplication of the readout modules gain and the ion backflow reducing rate (IBF)

- **L**: the luminosity in units of $10^{34}\text{cm}^{-2}\text{s}^{-1}$

- **Voxel size**: $1\text{mm} \times 6\text{mm} \times 2\text{mm}$

 @DAQ/40MHz

- **Maximal occupancy at TPC inner most layer**: $\sim10^{-5}$ (safe)

- **Full simulation**: 9 thousand Z to qq events

- **Bhabha events**: a few nb

- **Background considered?** (Need careful designed Shielding/detector protection)

To conclude, the TPC will be able to be used if the Gain × IBF can be controlled to a value smaller than 5.
Technical challenges of TPC for CEPC

Ion Back Flow and Distortion

- Goal:
 - Operate TPC at high luminosity at Z pole run
 - No Gating options
- IBF control similar with ALICE TPC upgrade
- ~100 µm position resolution in rφ
- Distortions by the primary ions at CEPC are negligible
- Manu ions discs co-exist and distorted the path of the seed electrons
- The ions cleaned during the ~us period continuously
- Continuous device for the ions
- Long working time

<table>
<thead>
<tr>
<th></th>
<th>ALICE TPC</th>
<th>CEPC TPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum readout rate</td>
<td>>50kHz@pp</td>
<td>w.o BG?</td>
</tr>
<tr>
<td>Gating to reduce ions</td>
<td>No Gating</td>
<td>No Gating</td>
</tr>
<tr>
<td>Continuous readout</td>
<td>No trigger</td>
<td>Trigger?</td>
</tr>
<tr>
<td>IBF control</td>
<td>Build-in</td>
<td>Build-in</td>
</tr>
<tr>
<td>IBF*Gain</td>
<td><10</td>
<td><5</td>
</tr>
<tr>
<td>Calibration system</td>
<td>Laser</td>
<td>NEED</td>
</tr>
</tbody>
</table>

Compare with ALICE TPC and CEPC TPC
Feasibility study of TPC detector

Continuous IBF module:
- Operation at Higgs and Z-pole run
- Continuous Ion Back Flow due to the continuous beam structure
- Low discharge and spark possibility
- Space charge effect for IBF
- Gain: 5000-6000
- Good energy resolution: <20%

Laser calibration system:
- The ionization in the gas volume along the laser path occurs via two photon absorption by organic impurities (Nd:YAG laser @266nm)
- Laser calibration system around the chamber
- Calibration of the drift velocity, gain uniformity, the distortion
- High stability of the laser beam (<5µm)
Some R&D activities

- TPC detector module -> IBF control
- TPC detector prototype -> Calibration
- Low power consumption -> FEE ASIC chip
Study with GEM-MM module
- New assembled module
- Active area: 100mm × 100mm
- X-tube ray and 55Fe source
- Bulk-Micromegas assembled from Saclay
- Standard GEM from CERN
- Avalanche gap of MM: 128μm
- Transfer gap: 2mm
- Drift length: 2mm ~ 200mm
- pA current meter: Keithley 6517B
- Current recording: Auto-record interface by LabView
- Standard Mesh: 400LPI
- High mesh: 508 LPI
GEM+MM@CEPC R&D

Photo peak and escape peak are clear!
Good electron transmission.
Good energy resolution.

e+e- machine
Primary N_{eff} is small: ~ 30
Pad size: $1\text{mm} \times 6\text{mm}$
Gain of the hybrid structure detector

\[E_d = 200\text{V/cm}, \ E_t = 200\text{V/cm}, \ V_{\text{Mesh}} = 400\text{V} \]

- **T2K gas**
- **Ar/iC_4H_{10}(95/5)**

Gain: 5000

![Graph showing gain vs. V_GEM (V)]
Key IBF factor: $\text{IBF} \times \text{Gain}$

$E_d = 200\,\text{V/cm}$, $E_t = 200\,\text{V/cm}$, $V_{\text{Mesh}} = 400\,\text{V}$

- **T2K gas**
- **Ar/iC4H10(95/5)**

$K_{\text{IBF}} (=\text{IBF} \times \text{Gain})$

V_{GEM} [V]
From July, the high mesh of 508LPI has been assembled with CEA-Saclay collaboration. The preliminary results indicates that it could reach the lower IBF and better performance.
- Space charge to decrease IBF -
High rate and lots of ions make space charge effect to decrease IBF possibility !!!
Check and answer - Gain

Single GEM with very low Gain in our Exp.

DOI: 1609.08010
Check and answer: I_{pad}

Current of Pad is very low in our Exp.

Green, T2K, $E_t=200\,\text{V/cm}, E_d=200\,\text{V/cm}, V_{\text{mesh}}=400\,\text{V}, V_{\text{Gem}}=30\sim300\,\text{V}$

Yellow, Ar/iso(95/5), $E_t=200\,\text{V/cm}, E_d=200\,\text{V/cm}, V_{\text{mesh}}=400\,\text{V}, V_{\text{Gem}}=30\sim300\,\text{V}$
Check and answer- $\rho_{\text{ion}} \times d$

Current of Pad is very low in our Exp.

Green: T2K, Yellow: Ar/iso(95/5)

T2K gas Ic: $4pA \sim 59pA, \sim 10^3 \text{ (fC/cm}^2\text{)}$
Ar/iso gas Ic: $3.5pA \sim 53pA, \sim 10^3 \text{ (fC/cm}^2\text{)}$
Motivation of the TPC prototype

- Study and estimation of the distortion from the IBF and primary ions with the laser calibration system

Main parameters

- Drift length: \(~510\text{mm}\), Readout active area: \(200\text{mm} \times 200\text{mm}\)
- Integrated the laser calibration with 266nm
- GEMs/Micromegas as the readout
- Matched to assembled in the 1.0T PCMAG
Laser map in drift length

- Size: ~0.85mm × 0.85mm
- Transmission and reflection mirrors
- Aluminum board integrated the laser device and supports
- Drift velocity in Z
- Uniformity in X-Y plane

Detector with the laser system
Preliminary test with the laser

- Readout board, 128 Channels electronics, DAQ and laser mirror and PCB board have been done and assembled
- TPC barrel mount and re-mount with the Auxiliary brackets
- TPC preliminarily tested with 55Fe and the different power laser beam
- Optimization of the laser studied

![Graphs showing laser spectrum and data tables with channel counts and parameters like Mean, RMS, Constant, and Sigma for different laser and 55Fe signals.]
Laser track test

Preliminary results of Laser tracker energy spectrum and tracker
- Low power consumption ASIC -
Feasibility study of the low power consumption FEE

- Each endplate has a total of about 1 million channels
- Over 30,000 ASIC chips with 32 channels each
- Total power consumption of the front-end electronics is limited by the CO$_2$ cooling system to be several kilowatts in practice
- Two-phase CO$_2$ cooling/Micro-channel CO$_2$ cooling methods should be studied further
- TPC readout electronics are a few meters away from the collision point, and the radiation dose is rather low (< 1 krad), and radiation sophisticated design needs to be considered too

Key specifications of the front-end readout ASIC for TPC

<table>
<thead>
<tr>
<th>Total number of channels</th>
<th>ENC (Equivalent Noise Charge)</th>
<th>1 million per endcap</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFE (Analogue Front-End)</td>
<td>Gain, Shaper, Peaking time</td>
<td>500e @ 10pF input capacitance</td>
</tr>
<tr>
<td>ADC</td>
<td>Sampling rate, Resolution</td>
<td>10 mV/µC, CR-RC 100ns</td>
</tr>
</tbody>
</table>

- Power consumption
- Output data bandwidth: 300–500 MB/s
- Channel number: 32
- Process: TSMC 65 nm LP

≤ 5 mW per channel
ASIC FEE ASIC chips

Current TPC readout ASICs

<table>
<thead>
<tr>
<th></th>
<th>PASA/ALTRO</th>
<th>AFTER</th>
<th>Super-ALTRO</th>
<th>SAMPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPC</td>
<td>ALICE</td>
<td>T2K</td>
<td>ILC</td>
<td>ALICE upgrade</td>
</tr>
<tr>
<td>Pad size</td>
<td>4x7.5 mm²</td>
<td>6.9x9.7 mm²</td>
<td>1x6 mm²</td>
<td>4x7.5 mm²</td>
</tr>
<tr>
<td>Pad channels</td>
<td>5.7 x 10⁵</td>
<td>1.25 x 10⁵</td>
<td>1-2 x 10⁶</td>
<td>5.7 x 10⁵</td>
</tr>
<tr>
<td>Readout Chamber</td>
<td>MWPC</td>
<td>MicroMegas</td>
<td>GEM/MicroMegas</td>
<td>GEM</td>
</tr>
<tr>
<td>Analog Front-end</td>
<td>Gain</td>
<td>12 mV/fC</td>
<td>18 mV/fC</td>
<td>12-27 mV/fC</td>
</tr>
<tr>
<td></td>
<td>Shaper</td>
<td>CR-(RC)⁴</td>
<td>CR-(RC)²</td>
<td>CR-(RC)⁴</td>
</tr>
<tr>
<td></td>
<td>Peaking time</td>
<td>200 ns</td>
<td>100 ns</td>
<td>30-120 ns</td>
</tr>
<tr>
<td></td>
<td>ENC</td>
<td>385 e</td>
<td>1000 e</td>
<td>520 e</td>
</tr>
<tr>
<td>Waveform Sampler</td>
<td>Method</td>
<td>ADC</td>
<td>SCA</td>
<td>ADC</td>
</tr>
<tr>
<td></td>
<td>Sampling frequency</td>
<td>10MSPS</td>
<td>25MSPS</td>
<td>40MSPS</td>
</tr>
<tr>
<td></td>
<td>Dynamic range</td>
<td>10bit</td>
<td>10bit</td>
<td>10bit</td>
</tr>
<tr>
<td></td>
<td>Power consumption</td>
<td>32mW/ch</td>
<td>6.2-7.5mW/ch</td>
<td>47.3mW/ch</td>
</tr>
<tr>
<td></td>
<td>CMOS Process</td>
<td>250 nm</td>
<td>350 nm</td>
<td>130 nm</td>
</tr>
</tbody>
</table>
ASIC FEE requirements

• Requirement for the front-end electronics
 • Analog front-end, including preamplifier and shaper
 • Waveform sampling ADC in 10b and 20-40MSPS
 • Continuous working, no power pulsing → Low power consumption

<table>
<thead>
<tr>
<th>Total number of channels</th>
<th>~1 Million per endcap</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFE</td>
<td>ENC</td>
</tr>
<tr>
<td>Gain</td>
<td>10 mV/fC</td>
</tr>
<tr>
<td>Peaking time</td>
<td>160 ns</td>
</tr>
<tr>
<td>ADC</td>
<td>Sampling rate</td>
</tr>
<tr>
<td></td>
<td>20-40 MSPS</td>
</tr>
<tr>
<td></td>
<td>Resolution</td>
</tr>
<tr>
<td></td>
<td>10 bit</td>
</tr>
<tr>
<td>Buffer latency</td>
<td>~50 μs</td>
</tr>
<tr>
<td>Data readout rate</td>
<td>20 Gb per event w.o. zero compression</td>
</tr>
<tr>
<td>Power consumption</td>
<td><10 mW per channel</td>
</tr>
<tr>
<td>Area</td>
<td>< 6 mm² per channel, incl. cooling</td>
</tr>
</tbody>
</table>
Results of FEE ASIC

- Develop a low power and highly integration front-end ASIC in 65 nm CMOS
- Each channel consists of the analog front-end (AFE) and a SAR ADC in 10b and up to 40 MSPS
- Less than 5 mW per channel

AFE test summary

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>10mV/fC</td>
</tr>
<tr>
<td>Dynamic Range</td>
<td>120fC</td>
</tr>
<tr>
<td>INL</td>
<td><1%</td>
</tr>
<tr>
<td>Power consumption</td>
<td>2.50mW/ch</td>
</tr>
<tr>
<td>ENC</td>
<td>500e @ 10pF</td>
</tr>
<tr>
<td>Xtalk</td>
<td><1%</td>
</tr>
</tbody>
</table>

SAR ADC test summary

<table>
<thead>
<tr>
<th>Specifications</th>
<th>Test Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sampling rate</td>
<td>40 MSPS</td>
</tr>
<tr>
<td>Resolution</td>
<td>10 bit</td>
</tr>
<tr>
<td>INL</td>
<td><0.65 LSB</td>
</tr>
<tr>
<td>DNL</td>
<td><0.6 LSB</td>
</tr>
<tr>
<td>ENOB</td>
<td>>9 bit</td>
</tr>
<tr>
<td>Power consumption</td>
<td><2.5 mW/ch</td>
</tr>
</tbody>
</table>

1320um x 838um
Summary and further R&D

Requirements and critical challenges for CEPC:
- High momentum resolution and position resolution
- Continuous beam structure and the ~25ns time space

Continuous IBF module for CEPC:
- Continuous Ion Back Flow supression
- Key factor: IBF×Gain=5 and leas than (R&D)
- Low discharge and the good energy spectrum

Prototype with laser calibration for CEPC:
- It needs very sophisticated calibration in order to reach the desired physics performance at Z pole run
- Prototype has been designed with laser (Developed in IHEP and Tsinghua)

Low power consumption ASIC chip:
- FEE electronics and DAQ collaborated with Tsinghua University
- Less than 5mV per channel
Thanks.