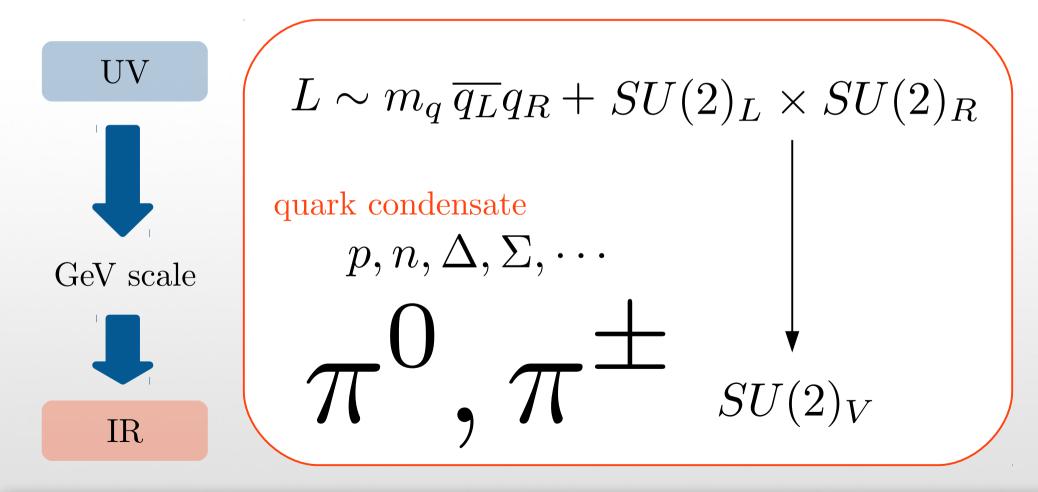
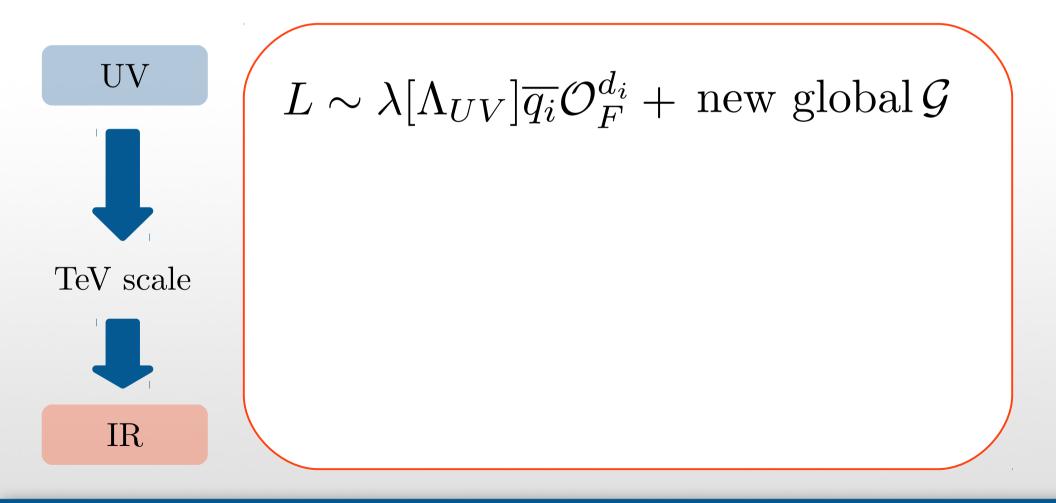
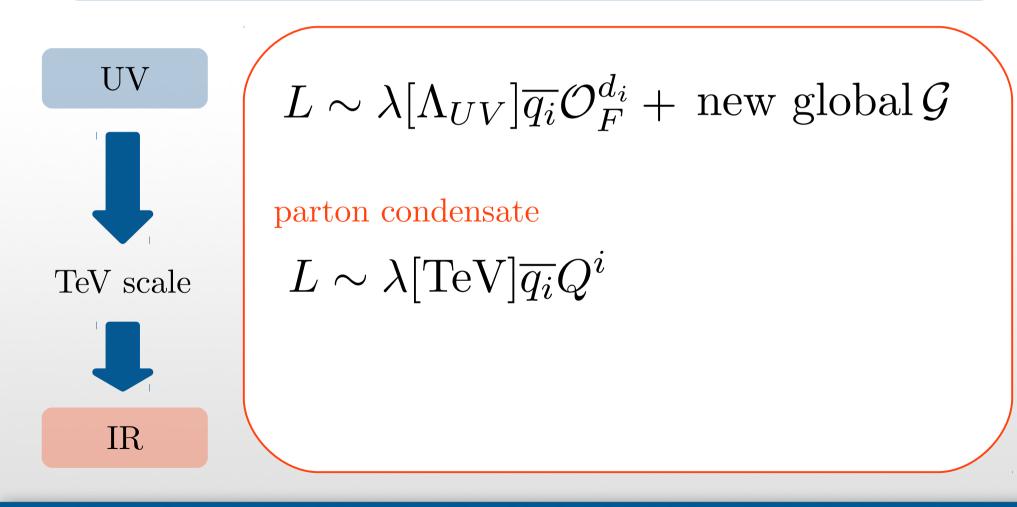
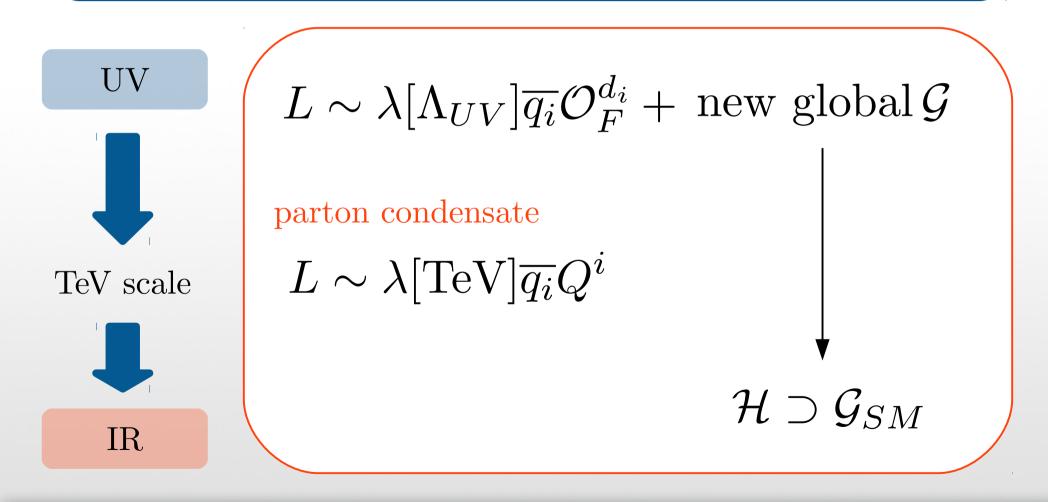

VLQs at future colliders and implications for CHMs

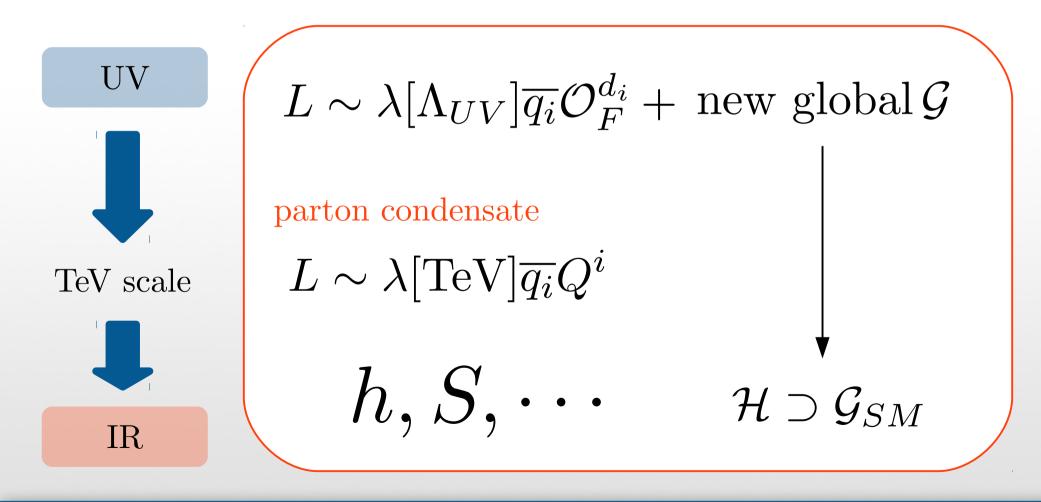

Mikael Chala (IPPP)

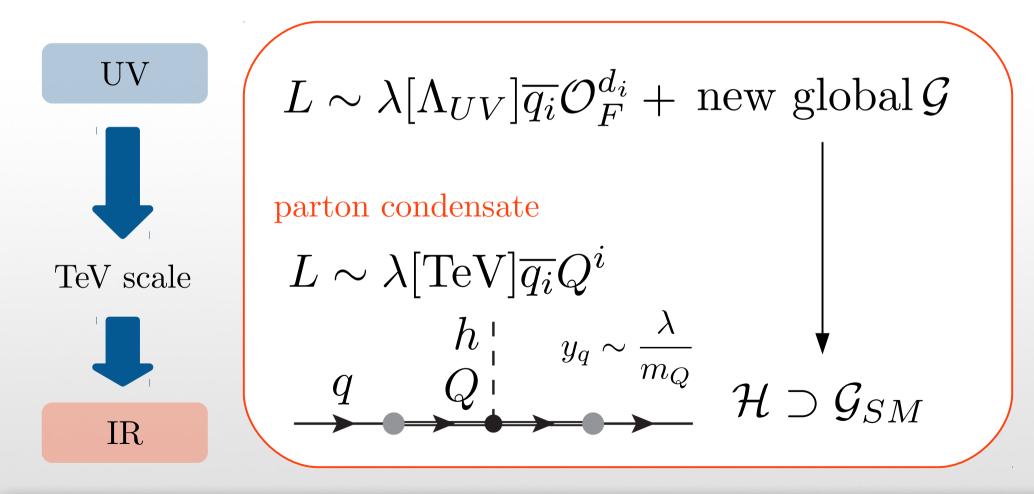
With R. Grober and M. Spannowsky. To appear soon

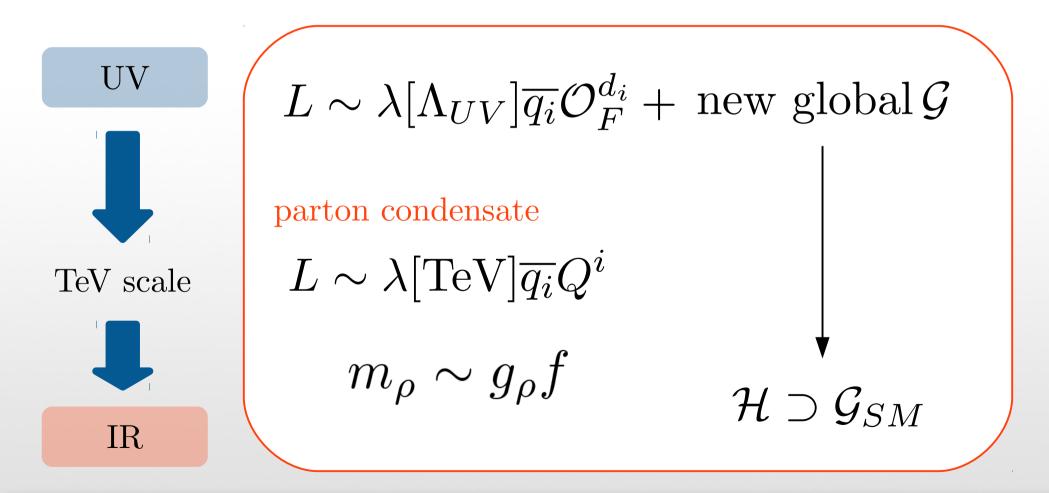


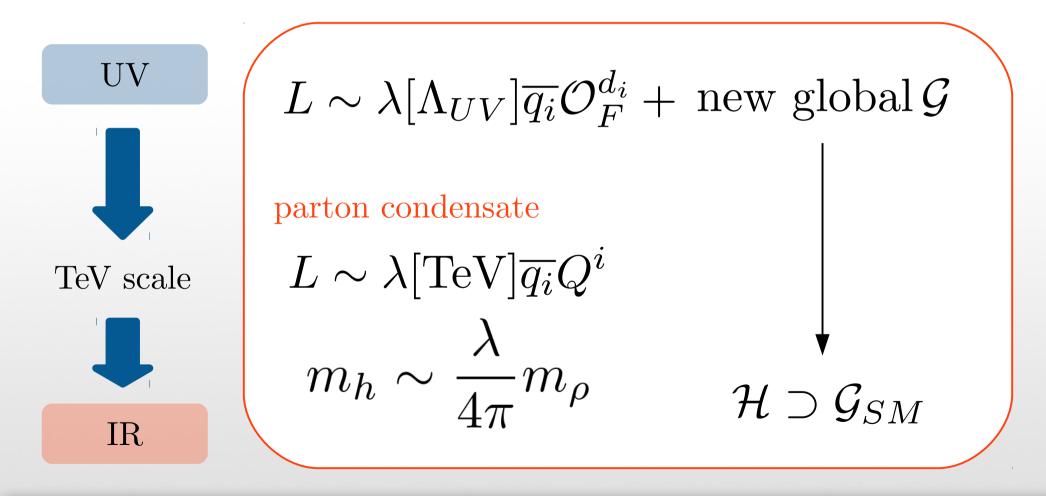




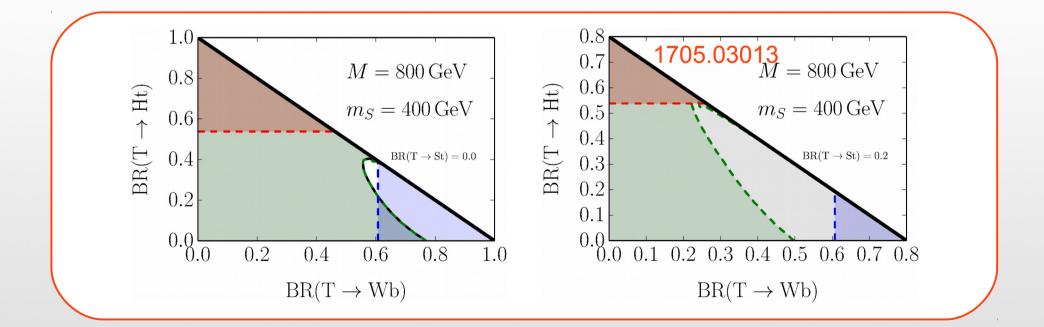








Current constraints on VLQs


(only direct searches)

Top partner masses above 1 TeV according to ATLAS and CMS analyses (although quite model dependent)

Current constraints on VLQs

(only direct searches)

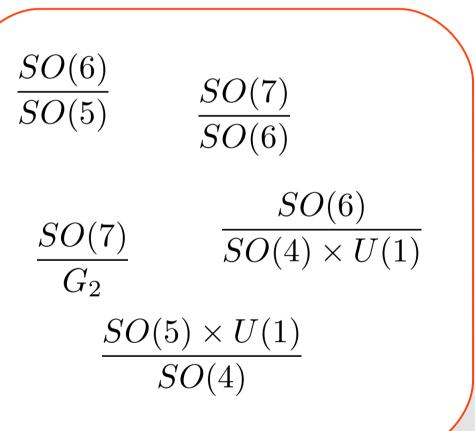
Top partner masses above 1 TeV according to ATLAS and CMS analyses (although quite model dependent)

Current constraints on VLQs (only direct searches)

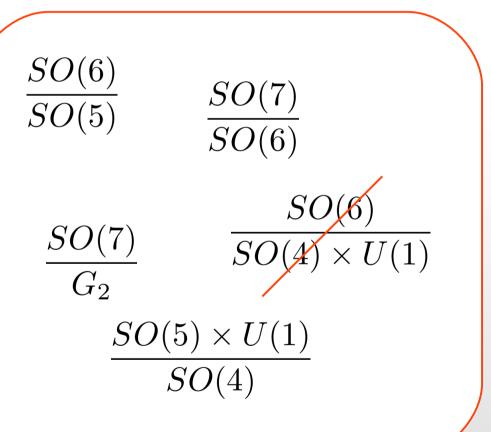
| Top partner masses above 1 TeV according to ATLAS and CMS analyses (although quite model dependent)

Upper bounds ranged from 1–1.5 TeV [0612048] to < 1 TeV [1204.6333, 1205.0232, 1205.0770, 1205.6434, 1210.7114].
Ref. [1210.7114] showed that masses around 2 TeV are compatible with tuning of order 100 in some CHMs

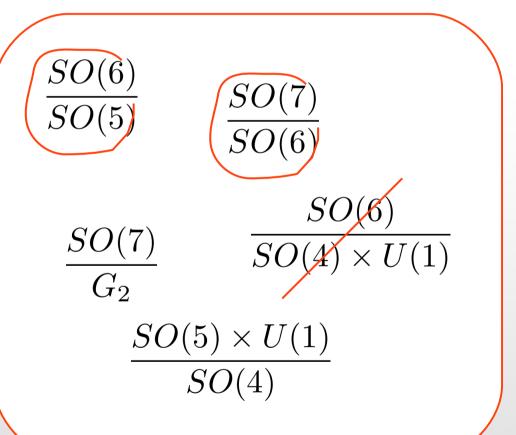
Current constraints on VLQs (only direct searches)

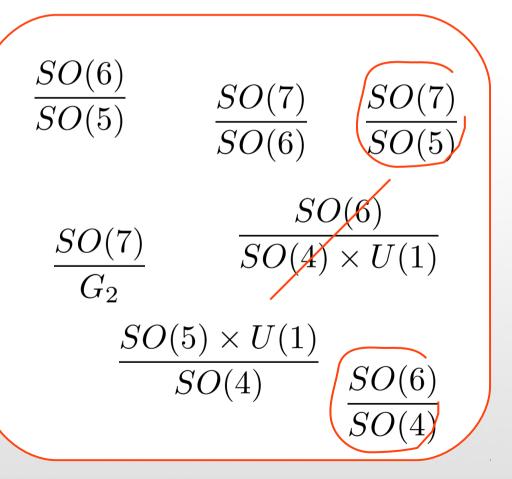

| Top partner masses above 1 TeV according to ATLAS and CMS analyses (although quite model dependent)

Upper bounds ranged from 1–1.5 TeV [0612048] to < 1 TeV [1204.6333, 1205.0232, 1205.0770, 1205.6434, 1210.7114].
Ref. [1210.7114] showed that masses around 2 TeV are compatible with tuning of order 100 in some CHMs


NB: Tuning gives only a (rough) order of magnitude!

- Similarity of WIMP and EW scales explained
- Naturally small portal couplings
- DM annihilates then via derivative interations
 - Compositeness scale fixed by real observable!


- Similarity of WIMP and EW scales explained
- Naturally small portal couplings
- DM annihilates then via derivative interations
 - Compositeness scale fixed by real observable!


- Similarity of WIMP and EW scales explained
- Naturally small portal couplings
- DM annihilates then via derivative interations
 - Compositeness scale fixed by real observable!

- Similarity of WIMP and EW scales explained
- Naturally small portal couplings
- DM annihilates then via derivative interations
 - Compositeness scale fixed by real observable!

- Similarity of WIMP and EW scales explained
- Naturally small portal couplings
- DM annihilates then via derivative interations
 - Compositeness scale fixed by real observable!

Simple yet broad parameterization (several CHMs captured)

H and S stand for the Higgs doublet and the DM singlet, respectively. We neglect the last term in our analysis

$$\begin{split} L &= |D_{\mu}H|^{2} \left[1 - a_{1}\frac{S^{2}}{f^{2}}\right] + \frac{a_{2}}{f^{2}}\partial_{\mu}|H|^{2}(S\partial_{\mu}S) + \frac{1}{2}(\partial_{\mu}S)^{2} \left[1 - 2a_{3}\frac{|H|^{2}}{f^{2}}\right] \\ &- m_{\rho}^{2}f^{2}\frac{N_{c}y_{t}^{2}}{(4\pi)^{2}} \left[-\alpha\frac{|H|^{2}}{f^{2}} + \beta\frac{|H|^{4}}{f^{4}} + \gamma\frac{S^{2}}{f^{2}} + \delta\frac{S^{2}|H|^{2}}{f^{4}}\right] + \left[i\epsilon\frac{y_{t}}{f^{2}}S^{2}\overline{q_{L}}Ht_{R} + \text{h.c.}\right] \end{split}$$

Simple yet broad parameterization (several CHMs captured)

H and S stand for the Higgs doublet and the DM singlet, respectively. We neglect the last term in our analysis

$$\begin{split} L &= |D_{\mu}H|^{2} \left[1 - a_{1} \frac{S^{2}}{f^{2}} \right] + \frac{a_{2}}{f^{2}} \partial_{\mu} |H|^{2} (S \partial_{\mu}S) + \frac{1}{2} (\partial_{\mu}S)^{2} \left[1 - 2a_{3} \frac{|H|^{2}}{f^{2}} \right] \\ &- m_{\rho}^{2} f^{2} \frac{N_{c} y_{t}^{2}}{(4\pi)^{2}} \left[-\alpha \frac{|H|^{2}}{f^{2}} + \beta \frac{|H|^{4}}{f^{4}} + \gamma \frac{S^{2}}{f^{2}} + \delta \frac{S^{2} |H|^{2}}{f^{4}} \right] + \left[i\epsilon \frac{y_{t}}{f^{2}} S^{2} \overline{q_{t}} H t_{R} + \text{h.c.} \right] \end{split}$$

Simple yet broad parameterization (several CHMs captured)

H and S stand for the Higgs doublet and the DM singlet, respectively. We neglect the last term in our analysis

$$\begin{split} V &= \frac{i}{f^2} \left[-2N_c \delta \frac{m_\rho^2}{(4\pi)^2} + 2a_1(p_1 \cdot p_2) + 2a_3(p_3 \cdot p_4) - a_2(p_1 + p_2)(p_3 + p_4) \right] \\ &= \frac{2i}{f^2} \left[(2a_1 + 2a_2 + a_3)m_S^2 - N_c \delta \frac{m_\rho^2}{(4\pi)^2} \right] \sim \frac{2iN_c m_\rho^2}{(4\pi)^2 f^2} \left[2(2a_1 + 2a_2 + a_3)\gamma - \delta \right] \end{split}$$

Matching to concrete models (with one stable pNGB singlet)

a coefficients fixed by the sigma model. Others depend on fermionic representations. *e.g.* SO(6)/SO(5) with **20**+1:

Matching to concrete models (with one stable pNGB singlet)

a coefficients fixed by the sigma model. Others depend on fermionic representations. *e.g.* SO(6)/SO(5) with **20+1**:

$$V = c_1 \left[2f^2 |H|^2 - \frac{16}{3} |H|^4 - \frac{8}{3}S^2 |H|^2 \right] + c_2 \left[-\frac{7}{2}f^2 |H|^2 \right]$$

1703.10624
$$\frac{19}{3} |H|^4 - 2S^2 + \frac{23}{6}S^2 |H|^2$$

Matching to concrete models (with one stable pNGB singlet)

a coefficients fixed by the sigma model. Others depend on fermionic representations. *e.g.* SO(6)/SO(5) with **20+1**:

$$\begin{split} L &= |D_{\mu}H|^{2} \left[1 - \frac{S^{2}}{3f^{2}} \right] + \frac{1}{3f^{2}} \partial_{\mu}|H|^{2} (S\partial_{\mu}S) + \frac{1}{2} (\partial_{\mu}S)^{2} \left[1 - 2\frac{|H|^{2}}{3f^{2}} \right] \\ &- \left[\frac{1}{3}f^{2} \lambda_{H}S^{2} + \frac{5}{18} \lambda_{H}S^{2}|H|^{2} \right] \end{split}$$

\mathcal{G}/\mathcal{H}	$q_L + t_R$	a_1	a_2	a_3	γ	δ
SO(6)/SO(5) 1204.2808	6+1	1/3	1/3	1/3	_	_
	6 + 15				$\ll 1$	_
	15+15				$\ll 1$	_
	20 + 1				1/4	1/5
	7 + 1				_	_
SO(7)/SO(6)	7+7	1/3	1/3	1/3	—	_
	27 + 1				$\leq 1/4$	$\leq 1/5$
$SO(7)/G_2$	8+8	1/3	1/3	1/3	_	_
	35 + 1				1/4	1/5
SO(6)/SO(4)	6 + 6	1/3	1/6	0	—	_
$SO(5) \times U(1)/SO(4)$	5 + 5	0	0	0	$\ll 1$	$\ll 1$
SO(7)/SO(5)	7+7	1/3	< 1/3	< 1/3	$\ll 1$	$\ll 1$
SO(7)/SO(6)						
	27 + 1	$\sim 1/4$	$\sim 1/4$	$\sim 1/4$	$\sim 1/4$	$\sim \sqrt{2}/5$
[complex case]						

\mathcal{G}/\mathcal{H}	$q_L + t_R$	a_1	a_2	a_3	γ	δ
SO(6)/SO(5)	6+1	1/3	1/3	1/3	_	_
	6 + 15				$\ll 1$	_
	15 + 15				$\ll 1$	_
	20 + 1				1/4	1/5
SO(7)/SO(6)	7+1	1/3	1/3	1/3	_	—
	7+7				—	_
	27 + 1				$\leq 1/4$	$\leq 1/5$
SO(7)/C	8 + 8	1/3	1/3	1/3		_
$SO(7)/G_2 \ 1704.07388$	35 + 1				1/4	1/5
SO(6)/SO(4)	6 + 6	1/3	1/6	0	_	—
$SO(5) \times U(1)/SO(4)$	5 + 5	0	0	0	$\ll 1$	$\ll 1$
SO(7)/SO(5)	7+7	1/3	< 1/3	< 1/3	$\ll 1$	$\ll 1$
SO(7)/SO(6)						
	27 + 1	$\sim 1/4$	$\sim 1/4$	$\sim 1/4$	$\sim 1/4$	$\sim \sqrt{2}/5$
[complex case]						

\mathcal{G}/\mathcal{H}	$q_L + t_R$	a_1	a_2	a_3	γ	δ
SO(6)/SO(5)	6+1	1/3	1/3	1/3	_	_
	6 + 15				$\ll 1$	_
	15+15				$\ll 1$	_
	20 + 1				1/4	1/5
SO(7)/SO(6)	7+1	1/3	1/3	1/3	_	_
	7+7				—	—
	27 + 1				$\leq 1/4$	$\leq 1/5$
$SO(7)/G_2$	8 + 8	1/3	1/3	1/3	_	_
	35 + 1				1/4	1/5
SO(6)/SO(4)	6+6	1/3	1/6	0	—	_
$SO(5) \times U(1)/SO(4)$	5 + 5	0	0	0	$\ll 1$	$\ll 1$
SO(7)/SO(5)	7+7	1/3	< 1/3	< 1/3	$\ll 1$	$\ll 1$
SO(7)/SO(6)						
1707.07685	27 + 1	$\sim 1/4$	$\sim 1/4$	$\sim 1/4$	$\sim 1/4$	$\sim \sqrt{2}/5$
[complex case]						

LHC constraints on VLQs

(non-SM decays also present)

| In all our cases of interest, there is always a custodial fourplet of VLQs and/or a VLQ decaying 100 % into St

m < 1.2 TeV (expected 1.7 for 3/ab), [1705.03013]

$$BR(T, X_{2/3} \to ht) \sim BR(T, X_{2/3} \to Zt) \sim 0.5$$

 $BR(B \to W^- t) \sim BR(X_{5/3} \to W^+ t) \sim BR(T' \to St) \sim 1$

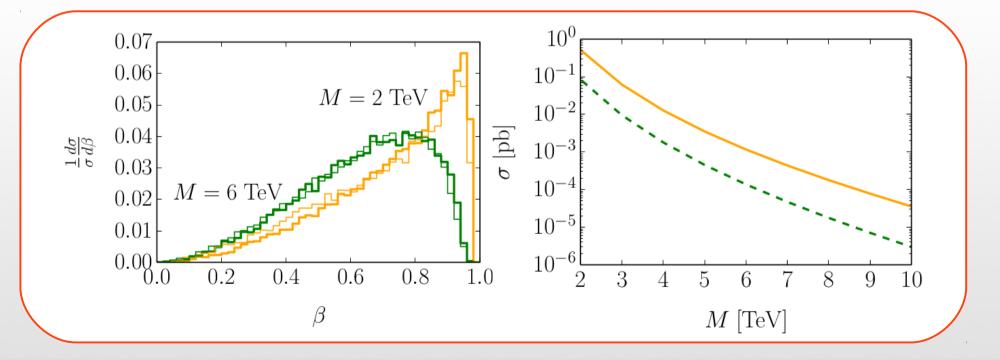
Prospects for 100 TeV (VLQs with SM decays)

The most important cuts we impose are shown below. The most important backgrounds are then: ttVV, tttt, ttV + jets.

$$3\ell, |\eta_{\ell}| < 2.5, p_{T,\ell_1} > 250 \text{ GeV}, p_{T,\ell_2} > 100 \text{ GeV},$$

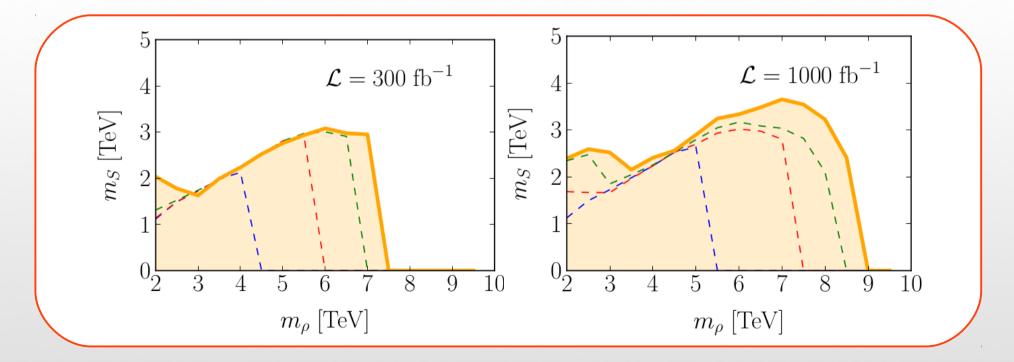
 $4j, p_{T,j} > 40 \text{ GeV}, |\eta_j| < 5, n_b = 2$
 $H_T = \sum_{\text{leptons}} p_{T,\ell} + \sum_{\text{jets}} p_{T,j} + E_{T,miss} > 6 \text{ TeV}$

Prospects for 100 TeV (VLQs with SM decays)


The most important cuts we impose are shown below. The most important backgrounds are then: ttVV, tttt, ttV + jets.

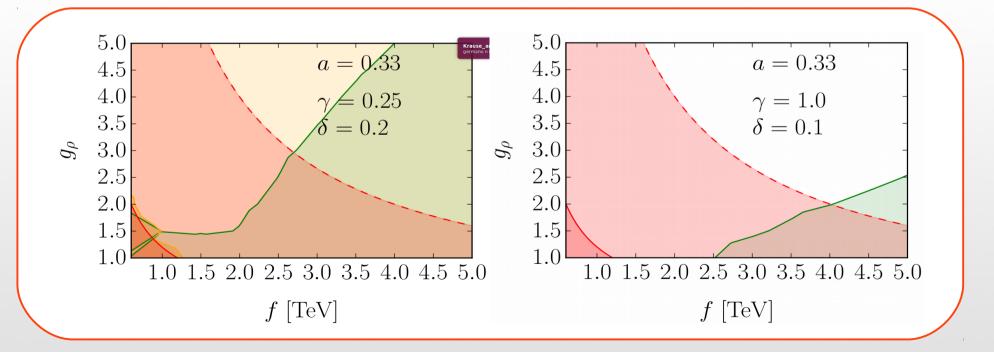
Prospects for 100 TeV

(VLQs with exotic decay)


Searches for pair-produced stops decaying into neutralino apply, [1406.4512]

Prospects for 100 TeV

(VLQs with exotic decay)


Searches for pair-produced stops decaying into neutralino apply, [1406.4512]

Prospects for 100 TeV

(VLQs with exotic decay)

Having all together (preliminary): LHC (solid red), solid orange (LUX), relic (green), dashed red (100 TeV)

Conclusions

- Fine-tuning arguments cannot definitely exclude top partners above the LHC reach limit
- Models of composite Higgs with DM (in which f is fixed by observation) suggest m > 2 TeV
- Searches for VLQs (in SM decays) at 100 TeV collider can test masses as large as 5 TeV. Searches for VLQs (in stoplike decay) can test even larger masses: 9 TeV
- 100 TeV collider excellent facility to test many composite Higgs models, and complement DM experiments

- Fine-tuning arguments cannot definitely exclude top partners above the LHC reach limit
- Models of composite Higgs with DM (in which f is fixed by observation) suggest m > 2 TeV
- Searches for VLQs (in SM decays) at 100 TeV collider can test masses as large as 5 TeV. Searches for VLQs (in stoplike decay) can test even larger masses: 9 TeV
- 100 TeV collider excellent facility to test many composite Higgs models, and complement DM experiments

Thank you for your attention!