NEW PHENOMENOLOGY OF VECTOR-LIKE FERMIONS

Felix Yu
JGU Mainz

Based in part on [1612.01909] with Bogdan A. Dobrescu

IAS Program on High Energy Physics
HKUST Jockey Club Institute for Advanced Study, January 11, 2018
Motivation

- New particle searches share historical motivation from naturalness constructions.
- Bottom-up constructions provide new phenomenology:
 - Can reveal new patterns for searches.
 - Null results in standard channels leaves open possibility for exotic decays.
 - a la R-parity violating SUSY.
- Will mainly focus on vector-like quarks (largest rate).
Outline

• Brief recap: Current LHC status of VLQ searches
• New collider phenomenology for VLQs
 – 3-body decays via heavy leptoquark
 – 3-body decays via heavy diquark
• Phenomenology of vector-like fermions from gauged U(1)'
• Conclusions
Vector-like quarks

• Canonically arise many BSM constructions with Higgs as PNGB

• (Colored) Top-partners generally mix with SM top quark, lowering cutoff scale of Higgs
 – Top partner inherits coupling of SM top to Higgs and longitudinal modes of W, Z
 – Predicts decay pattern of $t' \rightarrow bW, tZ, tH$ at 2:1:1 ratio as t' mass grows
 – e.g. VL pair of RH top quark partners, χ_L and χ_R

$$\mathcal{L} \supset -m_\chi \bar{\chi} \chi - \bar{q}_L^j H (y_j \chi \chi_R + y_{ji} u^i_R) + \text{H.c.}$$

Felix Yu – New Phenomenology of VL Fermions
Vector-like quarks

- Mixing angle between χ_L and t_L is

$$s_L \equiv \sin \theta_L \simeq y_3 \chi \frac{v_H}{m_\chi}$$

- Decay width for t' (combining standard decays) is

$$\Gamma(t' \to Wb, Zt, ht) = \frac{s^2_L (2 - s^2_L)}{32\pi v^2_H} m^3_{t'} \left[1 + O\left(\frac{m^2_t}{m^2_{t'}} \right) \right]$$
VLQ searches – Standard decays

- Most recent combined analysis of standard channels is still 8 TeV data

CMS [1509.04177]

Felix Yu – New Phenomenology of VL Fermions
VLQ searches – Standard decays

• Also expand to non-heavy flavor decays
 – Remove heavy flavor tagging on associated jets

CMS [1708.02510]
Collider phenomenology of VLQs

• For $s_L \rightarrow 0$, obvious Z_2 symmetry restored, preventing t' decay
 – Vector-like mass disconnected from Yukawa interactions
 – Pair production is model-independent, decays are model-dependent

• Consider $y_{3\chi}$ vanishing at tree level, and other NP particles mediate t' decays
 – Construct possible sets of t' decays from dimension-6 four fermion operators
 – Mediators can be out of reach of LHC
Scenario 1: t' and new leptoquark

- Four-fermion operator
 \[\mathcal{O}_6 = \frac{\lambda \lambda_q}{M_\xi^2} \left(\bar{\chi}_R l^3_L \right) i\sigma_2 \left(\bar{\tau}_R q^3_L \right) + \text{H.c.} \]

- UV completion is a tree-level LQ exchange
 \[\mathcal{L} = \lambda \chi (\bar{\chi}_R l^3_L)i\sigma_2 \xi + \lambda_q \chi^\dagger (\bar{\tau}_R q^3_L) + \lambda_t \xi \dagger i\sigma_2 (\bar{l}_L^3 u_R^3) \]

- Operator induced t' decay width
 \[\Gamma(t' \rightarrow \tau^+ \tau^- t) = \frac{\lambda^2 \chi (\lambda_q^2 + \lambda_t^2)}{6144\pi^3 M_\xi^4} m_{t'}^5 \left[1 + O \left(\frac{m_t^2}{m_{t'}^2} \right) \right] \]
Scenario 1: t' and new leptoquark

- Setting / tuning $y_{3\chi} = 0$ at UV scale is not protected by RGEs
- Reintroduce s_L from LQ-induced vertex correction
 \[s_L = \frac{y_\tau \lambda_\chi \lambda_q v_H}{8\pi^2 m_\chi} \ln \frac{\Lambda}{M_\xi} \]

- Decays remain prompt for very heavy LQs
 \[L_{t'} = \frac{1.9 \, \mu m}{\lambda_\chi^2 (\lambda_q^2 + \lambda_t^2)} \left(\frac{M_\xi}{100 \, \text{TeV}} \right)^4 \left(\frac{1 \, \text{TeV}}{m_{t'}} \right)^5 \]
Scenario 1: t’ and new leptoquark

- Overall exotic decay width from dimension-6 operator competes
 - Exotic branching fraction includes $t' \rightarrow \tau\tau t$ and $t' \rightarrow \tau\nu b$
 - Rates in standard search channels generally suppressed, even for LQs at O(TeV) scale
Scenario 1: Collider phenomenology

- Non-resonant structure make it more difficult to optimize
 - Tau identification not extensively used in current standard searches
- Exotic decay kinematically similar to $t' \rightarrow tZ, Z \rightarrow \tau\tau$ and $t' \rightarrow tH, H \rightarrow \tau\tau$ decays
 - Rates in primary Z and Higgs channels depleted
 - Detailed phenomenology study ongoing
Scenario 2: t' and new diquark

- **Four-fermion operator**
 \[O_6 = \frac{\kappa_X \kappa_t}{M_\zeta^2} (\bar{\chi}_R^c d_R^3)(\bar{d}_R^3 u_R^{3c}) + \text{H.c.} \]

- **UV completion is a diquark, $Y = -1/3$**
 \[\mathcal{L} = \kappa_X \zeta \chi_R^c d_R^3 + \kappa_t \zeta^\dagger \bar{d}_R^3 u_R^{3c} \]

- **Jet-rich, heavy flavor-rich exotic decay**
 \[\Gamma(t' \rightarrow b\bar{b}t) = \frac{(\kappa_X \kappa_t)^2}{2048 \pi^3 M_\zeta^4} m_{t'}^5 \left[1 + O \left(\frac{m_t^2}{m_{t'}^2} \right) \right] \]
Scenario 2: t' and new diquark

- Four-fermion operator
 \[O_6 = \frac{\kappa_{\chi}^l \kappa_t^l}{M_{\zeta}^2} \left(\overline{\chi}_R u_R^2 \right) \left(\overline{u}_R u_R^{2c} \right) + \text{H.c.} \]

- UV completion is a diquark, $Y = -4/3$

- Flavor structure of LQ imprints on exotic decay of t'
 \[\Gamma(t' \rightarrow c\overline{c}c) = \frac{(\kappa_{\chi}^l \kappa_t^l)^2}{2048\pi^3 M_{\zeta}^4} m_{t'}^5 \left[1 + O\left(\frac{m_t^2}{m_{t'}^2} \right) \right] \]
Scenario 2: Collider phenomenology

• For $t' \rightarrow 3c$, current searches are largely unconstraining
 – Recast from RPV gluino searches

• Can also extend idea to bottom partners, b'
Revisiting vector-like fermions

• Gauge-invariant mass term admittedly unattractive
• More compelling: ascribe chiral symmetry to generate mass scale for VL fermions
 – Should distinguish from SM fermions by some new gauge charge, e.g. U(1)′

• Two possibilities
 – Reuse SM chiral symmetry, vector-like under U(1)′
 • Do not have to add complete generation to cancel anomalies
 – Vector-like under SM gauge group, chiral under U(1)′
 • e.g. U(1)_{B} or U(1)_{L}: Cancellation of mixed anomalies introduces new VL matter charged under SU(2)_{L}, U(1)_{Y}

See, e.g. Lu, Morrissey, Wijangco [1705.08896]

Felix Yu – New Phenomenology of VL Fermions
Revisiting vector-like fermions

• Following the second possibility, new gauged \(U(1)' \) built from global SM flavor symmetries introduce new EW-charged states, possibly within reach of LHC

 – Straightforward models copy structural elements of SM: new Higgs boson, \(Z' \) boson, and anomalons

 – Model can exhibit non-SM hierarchies in masses by reshuffling \(\lambda, g_X, \) and \(y_f \)

 – Concrete model framework for connecting beam dump experiment searches for light \(Z' \) bosons, LHC searches for new EW states, and exotic Higgs phenomenology
Conclusions

- Vector-like matter well-probed in standard decays
- Exotic decay patterns are immediately realized if leading interaction with SM occurs at high scale
 - Explicitly not naturalness-motivated top-partners
 - Can connect to flavor structure of LQs inspired by B-meson anomalies See Buttazzo, Greljo, Isidori, Marzocca [1706.07808]
- EW vector-like fermions necessary in UV completions of new chiral U(1)’ models
 - Connect beam dump probes with LHC direct searches and Higgs physics – can also connect to DM
Scenario 3: b' and new LQ

- Four-fermion operator

\[O_6 = \frac{\lambda'_{\chi}}{M^2_{\xi'}} (\bar{\omega}_R \tau^c_R) \left(\lambda'_q \bar{l}_L^3 c \sigma_2 q_L^3 + \lambda'_t \bar{\tau}^c_R d_R^3 \right) + \text{H.c.} \]