A Global View on the Higgs Self-coupling at Future (Lepton) Colliders

Jiayin Gu

DESY & IHEP

IAS Program on High Energy Physics Mini-workshop on Theory Jan 11, 2018

based on [arXiv:1711.03978], S. Di Vita, G. Durieux, C. Grojean, JG, Z. Liu, G. Panico, M. Riembau, T. Vantalon

Jiayin Gu

Introduction

- The Higgs Self-coupling is important!
 - Deviation from SM \Rightarrow indication of new physics.
 - Tells us more about the Higgs potential.
 - Electroweak phase transition.

- ► The triple Higgs coupling can be measured from the double Higgs process (*e.g.* $gg \rightarrow hh$).
- The reach at the (HL-)LHC is limited.
 - $\mathcal{O}(10)$ now and $\mathcal{O}(1)$ at HL-LHC.
- Good reach at a 100 TeV collider.
 - \$\$\lambda 5\% (see e.g. the CERN Yellow Report [arXiv:1606.09408]).

Future lepton colliders

- Linear colliders
 - ILC (up to 500 GeV, maybe 1 TeV?) and CLIC (up to 3 TeV).
 - ▶ Direct measurements with $e^+e^- \rightarrow Zhh$, $e^+e^- \rightarrow \nu \bar{\nu}hh$.
 - $\triangleright \sim$ 20-30%, depending on the scenario.
 - What if other Higgs couplings are not SM-like?
- Circular colliders (CEPC & FCC-ee)
 - Higgs factory at \sim 240-250 GeV, up to \sim 350-380 GeV.
 - Probe the triple Higgs coupling indirectly via the loop contribution in $e^+e^- \rightarrow hZ$.
 - TLEP (FCC-ee) 240 GeV: ~ 30%, assuming all other Higgs couplings are SM-like ([arXiv:1312.3322] M. McCullough).
 - What if other Higgs couplings are not SM-like?
- A global fit of Higgs couplings in the EFT framework!

The "12-parameter" EFT global analysis

[arXiv:1704.02333] G. Durieux, C. Grojean, JG, K. Wang

- SM + D6 operators (a good description at low energy if the scale of new physics is high).
- ► Include all possible Higgs measurements, production (hZ, $\nu \bar{\nu} h$, $t\bar{t}h$) and decays.
- Make reasonable assumptions
 - CP even, no fermion dipole interaction, NP only modifies the diagonal entries of the Yukawa matrix,
 - no corrections to Z-pole observables and W mass.
- See also
 - [arXiv:1510.04561, 1701.04804] Ellis et al.,
 - [arXiv:1708.08912, 1708.09079] Peskin et al.,
 - [arXiv:1711.04046] HKUST group et al.

Results of the "12-parameter" fit

precision reach of the 12-parameter fit in Higgs basis

- We work in the Higgs basis (LHCHXSWG-INT-2015-001, A. Falkowski).
- Strong constraints on Higgs EFT parameters at future lepton colliders!

Triple Higgs coupling in the EFT framework

- A global fit with 12+1 parameters!
- Triple Higgs coupling

$$\kappa_{\lambda} \equiv rac{\lambda_3}{\lambda_3^{
m SM}}, \ \ \delta \kappa_{\lambda} \equiv \kappa_{\lambda} - 1 \ = c_6 - rac{3}{2}c_H, \ \ {
m with} \ \mathcal{L} \supset -rac{c_6\lambda}{v^2} (H^{\dagger}H)^3$$

- HL-LHC: [arXiv:1704.01953] Di Vita, Grojean, Panico, Riembau, Vantalon
 - Single Higgs measurements alone could not constrain δκ_λ well under a global framework.
 - Other parameters contributing to the double-Higgs process can be well constrained by single Higgs measurements.
 - Differential observables in HH process helps resolve the 2nd minimum.

Jiayin Gu

Triple Higgs coupling at low energy (240/250 GeV & 350 GeV)

- CEPC, FCC-ee, or earlier stages of ILC.
- ▶ 350 GeV is above the threshold of $e^+e^- \rightarrow Zhh$, but the cross section is too small.
- One loop corrections to all Higgs couplings (production and decay).
- > 240 GeV: hZ near threshold (more sensitive to $\delta \kappa_{\lambda}$).

Jiayin Gu

How to discriminate $\delta \kappa_{\lambda}$ with other parameters

- Different parameters have different energy dependences.
 - $\delta c_Z (h Z^{\mu} Z_{\mu})$ modifies the SM HZZ coupling.
 - ▶ $e^+e^- \rightarrow hZ$ is more sensitive to c_{ZZ} $(hZ^{\mu\nu}Z_{\mu\nu})$, $c_{Z\Box}$ $(hZ_{\mu}\partial_{\nu}Z^{\mu\nu})$ at higher energies.
 - ▶ c_{ZZ} and $c_{Z\square}$ have negative coefficients for WW fusion (virtual Ws).
 - $h \rightarrow WW^*/ZZ^*$ also have some discriminating power.
- The 350 GeV run turns out to be crucial! (Good measurement of the WW fusion process, and hZ at a different energy.)

Triple Higgs coupling at 240/250 GeV & 350 GeV

- Runs at both 240/250 GeV and 350 GeV are needed to obtain good constraints on δκ_λ!
- ► The range is covered by different assumptions of the $e^+e^- \rightarrow WW$ measurements.

Complementarities between HL-LHC and CEPC/FCC-ee

	CEPC	alone	CEPC + HL-LHC			
	non-zero aTGCs zero aTGCs		non-zero aTGCs	zero aTGCs		
HL-LHC alone			[-0.92, +1.26]	[-0.90, +1.24]		
$240GeV(5ab^{-1})$	[-4.55, +4.72]	[-2.93, +3.01]	[-0.81, +1.04]	[-0.82, +1.03]		
*350 GeV (200 fb ⁻¹)	[-1.08, +1.09]	[-1.04, +1.04]	[-0.66, +0.76]	[-0.66, +0.74]		
+350 GeV (1.5 ab - 1)	[-0.50, +0.49]	[-0.43, +0.43]	[-0.43, +0.44]	[-0.39, +0.40]		

- Bounds are further improved if combined with HL-LHC measurements.
- If the 350 GeV run is not available, the 240 GeV run still provides nontrivial improvement to the LHC bounds.

Jiayin Gu

EFT framework

Double-Higgs measurements ($e^+e^- \rightarrow Zhh \& e^+e^- \rightarrow \nu\bar{\nu}hh$)

- Destructive interference in $e^+e^- \rightarrow \nu \bar{\nu} hh!$ The square term is important.
- hh invariant mass distribution helps discriminate the "2nd solution."

Jiayin Gu

DESY & IHEP

χ^2 vs. $\delta \kappa_{\lambda}$, ILC

- Run senario: 250 GeV(2/ab) + 350 GeV(200/fb) + 500 GeV(4/ab) + 1 TeV (2/ab)
 - 500 GeV (4 ab⁻¹): σ(Zhh) measured to 16.8% [C. F. Dürig, PhD thesis, Hamburg U. (2016)]
 - ▶ 1 TeV (2 ab^{-1}): $\sigma(\nu \bar{\nu} hh)$ measured to 2.7 σ significance $\Rightarrow \sim 37\%$ [talk by Dürig at ALCW15]
- Complementarity between the 500 GeV run and the 1 TeV run.
- Single Higgs measurements provide non-negligible improvment.
 - ▶ up to 500 GeV: $[-0.31, +0.28] \rightarrow [-0.26, +0.25],$
 - up to 1 TeV: $[-0.20, +0.23] \rightarrow [-0.18, +0.20],$

χ^2 vs. $\delta \kappa_{\lambda}$, CLIC

- Run scenario: 350 GeV(500/fb) + 1.4 TeV(1.5/ab) + 3 TeV(2/ab), assuming unpolarized beam
 - σ(νν̄hh) measured to 44% at 1.4 TeV and 20% at 3 TeV (Higgs Physics at the CLIC Electron-Positron Linear Collider [arXiv:1608.07538])
 - σ(Zhh) measured to ~ 50% at 1.4 TeV (our own naive estimation).
- ► The measurement of *Zhh* or the M_{hh} distribution of $\nu \bar{\nu} hh$ can help resolve the "2nd solution."
- The bounds on $\delta \kappa_{\lambda}$ can be further improved by having a *hZ* threshold run (*e.g.*, by combining with CEPC 240 GeV or ILC 250 GeV).

A summary of the (future) bounds on $\delta \kappa_{\lambda}$

Jiayin Gu

DESY & IHEP

Conclusion

- Lepton colliders are great tools to probe the triple Higgs coupling!
- To obtain robust constraints, we perform global analyses in the EFT framework.
- Circular colliders (or ILC at low energy)
 - Probe the triple Higgs coupling via its loop contribution.
 - ► To obtain robust constraints, the 350 GeV run is very important!
- Linear colliders
 - ▶ The measurements of $e^+e^- \rightarrow Zhh$ and $e^+e^- \rightarrow \nu\bar{\nu}hh$ are complementary.
 - ▶ Differential observables in $e^+e^- \rightarrow \nu \bar{\nu} hh$ can be helpful.
 - Other parameters are well constrained by single Higgs measurements.

backup slides

Jiayin Gu

DESY & IHEP

Reach at Hadron colliders

- ► HL-LHC: $\kappa_{\lambda} \in [-0.8, 7.7]$ at 95% CL from Atlas projection for the $b\bar{b}\gamma\gamma$ channel, ATL-PHYS-PUB-2017-001
- 100 TeV collider (from the CERN Yellow Report [arXiv:1606.09408])

process	precision on σ_{SM}	68% CL interval on Higgs self-couplings
$HH \to b \bar b \gamma \gamma$	3%	$\lambda_3 \in [0.97, 1.03]$
$HH \to b \bar{b} b \bar{b}$	5%	$\lambda_3 \in [0.9, 1.5]$
$HH \to b \bar{b} 4 \ell$	O(25%)	$\lambda_3 \in [0.6, 1.4]$
$HH \to b \bar{b} \ell^+ \ell^-$	O(15%)	$\lambda_3 \in [0.8, 1.2]$
$HH \to b\bar{b}\ell^+\ell^-\gamma$	_	_
$HHH \rightarrow b\bar{b}b\bar{b}\gamma\gamma$	O(100%)	$\lambda_4 \in [-4, +16]$

Table 26: Expected precision (at 68% CL) on the SM cross section and 68% CL interval on the Higgs trilinear and quartic self-couplings (in SM units). All the numbers are obtained for an integrated luminosity of 30 ab⁻¹ and do not take into account possible systematic errors.

Impact of the single Higgs measurements

- What if the single Higgs measurements are much better or much worse?
- Much better: can further improve the bounds on δκ_λ from double-Higgs measurements.
- Much worse: can significantly worsen the bounds on δκ_λ from double-Higgs measurements.

EFT basis

 We work in the Higgs basis (LHCHXSWG-INT-2015-001, A. Falkowski) with the following 12 parameters,

 $\delta \textbf{\textit{C}}_{\textbf{\textit{Z}}} \;,\;\; \textbf{\textit{C}}_{\textbf{\textit{Z}}\textbf{\textit{Z}}} \;,\;\; \textbf{\textit{C}}_{\textbf{\textit{Z}}\square} \;,\;\; \textbf{\textit{C}}_{\textbf{\textit{Y}}\gamma} \;,\;\; \textbf{\textit{C}}_{\textbf{\textit{g}}g} \;,\;\; \delta \textbf{\textit{y}}_{t} \;,\;\; \delta \textbf{\textit{y}}_{b} \;,\;\; \delta \textbf{\textit{y}}_{\tau} \;,\;\; \delta \textbf{\textit{y}}_{\mu} \;,\;\; \lambda_{\textbf{\textit{Z}}} \;.$

- The Higgs basis is defined in the broken electroweak phase.
 - $\blacktriangleright \ \delta c_Z \leftrightarrow h Z^{\mu} Z_{\mu}, \quad c_{ZZ} \leftrightarrow h Z^{\mu\nu} Z_{\mu\nu}, \quad c_{Z\Box} \leftrightarrow h Z_{\mu} \partial_{\nu} Z^{\mu\nu}.$
- Couplings of h to W are written in terms of couplings of h to Z and γ .
- 3 aTGC parameters (δg_{1,Z}, δκ_γ, λ_Z), 2 written in terms of Higgs parameters.
- It can be easily mapped to the following basis with D6 operators.

$$\begin{array}{lll} & \mathcal{O}_{H} = \frac{1}{2} (\partial_{\mu} | H^{2} |)^{2} & \mathcal{O}_{GG} = g_{S}^{2} | H|^{2} G_{\mu\nu}^{A} G^{A,\mu\nu} \\ & \mathcal{O}_{WW} = g^{2} | H|^{2} W_{\mu\nu}^{a} W^{a,\mu\nu} & \mathcal{O}_{y_{U}} = y_{U} | H|^{2} \bar{Q}_{L} \tilde{H} u_{R} \\ & \mathcal{O}_{BB} = g'^{2} | H|^{2} B_{\mu\nu} B^{\mu\nu} & \mathcal{O}_{y_{d}} = y_{d} | H|^{2} \bar{Q}_{L} H d_{R} \\ & \mathcal{O}_{HW} = ig (D^{\mu} H)^{\dagger} \sigma^{a} (D^{\nu} H) W_{\mu\nu}^{a} & \mathcal{O}_{y_{\theta}} = y_{\theta} | H|^{2} \bar{L}_{L} H e_{R} \\ & \mathcal{O}_{3W} = \frac{1}{3!} g \epsilon_{abc} W_{\mu\nu}^{a} W_{\nu\rho}^{b} W^{c \rho\mu} \end{array}$$

GDP

- Global Determinant Parameter (GDP $\equiv \sqrt[2n]{\det \sigma^2}$).
- Ratios of GDPs are basis-independent.
- ► Smaller GDP → better precision!

EFT framework

If you don't like the Higgs basis...

precision reach of the 12-parameter fit in the SILH' basis

▶ Results in the SILH'(-like) basis ($\mathcal{O}_{W, B} \rightarrow \mathcal{O}_{WW, WB}$)

$$\begin{split} \mathcal{L}_{\mathrm{D6}} &= \frac{\mathcal{C}_{H}}{v^{2}} \mathcal{O}_{H} + \frac{\kappa_{WW}}{m_{W}^{2}} \mathcal{O}_{WW} + \frac{\kappa_{BB}}{m_{W}^{2}} \mathcal{O}_{BB} + \frac{\kappa_{HW}}{m_{W}^{2}} \mathcal{O}_{HW} + \frac{\kappa_{HB}}{m_{W}^{2}} \mathcal{O}_{HB} \\ &+ \frac{\kappa_{GG}}{m_{W}^{2}} \mathcal{O}_{GG} + \frac{\kappa_{3W}}{m_{W}^{2}} \mathcal{O}_{3W} + \sum_{f=t,c,b,\tau,\mu} \frac{\mathcal{C}_{y_{f}}}{v^{2}} \mathcal{O}_{y_{f}} \,. \end{split}$$

Jiayin Gu

DESY & IHEP

angular observables in $e^+e^- \rightarrow hZ$

- Angular distributions in $e^+e^- \rightarrow hZ$ can provide information in addition to the rate measurement alone.
- Previous studies
 - [arXiv:1406.1361] M. Beneke, D. Boito, Y.-M. Wang
 - arXiv:1512.06877] N. Craig, JG, Z. Liu, K. Wang
- 6 independent asymmetry observables from 3 angles

$$\mathcal{A}_{ heta_1} \;,\;\; \mathcal{A}_{\phi}^{(1)} \;,\;\; \mathcal{A}_{\phi}^{(2)} \;,\;\; \mathcal{A}_{\phi}^{(3)} \;,\;\; \mathcal{A}_{\phi}^{(4)} \;,\;\; \mathcal{A}_{c heta_1,c heta_2} \;.$$

 Focusing on leptonic decays of Z (good resolution, small background, statistical uncertainty dominates).

Impact of $\delta \kappa_{\lambda}$ on the other parameters

- Adding one more parameter could worsen the bounds on others.
- > The effect is under control if the degeneracies are well-resolved.
- The HL-LHC bounds on $\delta \kappa_{\lambda}$ can also help.

Jiayin Gu

DESY & IHEP

The "12-parameter" framework in the Higgs basis

The relevant terms in the EFT Lagrangian are

$$\mathcal{L} \supset \mathcal{L}_{hVV} + \mathcal{L}_{hff} + \mathcal{L}_{tgc} , \qquad (1)$$

the Higgs couplings with a pair of gauge bosons

$$\begin{aligned} \mathcal{L}_{hVV} &= \frac{h}{v} \bigg[(1 + \delta c_W) \frac{g^2 v^2}{2} W^+_{\mu} W^-_{\mu} + (1 + \delta c_Z) \frac{(g^2 + g'^2) v^2}{4} Z_{\mu} Z_{\mu} \\ &+ c_{WW} \frac{g^2}{2} W^+_{\mu\nu} W^-_{\mu\nu} + c_{W\square} g^2 (W^-_{\mu} \partial_{\nu} W^+_{\mu\nu} + \text{h.c.}) \\ &+ c_{gg} \frac{g_s^2}{4} G^a_{\mu\nu} G^2_{\mu\nu} + c_{\gamma\gamma} \frac{e^2}{4} A_{\mu\nu} A_{\mu\nu} + c_{Z\gamma} \frac{e \sqrt{g^2 + g'^2}}{2} Z_{\mu\nu} A_{\mu\nu} \\ &+ c_{ZZ} \frac{g^2 + g'^2}{4} Z_{\mu\nu} Z_{\mu\nu} + c_{Z\square} g^2 Z_{\mu} \partial_{\nu} Z_{\mu\nu} + c_{\gamma\square} gg' Z_{\mu} \partial_{\nu} A_{\mu\nu} \bigg] . \end{aligned}$$
(2)

The "12-parameter" framework in the Higgs basis

Not all the couplings are independent, for instance one could write the following couplings as

$$\begin{split} \delta c_{W} &= \delta c_{Z} + 4\delta m \,, \\ c_{WW} &= c_{ZZ} + 2s_{\theta_{W}}^{2} c_{Z\gamma} + s_{\theta_{W}}^{4} c_{\gamma\gamma} \,, \\ c_{W\Box} &= \frac{1}{g^{2} - g^{\prime 2}} \left[g^{2} c_{Z\Box} + g^{\prime 2} c_{ZZ} - e^{2} s_{\theta_{W}}^{2} c_{\gamma\gamma} - (g^{2} - g^{\prime 2}) s_{\theta_{W}}^{2} c_{Z\gamma} \right] \,, \\ c_{\gamma\Box} &= \frac{1}{g^{2} - g^{\prime 2}} \left[2g^{2} c_{Z\Box} + (g^{2} + g^{\prime 2}) c_{ZZ} - e^{2} c_{\gamma\gamma} - (g^{2} - g^{\prime 2}) c_{Z\gamma} \right] \,, \end{split}$$
(3)

we only consider the diagonal elements in the Yukawa matrices relevant for the measurements considered,

$$\mathcal{L}_{hff} = -\frac{h}{v} \sum_{f=t,c,b,\tau,\mu} m_f (1 + \delta y_f) \overline{f}_R f_L + \text{h.c.}$$
(4)

Jiayin Gu

EFT framework

TGC

$$\mathcal{L}_{tgc} = igs_{\theta_{W}} A^{\mu} (W^{-\nu} W^{+}_{\mu\nu} - W^{+\nu} W^{-}_{\mu\nu}) + ig(1 + \delta g_{1}^{Z}) c_{\theta_{W}} Z^{\mu} (W^{-\nu} W^{+}_{\mu\nu} - W^{+\nu} W^{-}_{\mu\nu}) + ig [(1 + \delta \kappa_{Z}) c_{\theta_{W}} Z^{\mu\nu} + (1 + \delta \kappa_{\gamma}) s_{\theta_{W}} A^{\mu\nu}] W^{-}_{\mu} W^{+}_{\nu} + \frac{ig}{m_{W}^{2}} (\lambda_{Z} c_{\theta_{W}} Z^{\mu\nu} + \lambda_{\gamma} s_{\theta_{W}} A^{\mu\nu}) W^{-\rho}_{\nu} W^{+}_{\rho\mu},$$
(5)

• $V_{\mu\nu} \equiv \partial_{\mu} V_{\nu} - \partial_{\nu} V_{\mu}$ for $V = W^{\pm}$, *Z*, *A*,. Imposing Gauge invariance one obtains $\delta \kappa_{Z} = \delta g_{1,Z} - t_{\theta_{W}}^{2} \delta \kappa_{\gamma}$ and $\lambda_{Z} = \lambda_{\gamma}$.

3 aTGCs parameters δg_{1,Z}, δκ_γ and λ_Z, 2 of them related to Higgs observables by

$$\delta g_{1,Z} = \frac{1}{2(g^2 - g'^2)} \left[-g^2(g^2 + g'^2)c_{Z\square} - g'^2(g^2 + g'^2)c_{ZZ} + e^2g'^2c_{\gamma\gamma} + g'^2(g^2 - g'^2)c_{Z\gamma} \right]$$

$$\delta \kappa_{\gamma} = -\frac{g^2}{2} \left(c_{\gamma\gamma} \frac{e^2}{g^2 + g'^2} + c_{Z\gamma} \frac{g^2 - g'^2}{g^2 + g'^2} - c_{ZZ} \right).$$
(6)

Jiayin Gu

CEPC/FCC-ee Higgs rate measurements

	CEPC				FCC-ee			
	[240 GeV, 5 ab ⁻¹]		[350 GeV, 200 fb ⁻¹]		[240 GeV, 10 ab ⁻¹]		[350 GeV, 2.6 ab ⁻¹]	
production	Zh	$\nu \bar{\nu} h$	Zh	νīνh	Zh	νīνh	Zh	νūh
σ	0.50%	-	2.4%	-	0.40%	-	0.67%	-
	$\sigma \times BR$				$\sigma \times BR$			
$h ightarrow bar{b}$	0.21%*	0.39%◇	2.0%	2.6%	0.20%	0.28%◇	0.54%	0.71%
h ightarrow c ar c	2.5%	-	15%	26%	1.2%	-	4.1%	7.1%
$h \rightarrow gg$	1.2%	-	11%	17%	1.4%	-	3.1%	4.7%
h ightarrow au au	1.0%	-	5.3%	37%	0.7%	-	1.5%	10%
$h \rightarrow WW^*$	1.0%	-	10%	9.8%	0.9%	-	2.8%	2.7%
$h \rightarrow ZZ^*$	4.3%	-	33%	33%	3.1%	-	9.2%	9.3%
$h \rightarrow \gamma \gamma$	9.0%	-	51%	77%	3.0%	-	14%	21%
$h \rightarrow \mu \mu$	12%	-	115%	275%	13%	-	32%	76%
$h \rightarrow Z \gamma$	25%	-	144%	-	18%	-	40%	-

Table: For $e^+e^- \rightarrow \nu\bar{\nu}h$, the precisions marked with a diamond \diamond are normalized to the cross section of the inclusive channel which includes both the *WW* fusion and $e^+e^- \rightarrow hZ$, $Z \rightarrow \nu\bar{\nu}$, while the unmarked ones include *WW* fusion only.

ILC Higgs rate measurements

	[250 Ge\	/, 2 ab ⁻¹]] [350 GeV, 200 fb ⁻¹]		[500 GeV, 4 ab ⁻¹]			[1 TeV, 1 ab ⁻¹]		[1 TeV, 2.5 ab ⁻¹]	
production	Zh	νīνh	Zh	νīνh	Zh	νīνh	tth	νūh	tth	νīνh	tth
σ	0.71%	-	2.1%	-	1.1%	-	-	-	-	-	-
		$\sigma imes BR$									
$h \rightarrow b\bar{b}$	0.42%	3.7%	1.7%	1.7%	0.64%	0.25%	9.9%	0.5%	6.0%	0.3%	3.8%
$h \rightarrow c \bar{c}$	2.9%	-	13%	17%	4.6%	2.2%	-	3.1%	-	2.0%	-
$h \rightarrow gg$	2.5%	-	9.4%	11%	3.9%	1.4%	-	2.3%	-	1.4%	-
$h \rightarrow \tau \tau$	1.1%	-	4.5%	24%	1.9%	3.2%	-	1.6%	-	1.0%	-
$h \rightarrow WW^*$	2.3%	-	8.7%	6.4%	3.3%	0.85%	-	3.1%	-	2.0%	-
$h \rightarrow ZZ^*$	6.7%	-	28%	22%	8.8%	2.9%	-	4.1%	-	2.6%	-
$h \rightarrow \gamma \gamma$	12%	-	44%	50%	12%	6.7%	-	8.5%	-	5.4%	-
$h \rightarrow \mu \mu$	25%	-	98%	180%	31%	25%	-	31%	-	20%	-
$h \rightarrow Z \gamma$	34%	-	145%	-	49%	-	-	-	-	-	-

ILC

Jiayin Gu

CLIC Higgs rate measurements

CLIC									
	[350 GeV, 500 fb ⁻¹]		[1.4 TeV	$, 1.5 \mathrm{ab}^{-1}]$	$[3 \text{TeV}, 2 \text{ab}^{-1}]$				
production	Zh	νīνh	νūh	tīth	νīνh				
σ	1.6%	-	-	-	-				
		$\sigma \times BR$							
$h ightarrow bar{b}$	0.84%	1.9%	0.4%	8.4%	0.3%				
h ightarrow c ar c	10.3%	14.3%	6.1%	-	6.9%				
$h \rightarrow gg$	4.5%	5.7%	5.0%	-	4.3%				
$h \rightarrow \tau \tau$	6.2%	-	4.2%	-	4.4%				
$h \rightarrow WW^*$	5.1%	-	1.0%	-	0.7%				
$h \rightarrow ZZ^*$	-	-	5.6%	-	3.9%				
$h \rightarrow \gamma \gamma$	-	-	15%	-	10%				
$h \rightarrow \mu \mu$	-	-	38%	-	25%				
$h \rightarrow Z\gamma$	-	-	42%	-	30%				

Table: We also include the estimations for $\sigma(hZ) \times BR(h \rightarrow b\bar{b})$ at high energies in [arXiv:1701.04804] (Ellis et al.), which are 3.3% (6.8%) at 1.4 TeV (3 TeV). For simplicity, the measurements of ZZ fusion $(e^+e^- \rightarrow e^+e^-h)$ are not included in our analysis.