Particle ID in the Belle II Experiment

Oskar Hartbrich University of Hawaii at Manoa

for the Belle2 TOP Group

IAS HEP 2017, HKUST

SuperKEKB & Belle II

- Next generation B factory at the intensity frontier
 - Asymmetric e⁺ e⁻ collider
 - Center of mass energy tuned to Y(4[5/6]s)
 - Located at KEK (Tsukuba, Japan)
- Accelerator upgrade KEKB → SuperKEKB
 - 40 fold increase in instantaneous lumi.
 - 50 times integrated lumi. over KEKB/Belle

Belle II Detector Upgrade

Belle II Particle Identification

- B physics requires reconstruction of final state particles
- e^{\pm} , y: ECL + tracking
- μ^{\pm} , K_{L}^{0} : KLM + tracking
 - Bad energy resolution for K_{L^0} , using propagation direction
- π[±], K[±], p[±]: TOP/ARICH + tracking (dE/dx)
 - Mass differences: Cherenkov opening angle, time of flight

Endcap Particle ID: ARICH

- Aerogel Ring Imaging Cherenkov Detector
- Two aerogel layers with different refractive indices
- Hamamatsu Hybrid Avalanche Photo Detector sensors
 - Avalanche photo diode in vacuum tube

Barrel Particle ID Requirements

- π^{\pm} -K^{\pm} separation in Belle2 barrel region
 - Momentum range up to 5GeV
 - ~95% efficiency at 5% fake rate
- Geometry defined by available space between tracker and calorimeter:
 Barrel PID Aerogel

TOP: Concept

- 16 Quartz Cherenkov radiator bars
 - 270cm * 45cm * 2cm each
 - Small expansion volume
- Cherenkov photons propagate to sensors via total internal reflection

Slot 2

-94

192

mirror

Slot 1

TOP: Total Internal Reflection

Module Production Process

Optics: alignment, gluing, curing and aging (~2 weeks).

Enclosure: gluing CCDs and LEDs, integrating fiber mounts.

QBB: strong back flattening, button & enclosure gluing.

Put on a cart. PMT and frontend integration, performance check. QBB assembly and gas sealing.

Move optics to QBB using the "lifting jig".

Installation Complete

TOP: Reconstruction

- Detect 20-30
 photons/particle/event
 - +5-10 photons from beam background
- Pion/kaon likelihood analysis of spatial/temporal distribution of photons
 - PDFs depend on exact particle trajectory
 - Generated event-by-event in reconstruction

TOP: Reconstruction

- Detect 20-30
 photons/particle/event
 - +5-10 photons from beam background
- Pion/kaon likelihood analysis of spatial/temporal distribution of photons
 - PDFs depend on exact particle trajectory
 - Generated event-by-event in reconstruction

TOP: Electronics Requirements

- Goal: <100ps single photon time resolution
- Sensor requirements:
 - single photon efficiency
 - <50ps single photon time resolution
 - ~few mm spatial resolution
 - Operation in 1.5T B-field
- Readout requirements:
 - 30kHz trigger rate
 - <50ps electronics time resolution
 - <50ps clock distribution jitter

Micro-Channel-Plate Photomultipliers

- Similar gain, photon efficiency as PMTs, but smaller
- (Mostly) resistant to B-fields
- Pixelated anodes for spatial resolution
- Very good time resolution for single photons

- Reads MCP-PMT signals
- Time resolution ~30ps
 - ~Gsa/s sampling
 - ~500MHz bandwidth
- 8192 channels
- Affordable
- Low power
- Small form factor
- Online data processing
- etc. etc.

- Reads MCP-PMT signals
- Time resolution ~30ps
 - ~Gsa/s sampling
 - ~500MHz bandwidth
- 8192 channels

- Reads MCP-PMT signals
- Time resolution ~30ps
 - ~Gsa/s sampling
 - ~500MHz bandwidth
- 8192 channels
- Affordable

- Reads MCP-PMT signals
- Time resolution ~30ps
 - ~Gsa/s sampling
 - ~500MHz bandwidth
- 8192 channels
- Affordable
- Low power
- Small form factor
- Online data processing
- etc. etc.

IRSX ASIC

- Waveform sampling ASIC
 - Designed by IDLAB, UH (Prof. Gary Varner)
- 2-4GSa/s sampling speed
 - Operated at 2.7GSa/s in TOP
 - 12bit resolution
 - ~600MHz analog bandwidth
 - 32k analog storage cells (~10us)
 - Sampling/digitisation w/o deadtime
- 8 channels
 - ~100mW/channel

Online Data Reduction

- Raw IRSX output bandwidth of TOP would be 265 Tbit/s!
- Only digitise relevant IRAX samples
 - Based on global trigger, IRSX channel triggers
- Apply all raw data conditioning in frontend
 - Pedestal subtraction
 - Time base calibrations
- Extract waveform features in frontend
 - Photon timing
 - Pulse amplitude, shape parameters etc. for debugging
- Write out only feature parameters
 - Waveforms transferred only for debugging and quality check

Boardstacks

- Tower of 1 SCROD + 4 carriers + HV board
 - Mechanically and thermally coupled
- Directly connects to 8 MCP-PMTs each
 - Four boardstacks per TOP module

Carrier Board

- PMT preamplifiers, 4 IRSX ASICs + Zynq 7030 SoC
- Zynq: FPGA + ARM processor core
 - FPGA interfaces four ASICs, pushes data to SCROD
 - ARM on carrier mostly idle, but could do data processing

SCROD Board

- Single (large) Zynq 7045 SoC
 - FPGA receives data from carriers, manages transceivers
 - Processor performs online data processing
- Two fiber transceivers: datalink + trigger timestamps

Timing Reconstruction

*Diagram, formulas from Stefan Ritt

Feature Extraction

- Constant fraction discrimination
- Template fit to photon pulses
 - Computationally complex, possible on Zynq DSPs?
 - but only needed for low amplitude hits

Feature Extraction Implementation Status

Global Cosmic Ray Campaign

- Full dress rehearsal of outer subdetectors
 - With full solenoid field
- Tracking chamber, calorimeters, TOP integrated into DAQ
 - Synchronous datataking, realistic data flow to HLT and storage
- True global triggers
- First cosmic ray tests with a new detector
 - This happens maybe every ~10 years
 - What a time to be part of this now!

First Bent Track in CDC+ECL+TOP

First Shower in CDC+ECL+TOP

First Track in CDC+ECL+TOP+KLM

TOP Timing Calibration

- Calibrating IRSX time base with injected double pulses
- <30ps single edge timing resolution of electronics in installed A modules
 - Calibrated in-situ
 - Comparable to module qualification tests

TOP Module Timing Offsets

- Relative module timing offsets estimated from cosmics runs, laser pulses
 - Laser calibration does not resolve all contributions
 - Anyway good correlation between results
- Expect alignment to <1ps from cosmics
 - To be crosschecked with di-muons

TOP Channel Timing Offsets

- Calibrate channel timings with laser pulses
- Total time resolution for laser pulses <200ps
 - 150ps contribution from laser pulse propagation smearing
 - $\rightarrow~{\sim}120\text{ps}$ time resolution on optical photons with current calibrations

Laser timing in slot 1

Summary and Outlook

- TOP is installed and alive
- Front end electronics are (almost) fully operational
 - Performance so far according to specifications
 - Firmware work continues
 - Paper submitted to NIM A, now in revision
- Successful global cosmic ray campaign
 - Integrating all outer sub-detectors
- Phase II: Outer sub-detectors only
 - First collisions March 2018
- Phase III: Physics operation
 - Starting early 2019

