Single Pion Energy Resolutions of combined CALICE Calorimeter Systems

CALICE Scintillator-SiPM Physics Prototype System

Testbeam Analysis

> Energy reconstruction in combined calorimeter systems

- Longitudinally varying sampling
- Making use of granularity apart from particle flow

	ScECAL	AHCAL	ТСМТ
Absorber material	3.5mm W	21mm Fe	21mm (105mm) Fe
Scint. thickness	3mm	5mm	5mm
Sampling fraction (EM)	1/17	1/33	1/33 (1/165)

- > Energy resolution of the combined system?
- > Energy resolution well described in MC?
- > How is the energy resolution influenced by ScECAL?

Event Samples

> CAN-056

- FNAL 2009: 4-32GeV π⁻
- Admixtures of other particles
- Multi-particle events

> CAN-058

- FNAL/CERN 2007/08: 4-80GeV π⁻
- > Reconstruct event topology using high granularity
 - Clean selection of single pion events

Event Selection

> Pion selection

- Beamline instrumentation
- First hadron interaction layer (FHI) ≥ 5 (4 ScECAL layers as preshower detector)
- No tracks parallel to beam axis
- > Single particle selection
 - Single, isolated primary track
- > Shower start selection
 - FHI ≤ 5th layer AHCAL (consistent with previous analyses)
- > Efficiencies and biases from MC
 - No bias on EM-subshower fraction
 - No bias on response/resolution

Energy Reconstruction - Standard

- > Standard reconstruction: Single constant weight per calo (~1/sampling) $E_{\rm rec}^{\rm classic} = w_{\rm ECAL} \left(E_{\rm sum}^{\rm ECAL} \right) + w_{\rm HCAL} \left(E_{\rm sum}^{\rm HCAL} + E_{\rm sum}^{\rm TCMT} \right)$
- > Weights from χ^2 optimisation

$$\chi^2 = \frac{(E_{\rm rec} - E_{\rm beam})^2}{(\sigma_E)^2}$$

Similar weights in data and simulation

- 5% shift from deposition overestimation in MC
- Ratio identical in data/MC

Energy Reconstruction – Software Compensation

> Mean deposition of electrons higher than hadrons

- e/h ratio > 1 (depending on absorber, active material, geometry)
- > Hadron shower: variable energy fraction in EM subshowers

Identification of EM subshowers from local deposition density

10⁸ **Software Compensation** Number of Hits 10'> Weight each hit in reconstruction 10⁶ Depending on hit energy 10⁵ As function of full shower energy 10⁴ 10^{3} > Hit energy in 8 bins 10^{2} Primary track hit weighted separately 10

Energy Reconstruction – Software Compensation Weights

- > Bin weights parametrised with beam energy
 - ^{2nd} order polynomial, 3 free parameters
- > Binary reconstruction in Bins 1-2
 - Only counting number of hits in bin
 - Suppression of Landau fluctuations
- > Minimum weight bin energy increases with energy
 - Typical EM hit energy depends on shower energy

Software Compensation – Resolution Improvement

> Strong resolution improvement from software compensation

- AHCAL: e/h ≈ 1.2
- Very small change in mean reconstructed energy
- > Too low standard reconstructed energies weighed up
- > Too high standard reconstructed energies weighed down

Response Linearity

> Good energy response reconstruction in all datasets

- ScECAL+AHCAL+TCMT: ≤4% deviation from linear response
- SiWECAL+AHCAL+TCMT: ≤5% deviation from linear response

Energy Resolution

> Combined resolutions very close to AHCAL+TCMT reference analysis

Depsite different materials, sampling structure

Energy Resolution

> Standard reconstruction: Very similar resolution in data and simulations

> Simulation overestimates SC improvement by 2% absolute

- Resolution improvement in data 10-20% relative
- Resolution improvement in simulation 15-30% relative

Energy Resolution – Software Compensation Improvement

> Standard reconstruction: Very similar resolution in data and simulations

> Simulation overestimates SC improvement by 2% absolute

- Resolution improvement in data 10-20% relative
- Resolution improvement in simulation 15-30% relative

Applying SC Weights from Simulation to Data

> Slight degradation of response linearity (<4%)</p>

> Slight improvement of energy resolution (<4% relative)</p>

\rightarrow Can use SC weights from MC on data

Applying SC Weights from Different Beam Periods

Separate optimisation of SC weights for each set of testbeam data
 Cross-application of SC weights as systematic stability test

Summary

> Analyses of CALICE combined high granularity calorimeter systems

- CAN-056 (ScECAL+AHCAL+TCMT), CAN-058 (SiWECAL+AHCAL+TCMT) (https://twiki.cern.ch/twiki/bin/view/CALICE/CaliceAnalysisNotes)
- Journal papers in progress

> High granularity allows efficient selection of single particle events

- Shower details well described by simulations
- > Standard reconstruction energy resolutions well described in data/MC
- > Improved energy resolution with software compensation reconstruction
- > Energy resolution is the same with and without ScECAL

Pion Resolution Table

Run/Part	icle	Type	$\left(\sigma/\mu\right)_{\mathrm{Std.}}$ [%]	$\left(\sigma/\mu\right)_{ m SC}\left[\% ight]$	$\frac{\left(\sigma/\mu\right)_{\rm SC}}{\left(\sigma/\mu\right)_{\rm Std.}}$
	π^{-}	Data	23.30 ± 0.08	21.19 ± 0.07	0.91 ± 0.00
560506	π^{-}	FTFP_BERT_HP	22.56 ± 0.65	19.00 ± 0.39	0.84 ± 0.03
$(4\mathrm{GeV})$	π^{-}	$FTFP_BERT_HP^{(*)}$	22.86 ± 0.81	19.57 ± 0.57	0.86 ± 0.04
	π^{-}	QGSP_BERT_HP	22.85 ± 0.78	19.51 ± 0.56	0.85 ± 0.04
	π^{-}	Data	15.98 ± 0.05	14.40 ± 0.05	0.90 ± 0.00
560498	π^-	FTFP_BERT_HP	14.65 ± 0.25	12.60 ± 0.20	0.86 ± 0.02
$(12{ m GeV})$	π^{-}	$FTFP_BERT_HP^{(*)}$	15.38 ± 0.28	12.79 ± 0.32	0.83 ± 0.03
	π^{-}	QGSP_BERT_HP	15.45 ± 0.29	12.69 ± 0.25	0.82 ± 0.02
	π^{-}	Data	14.59 ± 0.04	12.81 ± 0.04	0.88 ± 0.00
560496	π^{-}	FTFP_BERT_HP	13.50 ± 0.30	11.31 ± 0.20	0.84 ± 0.02
$(15{ m GeV})$	π^{-}	$FTFP_BERT_HP^{(*)}$	14.32 ± 0.37	11.45 ± 0.33	0.80 ± 0.03
	π^{-}	QGSP_BERT_HP	14.20 ± 0.20	11.38 ± 0.13	0.80 ± 0.01
	π^{-}	Data	13.03 ± 0.04	10.99 ± 0.04	0.84 ± 0.00
560481	π^{-}	FTFP_BERT_HP	12.29 ± 0.19	9.89 ± 0.22	0.80 ± 0.02
$(20{ m GeV})$	π^{-}	$FTFP_BERT_HP^{(*)}$	13.19 ± 0.28	9.99 ± 0.28	0.76 ± 0.03
	π^-	QGSP_BERT_HP	12.67 ± 0.13	9.76 ± 0.08	0.77 ± 0.01
	π^{-}	Data	10.77 ± 0.03	8.36 ± 0.02	0.78 ± 0.00
560474	π^{-}	FTFP_BERT_HP	10.62 ± 0.20	7.52 ± 0.13	0.71 ± 0.02
$(32{ m GeV})$	π^{-}	$FTFP_BERT_HP^{(*)}$	11.59 ± 0.28	7.61 ± 0.03	0.66 ± 0.02
	π^{-}	QGSP_BERT_HP	10.84 ± 0.22	7.56 ± 0.13	0.70 ± 0.02

Pion Selection Efficiencies and Biases

$\operatorname{Run}/\operatorname{Part}$	icle	Physics List	$\mu_{\rm FHI}/{ m GeV}$	$\sigma_{ m FHI}/\mu_{ m FHI}$	$\mu_{\rm sel.}/{ m GeV}$	$\sigma_{ m sel.}/\mu_{ m sel.}$	$\epsilon_{ m sel.}$
π	π^{-}	FTFP_BERT_HP	3.82	22.92%	3.83	22.86%	46.1%
560506	π^{-}	$FTFP_BERT_HP^{(*)}$	3.81	22.64%	3.82	22.59%	46.5%
$(4 \mathrm{GeV})$ π^{-1}	π^{-}	QGSP_BERT_HP	3.80	22.95%	3.81	22.87%	45.9%
	e ⁻	QGSP_BERT	-	-	-	-	0.2%
π^{-} 560498 π^{-} (12 GeV) π^{-} e ⁻	π^{-}	FTFP_BERT_HP	11.62	15.49%	11.67	15.37%	49.5%
	π^{-}	$FTFP_BERT_HP^{(*)}$	11.68	14.73%	11.71	14.65%	49.6%
	π^{-}	QGSP_BERT_HP	11.54	15.54%	11.59	15.45%	49.4%
	e^{-}	QGSP_BERT	-	-	-	-	< 0.1%
$\begin{array}{c} 560496 \\ (15{\rm GeV}) \end{array}$	π^{-}	FTFP_BERT_HP	14.64	14.43%	14.70	14.30%	48.8%
	π^{-}	$FTFP_BERT_HP^{(*)}$	14.69	13.59%	14.74	13.49%	49.1%
	π^{-}	QGSP_BERT_HP	14.66	14.30%	14.71	14.20%	49.2%
	e ⁻	QGSP_BERT	_	_	_	-	$<\!0.1\%$
	π^{-}	FTFP_BERT_HP	19.69	13.25%	19.78	13.19%	47.5%
560481	π^{-}	$FTFP_BERT_HP^{(*)}$	19.70	12.35%	19.77	12.28%	47.6%
$(20\mathrm{GeV})$	π^{-}	QGSP_BERT_HP	19.78	12.74%	19.86	12.66%	48.0%
	e ⁻	QGSP_BERT	-	-	-	-	$<\!0.1\%$
	π^{-}	FTFP_BERT_HP	31.97	11.59%	32.15	11.58%	44.3%
560474	π^{-}	$FTFP_BERT_HP^{(*)}$	31.97	10.66%	32.12	10.60%	44.3%
$(32\mathrm{GeV})$	π^{-}	QGSP_BERT_HP	31.92	10.96%	32.08	10.82%	45.0%
	e ⁻	QGSP_BERT	_	_	_	_	$<\!0.1\%$

Approximate FNAL Beam Composition

Sensor Digitisation Effects

- Notable effect of SiPM modelling on MIP spectrum
 - Electronics noise smears out quantisation
- > Good agreement with data

Electron Data/MC: Longitudinal Shower Profile

Electron Data/MC: Hit Energy, Transverse Shower Profile

> Slight overestimation of hit energy tails and transverse shower profile in electron MC

- Irrelevant for energy sum
- Not explained by SiPM saturation effects
- Not explained by geometry mismodelling

Simulation Comparison – Shower Profiles

> Full Geant4 detector simulation

- Detailed geometry, materials
- Realistic digitisation of sensor effects
- Longitudinal pion shower profile in good agreement with simulations
 - ~5% excess depositions in MC
- > Physics modelling uncertainties in ScECAL shower profile from FHI
 - Physics lists show different behaviours
 - Data between physics lists

SC Weights AHCAL (Data)

SC Weights Data vs. MC

ScECAL

AHCAL

An Ag > 1 t

ScECAL

AHCAL

Ap. Ag≥±t

PFA Performance in ScECAL Strip Geometry

Katsushige Kotera et. al. (NIM A789, arXiv: 1405.4456)