THE CALICE AHCal & ScECal

Vishnu Zutshi Northern Illinois University

Northern Illinois University

Learning Today, Leading Tomorrow

1/17/18

Acknowledgements

- The work described herein represents effort carried out by the AHCal and ScECal groups as part of the CALICE Collaboration and showcases the R&D efforts carried out at institutions in Asia, Europe and North America.
- In particular my thanks to F. Sefkow, Y. Liu and M. Robles from who have been my source of many pictures and plots

Outline

- Preliminaries
- AHCal Physics Prototype
- Scalability and a proof-of-principle
- Towards a technical design
- Testbeam and synergies
- ScECal prototyping
- Summary

AHCal & ScECal

- Employ plastic scintillator, a proven technology married to what was then an emerging solid-state photosensor technology
- Scintillator calorimetry had already been used extensively in HEP: robust, fast, reliable, largely linear (modulo Birks)
- Challenge was always going to be converting the photon signal to an electrical one for a design with high longitudinal and transverse segmentation as dictated by PFA
- Traditionally achieved by routing fibers (WLS and/or clear) outside the detector

Scintillation

Most applications have used guides or fibers (often WLS) to bring the light out

Photomultipliers

Generate a detectable electrical signal proportional to the small number of incident photons

- Multi-pixel photo-diodes operating in the limited Geiger mode
- High gain (~10⁶), low bias (<100 V) and insensitive to B-fields

 Tremendous growth area in terms of vendors and quality of devices and the varied applications these photosensors are being used in

The AHCal Physics Prototype

 First large-scale application of SiPMs for scintillator calorimetry

8

- Still used WLS fibers to mate to SiPMs but already a significant step in housing the sensor on the tile
- A lot operational experience with SiPMs

AHCal Physics Prototype

A rich physics harvest

E_{beam} [GeV]

CALICE AHCAL Prototype

Clear establishment of the scintillator-SiPM active media as a viable calorimetry option in a PFA-based detector

However significant scalability issues which elicited different responses and proposals from within the collaboration....

Integrated Readout Layer (IRL)

- Defined by making some interface choices:
- Scintillator Sensor
- With WLS fiber or <u>direct (i.e. fiber-less) coupling</u>
- Sensor PCB
- ↓ In tile or surface-mounted on PCB
- Scintillator PCB
- Individual tiles or tile arrays
- Scintillator LED
- Light distribution or pulse distribution

1/17/18

Direct Coupling

- Simplification in construction and assembly
- Greater electro-mechanical integrability
- Transverse segmentation flexibility
- Is there enough response and is the response uniform enough?
- Measurements initially done for 5 mm thick, 9 cm² tiles with 1 mm x 1 mm Hamamatsu MPPCs

DC Response Uniformity

Dimpled Tile

Tolerances

Response to Cosmics

Testbeam Setup

Testbeam carried out at Fermilab with 120 GeV protons using facility pixel telescope (active area of ~2cm x 2cm with ~40µm position resol).

Nucl.Instrum.Meth. A659 (2011) 348-354

Tiles in the beam

0.5 1 1.5 2 X position (cm)

F = F

Tile Response

UF

ò

-0.5

0.5 1 1.5 2 X position (cm)

Beam vs. Source Scans

Response at 40°

23

IRL Proof-of-Principle

LED Distribution Uniformity

ILC Scintillator HCAL

IRL Realization

IRL Realization

27

28

IRL Commissioning

IRL in CALICE Testbeam

29

IRL in CALICE Testbeam

Injection Molded Tiles

Promises to be cost effective in large quantities Large phase space of production conditions, finishes etc. Took a staged approach....

From Tiles to Arrays

Towards a technological design

- Over the last few years the IRL concept has undergone significant development, refinement and optimization in Europe which have improved the performance, robustness and scalability of the initial design concept.
- This has allowed for the proof-of-principle to mature as a technological design
- The following slides show the current state-of-the-art as far the AHCal is concerned

The Big Picture

Tiles & Reflector Treatment

Watch the film at: https://www.youtube.com/watch? v=kmmTpUaW1z8&feature=youtu.be

Assembly Automation

36cm x 36cm (144 channels) readout by 4 ASICS

Did someone say surface-mount?

Significant steps towards large-scale assembly required for the detector

SiPMs

Excellent improvement in device characteristics and uniformity by vendors

Absorber Structure & Integration

Modules (ASIC+SiPMs) and DAQ interfaces (DIF, Calibration and Power Boards)

LDA (designed to fit in the space constrains)

CCC

Testbeam Campaign

Testing Cosmics & SiPM

SMD SiPM schematic view

Testing and commissioning of all the components of the active layer before exposure to the test beam.

100

Not to forget the B-field

Not Just for the ILC

Scintillator ECal (?)

47

Idea under active development that could potentially offer required performance at lower channel count

Virtual Tiling

Readout Options

EBU

Ecal Base Unit: basic R/O unit of ScECal ASIC with amplifier, shaper, digitizer along with self-trigger and bias control facility May need tuning as this option develops

Prototype Tests

- Dynamic range is an important factor since you want to detect MIPS as well as large EM showers
- Interesting optimization between sensor size, pixel size, response etc.
- Tests underway

Summary

- The CALICE AHCal using small scintillator tiles directlycoupled to SiPMs is at a mature stage poised for implementation in a detector at proposed facilities
- Extensive component and system tests with the current design underway
- Like the Si-W ECal interesting synergies with LHC upgrade (CMS endcap hadron calorimeter upgrade)
- Active R&D underway to evaluate a strip-SiPM design for an ECal