

Jefferson Lab

Superconducting Magnets for Future Electron-Ion Collider

Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA

Mini-workshop on Accelerator, IAS, HKUST, Hong Kong, January 18-19, 2018

Outline

- Introduction
- SC Magnets for Ion Rings
- SC Magnets for Interaction Regions
- Summary

Acknowledgement

Tim Michalski (JLab), Peter McIntyre (Texas A&M Univ.), Brett Parker (BNL), Alexander Kovalenko (Dubna)

Introduction

- An electron-ion Collider (EIC) is likely the next major US facility to be built for nuclear science research – QCD frontier
 - Recommended by Nuclear Science Advisory Committee Long Range Plan 2015
 - National Academy of Science Review underway (last milestone for DOE approval)
 - Construction may start as early as 2022, likely cost at \$1.5B
- Two DOE Labs (BNL & JLab) have proposed to host this collider
 - BNL eRHIC has proton/ion beams, need an electron beam (and an electron facility)
 - JLab JLEIC has an electron beam, need proton/ion beams (and an ion complex)
- Presently, two teams are focused on design optimization, value engineering and accelerator R&D
- EIC needs superconducting magnets
 - IR magnets: for both eRHIC and JLEIC
 - Ring magnets: for JLEIC ion booster and collider
 - Not pushing for new technology frontier, rather for better quality and cost efficient (value engineering)

Two Labs Like to Host the US EIC

Has polarized proton & heavy ion beams Needs a polarized electron beam

- Based on RHIC and its injector complex
 - polarized proton and 3He, up to 250 GeV/u
 other all-stripped ions, up to gold 100 GeV/u
- Add a polarized electron beam up to 18 GeV
 - A storage ring (*ring-ring* design)
 - A full energy electron injector

Has a polarized electron beam Needs a proton/ion beam

- Based on CEBAF recirculated SRF linac
 - polarized electron beam up to 12 GeV,
- Add ion injector and two storage rings (*ring-ring* design)
 - Polarized proton, deuteron and ³He

Jefferson Lab

- Up to 100 GeV/u

Superconducting Magnets for EIC

Hadron ring magnets for JLEIC only

- Modest field for (present baseline) phase 1: 3 T Super-ferric, cost efficient
- Medium field for upgrade or phase 1 (alternate): 6 to 12 T, high CM energy reach
- Booster ring SC magnets need fast ramp (~0.3 T/s)

• IR magnets for both eRHIC and JLEIC

- High field: up to 9 T
- Large aperture, high field quality
- Radiation resistance

Solenoids for cooling and spin rotators

- Modest field strength, up to 6 T

JLEIC Ion Booster and Collider Ring Magnets

SRF linac ion sources				
	Length (m)	Max. energy (GeV)	Max. dipole field (T)	
SRF linac		0.2		
booster	~275	7.9 / 12	3	
collider ring	~2250	100 / 200 / 266	3 / 6 / 8.3	

- A medium energy ion collider ring, not for energy frontier
- Cost efficiency is the primary goal (make the machine affordable)
- The booster and collider ring magnet field is 3 T
- The booster ring magnet needs fast ramp (~0.33 T/s \rightarrow 0 to 3 T in 10 s)
- The leading choice of technology is *super-ferric magnet* for baseline
 - Cost efficient, similar to warm magnets
 - Fast ramping, closed to warm magnets

NICA / Nuclotron Super-ferric Magnets

Kovalenko, Dubna

- A low energy ion-ion collider, circumference: 251.5 m
- 96 dipoles, 64 quads, beam pipe aperture 55 x 110 mm
- Accelerated and extracted particles from p to Xe

2 T, 4 T/s, 1 Hz dipole

- Cold iron (T = 4.5 K)
 Hollow SC cable
- Two-phase helium

34 T/m, 68 T/m s, quad

Dubna Hollow SC Cable

FAIR SIS100 Storage Ring Model Dipole

Kovalenko, Dubna

FAIR SIS100 Full Size Prototype

 Manufactured and tested at JINR, Duban
 Straig

 B x Le
 B

 Leffectiv
 Lyoke

 Bendi
 Radiu

 Apertu
 Apertu

Straight dipole		
B x L _{effective}	Τm	5.818
В	Т	2.11
L _{effective}	m	2.756
L _{yoke}	m	2.696
Bending angle	deg	3
Radius of curvature	m	47.4
Aperture	mm	130 x 60

Kovalenko, Dubna

Quadrupole		
B' x L _{effective}	Т	35
B'	T/m	32
L _{effective}	m	1.1
Estimated Lyoke	m	1
Aperture	mm	135 x 65

Quadrupole 6 turn coil

JLEIC Ion Ring Arc Cells and Magnets

Dipole aperture requirement:

betatron amplitude (15 s) @ injection: dispersion of $\pm 0.5\%$ momentum spread: sagitta (with 4 m dipole length):

Quad aperture radius requirement:

P. McIntyre, Texas A&M

Each half-cell contains two 4 m dipoles, one 0.8 m quadrupole, 1 sextupole to correct body sextupole in dipoles (Neuffer):

JLEIC Arc Dipole Design

Multipoles vs. field and load lines for MEIC dipole design.

P. McIntyre,

JLEIC e-p Luminosity

If it were feasible and affordable to make 6 T dipoles for the ion ring, Maximum c.m. energy would increase by 40%; maximum luminosity would double.

High Field (4 to 6 T) SC Magnets for JLEIC

- Hollow SC cables can be applied to the design and construction of a (fast-ramping) 4 to 6 T dipoles
- Cosine θ style of magnet should be used
- For 6 to 6.5 T dipoles, use double-layer coil: a hollow cable for inner layer, and Rutherford one for outer layer

Kovalenko, Dubna

4 T Cosine θ-style dipole with 2-4 T/s ramping rate

eRHIC Ring-Ring IR Layout

- ±4.5 m detector space with crab crossing.
- Magnets quite different forward/rear due to physics requirements.

EIC IR Magnet Challenges

B. Parker, BNL

- Magnet Zoo: Just within ±20m of the IP we need 12 different styles of superconducting magnets, most of which require closely spaced, double apertures or low-field shielded regions.
 - We want to avoid having to create unique tooling for each style.
- Large Aperture/Strong Field: A few of these magnets, i.e. on the forward hadron side, must have very large apertures with relatively strong quad gradients or strong dipole guide fields.
 - Large coil fields/coil dimensions make external field shielding difficult.
 - We should consider a range of coil and yoke topologies/schemes.
 - We can benefit greatly by investing in shielding R&D (test facility).
- Monster Size: Even when we can use a "traditional solution for magnetic shielding," i.e. cutting holes in magnetic yokes to get reduced field regions, some of the resulting yokes are monster sized.
 - With limited resources, we must then carefully consider what R&D prototypes are needed to validate performance goals (test facility).

eRHIC Magnet R&D Accomplishments and Work Presently In Progress B. Parker, BNL

- Have successfully upgraded Direct Wind machine to handle 1.6 mm cable for more than twice capacity of the previous 1 mm cable (i.e. design with single strand wire and 1 mm or 1.6 mm cable).
 - Now able to make large diameter coils with half as many cable layers.
- The dipole Sweet Spot coil nearing its completion has coil sizes comparable to the Ring-Ring requirements and the prototype is designed to be operated at even higher field.
 - So we gain direct experience with large coils and 1.6 mm dia. cable.
 - For the R&D prototype, inner/outer coils independently powered; we can run in both Sweet Spot and the active cancellation configurations.
- We can provide a wide range of field strengths and varieties of field configurations over the "Sweet Spot test region."
 - Opportunity to test passive magnetic/superconducting shield designs as well as Direct Wound, corrector-like active compensation schemes.

17

Q1PF, First Forward Side Proton Quad

B. Parker, BNL

- SD End View
- Q1PF, active external field cancelation coil.
- 90 T/m gradient, clear bore is 86 mm ID.
- Peak field about 4.5 T with essentially zero external field outside body of the bare coil.
- Small cancellation undershoot/overshoot near the coil ends is handled via the use of a thin passive magnetic shield.

B0 Spectrometer Dipole Concept

B. Parker, BNL

Jefferson Lab

19

Summary

- EIC Will be the next big machine for US and for QCD research
- Jefferson Lab needs a new ion complex, which requires low to medium field SC magnets for ion rings, however, low cost is the key.
- SC magnets for interaction region for both eRHIC and JLEIC are challenging
- Some R&D for EIC rings and interaction region were initiated and in progress
- For more information of EIC accelerator design and R&D
 - JLEIC Accelerator Collaboration Meetings (5, 2015, 2016, 2017)
 - EIC Accelerator Collaboration Meeting 2017
 - All talks on the web

