High Energy Physics (**High Temperature Superconducting Materials and Magnets**) HongKong University of Science and Technology, January 8-26, 2018



# **Progress in High Temperature Superconducting Materials and Superconductivity Mechanism**

# Xingjiang ZHOU (周兴江)

National Lab for Superconductivity Institute of Physics Chinese Academy of Sciences, Beijing, China

# Outline

# >Introduction;

# High temperature copper-oxide superconductors;

# >Iron-based superconductors;

# Sumary and perspectives.

# **Discovery of Superconductivity (1911)**

#### **1908, Liquidation of Helium**



Heike Kamerlingh Onnes Dutch Physisist (1853-1926)

#### **1911, Discovery of Superconductivity**





# The Nobel Prize in Physics 1913



"for his investigations on the properties of matter at low temperatures which led, inter alia, to the production of liquid helium"

**Heike Kamerlingh Onnes** 

## **Discovery of Meissner-Ochsenfeld Effect (1933)**



Expulsion of magnetic field from a superconductor during its transition to the superconducting state

Superconductivity is more than just perfect conductor.



Walther Meissner Robert Ochsenfeld (1882-1974) (1901-1993)

#### **Two Characteristics of Superconductors**



# **Potential Applications of Superconductors**



#### **Zero Resistance**

- →Electrical applications;
- ➢Power transmission;
- ≻High magnetic field generation,NMR, particle collider, fusion;

**Meissner Effect** 

- ≻Levitation train
- **Josephson Effect**
- →Electronic applications;
- ≻SQUID
- ≻Filters
- ≻Quantum computing

# Superconducting transition temperature is the key.

# **Failed Theories of Superconductivity**



Albert Einstein (1879 - 1955)



Niels Bohr (1885 - 1962)



Lev D. Landau (1908 - 1968)



Felix Bloch (1905 - 1983)





Léon Brillouin (1889 - 1969)

Einstein, Bohr, Landau, Bloch and Brillouin made proposals for microscopic theories of superconductivity prior to experiment by Meissner and Ochsenfeld in 1934.



John Bardeen (1908 - 1991)



Max Born (1882 - 1970)



Werner Heisenberg (1901 - 1976)



Herbert Fröhlich (1905 - 1991)



Fritz London (1900 - 1954)



**Richard Feynman** (1918 - 1988)

Between 1941 and the formulation of the **BCS** theory, attempts to formulate microscopic theories of superconductivity were made by Bardeen, Heisenberg, London, Born, Frohlich and Feynman.

J. Schmalian, Modern Physics Letters B 24 (2010) 2679.

#### **BCS Theory for Conventional Superconductivity (1957)**

#### Bardeen, Cooper and Schrieffer (1957)

# The Nobel Prize in Physics 1972

"for their jointly developed theory of superconductivity, usually called the BCS-theory"





John Leon Bardeen Neil Cooper

John Robert Schrieffer

Formation of Cooper pairs;



The pairing is mediated by phonons (lattice vibrations).



### McMillan Limit: Tc cannot surpass 40 K

# **Temperature Milestones for Superconductors**



# **The Copper-Oxide Superconductors**

#### **Discovery of Superconductivity in Copper-Oxide Compounds**

Z. Phys. B - Condensed Matter 64, 189-193 (1986)

#### Possible High $T_c$ Superconductivity in the Ba – La – Cu – O System

J.G. Bednorz and K.A. Müller

IBM Zürich Research Laboratory, Rüschlikon, Switzerland

Received April 17, 1986

Condensed Zeitschrift für Physik B Matter

© Springer-Verlag 1986



"for their important break-through in the discovery of superconductivity in ceramic materials"





J. Georg Bednorz K. Alexander Müller

Metallic, oxygen-deficient compounds in the Ba-La-Cu-O system, with the composition Ba<sub>x</sub>La<sub>5-x</sub>Cu<sub>5</sub>O<sub>5(3-y)</sub> have been prepared in polycrystalline form. Samples with x=1 and 0.75, y>0, annealed below 900 °C under reducing conditions, consist of three phases, one of them a perovskite-like mixed-valent copper compound. Upon cooling, the samples show a linear decrease in resistivity, then an approximately logarithmic increase, interpreted as a beginning of localization. Finally an abrupt decrease by up to three orders of magnitude occurs, reminiscent of the onset of percolative superconductivity. The highest onset temperature is observed in the 30 K range. It is markedly reduced by high current densities. Thus, it results partially from the percolative nature, bute possibly also from 2D superconducting fluctuations of double perovskite layers of one of the phases present.

# (La,Sr)<sub>2</sub>CuO<sub>4</sub> Superconductors (Tc=40 K)



# YBa<sub>2</sub>Cu<sub>3</sub>O<sub>7-δ</sub> Superconductors (Tc~93 K)



VOLUME 58, NUMBER 9

#### PHYSICAL REVIEW LETTERS

2 MARCH 1987

Superconductivity at 93 K in a New Mixed-Phase Y-Ba-Cu-O Compound System at Ambient Pressure

> M. K. Wu, J. R. Ashburn, and C. J. Torng Department of Physics, University of Alabama, Huntsville, Alabama 35899

> > and

P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. O. Wang, and C. W

Department of Physics and Space Vacuum Epite (Received 6 February 1987; Rev

A stable and reproducible superconductivity observed both resistively and magnetically in  $\varepsilon$ An estimated upper critical field  $H_{c2}(0)$  betwee

#### Alabama and Houston





M. K. Wu

C. W. Chu



Institute of Physics, CAS, Beijing

**Zhongxian Zhao** 



# Bi<sub>2</sub>Sr<sub>2</sub>Ca<sub>n-1</sub>Cu<sub>n</sub>O<sub>2n+4</sub> Series Superconductors



## HgBa<sub>2</sub>Ca<sub>n-1</sub>Cu<sub>n</sub>O<sub>2n+2</sub> Series Superconductors (1993)



#### **High Temperature Copper-Oxide Superconductors**

| SYSTEM | ALIAS          | COMPOSITION                                                                                       | $T_{C}(K)$ |                                                         |
|--------|----------------|---------------------------------------------------------------------------------------------------|------------|---------------------------------------------------------|
| La-    | 214-T          | $(La,Sr)_2CuO_{4+\delta}$                                                                         | 40         | $\longrightarrow$ (La,Sr) <sub>2</sub> CuO <sub>4</sub> |
|        |                | (La,Sr,Ca) <sub>3</sub> Cu <sub>2</sub> O <sub>6</sub>                                            | 58         | 2 .                                                     |
|        | 214-T'         | $(Nd,Ce)_2CuO_{4-\delta}F_{\delta}$                                                               | 24         |                                                         |
|        | 214-T*         | $(Nd,Ce,Sr)_2CuO_4$                                                                               | 35         |                                                         |
|        | 123            | YBa <sub>2</sub> Cu <sub>3</sub> O <sub>7-δ</sub>                                                 | 92 —       | $\rightarrow$ $IDa_2Cu_3O_{7-d}$                        |
| Y-     | 124            | YBa <sub>2</sub> Cu <sub>4</sub> O <sub>8</sub>                                                   | 80         |                                                         |
|        | 247            | $Y_2Ba_4Cu_7O_{15}$                                                                               | 95         |                                                         |
| D:     | 2201           | $B1_2Sr_2CuO_6$                                                                                   | 10         |                                                         |
| БІ-    | 2212           | $B_1 Sr_2 CaCu_2 O_8$                                                                             | 90         | $B_{1_2}Sr_2CaCu_2O_{\circ}$                            |
|        | 2223           | $(B1,F0)_2S1_2Ca_2Cu_3O_{10}$<br>Bi_Sr_(Gd Ce)_Cu_O_                                              | 34         |                                                         |
|        | 1201           | TlBa-CuO-                                                                                         | 60         |                                                         |
|        | 1212           | TIBa2CaCu2O7 s                                                                                    | 103        |                                                         |
|        | 1223           | TIBa2Ca2Cu2Op.s                                                                                   | 123        |                                                         |
|        | 1234           | TIBa <sub>2</sub> Ca <sub>2</sub> Cu <sub>4</sub> O <sub>11</sub>                                 | 112        |                                                         |
| Tl-    | 1245           | $TlBa_2Ca_4Cu_5O_{13}$                                                                            | 107        |                                                         |
|        | 2201           | Tl <sub>2</sub> Ba <sub>2</sub> CuO <sub>6</sub>                                                  | 95         |                                                         |
|        | 2212           | Tl <sub>2</sub> Ba <sub>2</sub> CaCu <sub>2</sub> O <sub>8</sub>                                  | 118        |                                                         |
|        | 2223           | $Tl_2Ba_2Ca_2Cu_3O_{10}$                                                                          | 125        |                                                         |
|        | 2234           | $Tl_2Ba_2Ca_3Cu_4O_{12}$                                                                          | 112        |                                                         |
|        | 2245           | $Tl_2Ba_2Ca_4Cu_5O_{14}$                                                                          | 105        |                                                         |
|        | 1201           | $HgBa_2CuO_{4+d}$                                                                                 | 98         |                                                         |
| **     | 1212           | HgBa <sub>2</sub> CaCu <sub>2</sub> O <sub>6</sub>                                                | 126        |                                                         |
| Hg-    | 1223           | $HgBa_2Ca_2Cu_3O_8$                                                                               | 135        |                                                         |
|        | 1234           | HgBa <sub>2</sub> Ca <sub>3</sub> Cu <sub>4</sub> O <sub>10</sub>                                 | 120        | 11500200200308                                          |
|        | 2201           | HgBa CuO                                                                                          | 114        |                                                         |
|        | 2201           | $Hg_{a}Ba_{2}CuO_{6}$                                                                             |            | IC=1.35 K Ambient                                       |
|        | 1201           | $(Pb Cu)(Eu Ce)_2(Sr Eu)_2CuO_2$                                                                  | 25         |                                                         |
| Pb-    | 1201           | $Pb_2(Sr,La)_2Cu_2O_6$                                                                            | 32         |                                                         |
|        |                | $Pb_2Sr_2YCu_3O_8$                                                                                | 70         | C~160 K High pressure                                   |
|        |                | PbBaYSrCu <sub>3</sub> O <sub>8</sub>                                                             | 50         | it its ingli pressure                                   |
|        |                | (Cu,CO <sub>2</sub> )(Ba,Sr)CuO <sub>3+δ</sub>                                                    |            |                                                         |
|        |                | $(Cu, CO_2)(Ba, Sr)_2CaCu_2O_{5+\delta}$                                                          |            |                                                         |
|        |                | (Cu,CO <sub>2</sub> )(Ba,Sr) <sub>2</sub> Ca <sub>2</sub> Cu <sub>3</sub> O <sub>7+δ</sub>        |            |                                                         |
|        |                | Ba <sub>2</sub> Ca <sub>n-1</sub> Cu <sub>n</sub> O <sub>x</sub>                                  | 126        |                                                         |
|        |                | (Eu,Ce) <sub>2</sub> (Ba,Eu) <sub>2</sub> Cu <sub>3</sub> O <sub>10-d</sub>                       | 43         |                                                         |
|        |                | $(Tl,Pb)Sr_4Cu(CO_3)O_7$                                                                          | 70         |                                                         |
|        |                | $(Cu,Pb)Sr_2(Y,Ca)Cu_2O_7$                                                                        |            |                                                         |
|        |                | $GaSr_2(Y,Ca)Cu_2O_7$                                                                             |            |                                                         |
|        | To Contractory | $NdSr_2(Nd,Ce)_2CuO_{10}$                                                                         | 40         | $\sim 50$ kinds of superconductors                      |
|        | Infinite-layer | $(Sr,Nd)CuO_2$                                                                                    | 40         | 50 kinds of superconductors                             |
|        |                | $Sr_{a}CuO_{a}F$                                                                                  | 70         |                                                         |
|        |                | Sr <sub>2</sub> CuO <sub>3</sub> r <sub>x</sub><br>Sr <sub>2</sub> Cu <sub>2</sub> O <sub>2</sub> | 100        |                                                         |
|        |                | (Sr.Ca)-Cu <sub>4</sub> O <sub>10</sub>                                                           | 70         |                                                         |
|        |                | $(Sr.Na)_{2}CuO_{2}(Cl.F)_{2}$                                                                    |            |                                                         |
|        |                | Sr <sub>3</sub> Cu <sub>2</sub> O <sub>4</sub> Cl <sub>2</sub>                                    |            | with <i>aistinct</i> crystal structure                  |
|        | Ladder         | $(Sr_0 (Ca_{13,6})Cu_{24}O_{41})$                                                                 | 10         |                                                         |

#### **CuO<sub>2</sub> Planes:**Common Structural Unit for All Cuprate Superconductors



CuO<sub>2</sub> plane is believed to be responsible for high-Tc superconductivity.

#### Single-Band from Cu 3dx<sup>2</sup>-y<sup>2</sup> and O 2p Orbitals



#### **Electronic Phase Diagram of Copper-Oxide Superconductors**



#### **Unusual Superconducting Properties of High-Tc Superconductors**

(1). Tc is high
(Tc max= 135K for Hg1223
Tc max =160K under pressure);

(2). Superconducting gap is anisotropic. (Electrons are still paired)



**Consequence of BCS Theory:** 

- (1). Tc has a limit (~ 40K);
- (2). Superconducting gap is isotropic.



# What is the pairing mechanism if it is not electron-phonon coupling?

### High-Tc Mechanism: A Challenge

# Various theories are proposed; No consensus has been reached.

RVB: P. W. Anderson\*, T. M. Rice, P. Lee, F.-C. Zhang etc.
Spin-Bag: J. R. Schrieffer\* etc.
Spin Fluctuations: D. Pines, D. Scalapino and more
Stripes: S. Kivelson etc.
Loop Current: C. M. Varma
Phonon/Polarons: N. Mott\*, K. Mueller\* etc.

\*: Nobel prize laureates

# The final solution relies on decisive experiments

#### d-Wave Gap on Critical Current of Superconductors



- H. Hilgenkamp and J. Mannhart, Rev. Modern Phys. 74 (2002) 485;
- S. Gfraser et al., Nature Physics 6 (2010) 609.

#### **Anomalous Normal State Properties of HTSC--Pseudogap**



#### CONDENSED MATTER PHYSICS

## Quantitative determination of pairing interactions for high-temperature superconductivity in cuprates

Jin Mo Bok,<sup>1,2</sup> Jong Ju Bae,<sup>1</sup> Han-Yong Choi,<sup>1,3</sup>\* Chandra M. Varma,<sup>4</sup>\* Wentao Zhang,<sup>2,5</sup> Junfeng He,<sup>2</sup> Yuxiao Zhang,<sup>2</sup> Li Yu,<sup>2</sup> X. J. Zhou<sup>2,6</sup>\*



Science Advances 2, e1501329 (2016)

#### **Progress of Tc in Superconductors**



B. Keimer et al., Nature 518 (2015) 179.

#### **High-Tc Has Changed Landscape of Condensed Matter Physics**



### **Rich Physics in Copper-Oxide Superconductors**



#### Various phenomena:

 $\succ$ Superconductivity; ➤ Charge density wave (CDW); ≻Spin density wave (SDW); ➤Antiferromagnetism; ≻Stripes; ➢Pseudogap; ► Metal-insulator transition; >Insulator-supercond transition;  $\succ$ Spin glass; >Quantum phase transition; **≻**Fermi liquid; ≻Non-Fermi liquid; ➤Marginal Fermi lquid; ≻Strange metal; **≻**RVB >Loop current

. . . . . . . . . . . .

B. Keimer et al., Nature 518 (2015) 179.

## **The Iron-Based Superconductors**

# **Discovery of the Iron-Based Superconductors**



Published on Web 02/23/2008

#### Iron-Based Layered Superconductor La[ $O_{1-x}F_x$ ]FeAs (x = 0.05-0.12) with $T_c = 26$ K

Yoichi Kamihara,\*,† Takumi Watanabe,‡ Masahiro Hirano,†,§ and Hideo Hosono†,‡,§

ERATO-SORST, JST, Frontier Research Center, Tokyo Institute of Technology, Mail Box S2-13, Materials and Structures Laboratory, Tokyo Institute of Technology, Mail Box R3-1, and Frontier Research Center, Tokyo Institute of Technology, Mail Box S2-13, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

Received January 9, 2008; E-mail: hosono@msl.titech.ac.jp





## **Major Classes of Iron-Based Superconductors**



J. Paglione and R. L. Greene, Nature Physics 6(2010)645.

## **Common Building Blocks of Iron-Based SCs**



#### **FeAs or FeSe Layers**



## **Multiple Orbitals and Multiple Bands**



I Mazin, Nature 46 (2010) 183.

#### Fermi Surface of (Ba<sub>0.6</sub>K<sub>0.4</sub>)Fe<sub>2</sub>As<sub>2</sub> (Tc~38K)



#### Fermi surface at Γ:

Two large hole-like Fermi surface sheets;

#### Fermi surface at M:

One tiny electron pocket and Four hole-like lobes

L. Zhou, X. J. Zhou et al., Chin. Phys. Lett. 25(2008) 4402

## **Superconducting Gap Symmetry of Fe-Based SCs**



P. J. Hirshfeld et al., Rep. Prog. Phys. 74 (2011) 124508

# **Fermi Surface Nesting Picture**



K. Kuroki et al., Phys. Rev. Lett. 101, 087004 (2008);
I. Mazin et al., Phys. Rev. Lett. 101, 057003 (2008);
F. Wang et al., Phys. Rev. Lett. 102, 047005 (2009);
I. Mazin, Nature 464, 183 (2010).

#### **Generic Phase Diagram of the Iron-Based Superconductors**



## **Nearly Isotropic Superconductivity of Fe-Based SCs**



#### The World's First 100 Meter-Class Iron-Based Superconducting Wire



115 m long 7-filamentary wire





At 4.2 K, 10 T, transport Jc distribution along the length of the first 100 m long 7-filament Sr122 tape

http://snf.ieeecsc.org/pages/new-paper-and-result-highlights

X. P. Zhang, Y. W. Ma et al., IEEE TAS 27 (2017) 7300705

# **Advantages of Fe-Based Superconductors**

# High transition temperature Tc;

# ♦ High critical field H<sub>c2</sub>;

# Nearly isotropic superconductivity;

# **♦** More metallic, easier to fabricate.

# **Promising for applications**

# Latest Development on FeSe-Related Superconductors

# **FeSe-Derived Superconductors and Physics**



# **Discovery of Superconductivity in Bulk FeSe**



F. C. Hsu, M. K. Wu et al., PNAS 105 (2008) 14262.

## **Upper Critical Field of Bulk FeSe Superconductor**



Bulk FeSe Tc~10 K Upper critical field H<sub>c2</sub> ~30 Tesla

Conventional Superconductor NbTi

Tc~10 K

Upper critical field  $H_{c2} \sim 15$  Tesla

S. I. Vedeneev et al., Phys. Rev. B 87 (2013) 134512

# **Superconductivity in Fe(Te<sub>1-x</sub>Se<sub>x</sub>) System**



100

Under 30 T, 4.2K Jc ~ 1 x 10<sup>5</sup> A/cm<sup>2</sup>



M. H. Fang et al., Phys. Rev. B 78 (2008) 224503; N. Takayaka et al., J. Phys. Soc. Jpn. 79, 113702(2010) W. D. Si and Q. Li et al., Nature Commun. 4 (2013) 1347

#### **Strong Enhancement of Tc in FeSe under High Pressure**

Tc is increased from ~9 K to ~40 K at ~6 GPa.



S. Medvedev et al., Nature Materials 8 (2009) 630.J. P. Sun, J. G. Cheng et al., Nature Communications 7 (2016) 12146;

# **Enhancement of Tc in FeSe through Gating**

#### Tc is increased from ~9 K to 35~48 K by gating Gating → Electron doping



B. Lei, X. H. Chen et al., Phys. Rev. Lett. 116 (2016) 077002 (2016);K. Hanzawa, H. Hosono et al., PNAS 113 (2016) 3986.

#### **Possible High Tc in Single-Layer FeSe Film on SrTiO<sub>3</sub>**

CHIN. PHYS. LETT. Vol. 29, No. 3 (2012) 037402

#### Interface-Induced High-Temperature Superconductivity in Single Unit-Cell FeSe Films on $SrTiO_3$ \*

WANG Qing-Yan(王庆艳)<sup>1,2†</sup>, LI Zhi(李志)<sup>2†</sup>, ZHANG Wen-Hao(张文号)<sup>1†</sup>, ZHANG Zuo-Cheng(张祚成)<sup>1†</sup>, ZHANG Jin-Song(张金松)<sup>1</sup>, LI Wei(李渭)<sup>1</sup>, DING Hao(丁浩)<sup>1</sup>, OU Yun-Bo(欧云波)<sup>2</sup>, DENG Peng(邓鹏)<sup>1</sup>, CHANG Kai(常凯)<sup>1</sup>, WEN Jing(文竞)<sup>1</sup>, SONG CanLi(宋灿立)<sup>1</sup>, HE Ke(何珂)<sup>2</sup>, JIA Jin-Feng(贾金锋)<sup>1</sup>, JI Shuai-Hua(季帅华)<sup>1</sup>, WANG Ya-Yu(王亚愚)<sup>1</sup>, WANG Li-Li(王立莉)<sup>2</sup>, CHEN Xi(陈曦)<sup>1</sup>, MA Xu-Cun(马旭村)<sup>2\*\*</sup>, XUE Qi-Kun(薛其坤)<sup>1\*\*</sup>

<sup>1</sup>State Key Lab of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084 <sup>2</sup>Institute of Physics, Chinese Academy of Sciences, Beijing 100190

(Received 1 February 2012 and accepted by ZHU Bang-Fen)



## **Distinct Electronic Structure of Superconducting Single-Layer FeSe/SrTiO<sub>3</sub> Films**



Distinct electronic structure: no Fermi surface near Γ, only electron-like Fermi surface near M;

Nearly isotropic superconducting gap without nodes.

D. F. Liu, W. H. Zhao, D. X. Mou, J. F. He, X. C. Ma, Q. K. Xue, X. J. Zhou et al., Nature Communications 3, 931 (2012)

## Phase Diagram and Indication of Tc~65K in Single-Layer FeSe/SrTiO<sub>3</sub> Films



S. L. He, J. F. He, W. H. Zhao, L. Zhao, X. C. Ma, Q. K. Xue, X. J. Zhou et al., Nature Materials 12, 605 (2013)

#### **Transport and Magnetic Measurements on Single-Layer FeSe/SrTiO<sub>3</sub> Films**

#### Well-accepted Tc~65 K in Single-Layer FeSe/SrTiO<sub>3</sub> Films

Resistivity

**Magnetic measurements** 



W. H. Zhang, J. Wang, Q. K. Xue et al., Chinese Physics Letters 31 (2014) 017401.

Z. Zhang, Y. Y. Wang et al., Science Bulletin 60 (2015) 1301.

#### **Discovery of (Li,Fe)OHFeSe Superconductor with a Tc~42 K**

#### Bulk, Single-phase



X. F. Lu, X. H. Chen et al., Phys. Rev. B 89 (2013) 020507 (R).
X. F. Lu, X. H. Chen et al., Nature Mater. 14 (2015) 325.
U. Pachmayr, D. Johrendt, et al. Angew. Chem. Int. Edit. 54, 293 (2015).
X. L. Dong, Z. X. Zhao et al., J. Am. Chem. Soc. 137, 66 (2015).

# **Performance of 11111 Thin Films**

- 1、High critical temperature: Tc = 42.4 K;
- 2. High critical field:  $H_{c2}^{c}(0) \sim 79.5 \text{ T}; H_{c2}^{ab}(0) \sim 443 \text{ T}$
- 3、 High critical current:  $5 \times 10^5$  A/cm<sup>2</sup> at ~20K

Superconducting cavities?



Y.L. Huang, X. L. Dong, K. Jin, Z. X. Zhao et al., Chin. Phys. Lett. 34 (2017) 077404

# Progress in Physics Study of the Iron-Based Superconductors

#### **Distinct Fermi Surface Topology in FeSe-Related Superconductors**

![](_page_53_Figure_1.jpeg)

Lin Zhao and X. J. Zhou et al., Nature Communications 7, 10608 (2016)

- D. F. Liu , X. J. Zhou et al., Nature Communications 3, 931 (2012).
- D. X. Mou and X. J. Zhou et al.,Phys. Rev. Lett.106, 107001 (2011)

## **Implications on Superconductivity Mechanism** --Rules out Fermi Surface Nesting Picture

![](_page_54_Figure_1.jpeg)

If Fermi surface topology is critical, then

Hole-Like Fermi Surface near Γ is NOT necessary for superconductivity;

**Electron-Like Fermi Surface near M is crucial.** 

#### **Key Ingredients for Superconductivity in Iron-Based Superconductors**

![](_page_55_Figure_1.jpeg)

1), Simple electronic structure;

2). Record high Tc~65K;

3). Nearly isotropic superconducting gap.

Ideal system for studying mechanism of superconductivity in the iron-based superconductors

D. F. Liu, W. H. Zhao, D. X. Mou, J. F. He, X. C. Ma, Q. K. Xue, X. J. Zhou et al., Nature Communications 3, 931 (2012).

# **Summary and Perspective**

# **Exploration of New Superconductors**

![](_page_57_Figure_1.jpeg)

![](_page_57_Picture_2.jpeg)

"for his investigations on the properties of matter at low temperatures which led, inter alia, to the production of liquid helium"

![](_page_57_Picture_4.jpeg)

Heike Kamerlingh Onnes

![](_page_57_Picture_6.jpeg)

Conventional (Tc < 40K)

#### The Nobel Prize in Physics 1987

"for their important break-through in the discovery of superconductivity in ceramic materials"

![](_page_57_Picture_10.jpeg)

J. Georg K. Alexander Bednorz Müller Copper-Oxide High-Tc SCs (Tc ~165K)

Next?

Room Temperature Superconductors? (Tc~300K)

#### **Theory for High Tc Superconductivity—To Be Developed**

#### Bardeen, Cooper and Schrieffer (1957)

#### The Nobel Prize in Physics 1972

"for their jointly developed theory of superconductivity, usually called the BCS-theory"

![](_page_58_Picture_4.jpeg)

![](_page_58_Picture_5.jpeg)

John Leon Bardeen Neil Cooper

John Robert Schrieffer

Formation of Cooper pairs in the superconducting state;

![](_page_58_Figure_9.jpeg)

> The pairing is mediated by phonons.

![](_page_58_Figure_11.jpeg)

# **Mechanism of High-Tc Superconductivity?**

![](_page_58_Picture_13.jpeg)

# LETTER

# Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system

A. P. Drozdov<sup>1</sup>\*, M. I. Eremets<sup>1</sup>\*, I. A. Troyan<sup>1</sup>, V. Ksenofontov<sup>2</sup> & S. I. Shylin<sup>2</sup>

![](_page_59_Figure_4.jpeg)

#### **Transient Room Temperature Superconductivity?**

![](_page_60_Figure_1.jpeg)

W. Hu, A. Cavalleri et al., Nature Materials 13, 705 (2014)

# There is still a plenty of room for high temperature superconductivity

![](_page_61_Picture_1.jpeg)

#### 12<sup>th</sup> International Conference on Materials and Mechanisms of Superconductivity and High Temperature Superconductors (M<sup>2</sup>S-2018)

#### August 19 - 24, 2018, Beijing, China

Organized by: National Laboratory for Superconductivity, Institute of Physics, Chinese Academy of Sciences, Beijing, China

![](_page_63_Picture_3.jpeg)

The M2S-2018 conference is the 12th in the series as an international event on superconductors and mechanisms of superconductivity held now every three years. The aim of the Conference is to provide a platform for members of the international superconductivity community to report their latest results, exchange information and ideas, and foster collaborations. The Conference is dedicated to all aspects of basic superconductivity research in materials, mechanisms and phenomena of superconductivity, and its applications.

#### **Scientific Topics**

- Cuprate Superconductors
- Iron-Based Superconductors
- Heavy Fermion Superconductors
- Organic Superconductors
- Other Superconductors
- Topological Superconductors
- Mechanisms and Phenomenology of Superconductivity
- Applications
- Others

#### Conference Chairs

#### Xingjiang Zhou, Zhongxian Zhao

Program Committee Chairs Fuchun Zhang, Tao Xiang, Xianhui Chen, Nanlin Wang

#### **Important Dates**

Registration & abstract submission open: Jan. 1, 2018 Prize nomination deadline: April 29, 2018 Early registration deadline: May 31, 2018