Mini-workshop on Accelerator, IAS Program on High Energy Physics 2018

Recent Progress on the Development of Iron-based Superconducting Wires for High-field Applications

C. Yao, H. Huang, C. Dong, D. Wang, X. Zhang, Y. Ma

Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing, China

Main collaborators: S. Awaji

Institute for Materials Research, Tohoku University, Sendai, Japan

Jan 18, 2018

HKUST Jockey Club Institute for Advanced Study

2 39

Outline

- **1. Properties & application potential of iron-based superconductors**
- 2. Microstructural defects & weak-link GBs in polycrystalline IBS
- 3. Improving the J_c -performance of IBS wires and tapes
- 4. Progress on practical wires for high-field applications
- 5. Summary & prospects

Crystal structures of iron-based superconductors

basically tetragonal with long c-axes including a Fe plane (ab-direction)

> large structural variation at blocking layer

Upper critical fields of iron-based superconductors

Putti et al. 2010 *SuST* 23 034003

exceptionally high H_{c2} for 1111- and 122-type iron-based superconductors
 small anisotropy gives high vortex stiffness

Upper critical fields of iron-based superconductors

the conventional low-*T*c
 superconductors (NbTi & Nb₃Sn)
 restrict the magnets with field below
 25 T at liquid helium temperature.

> for 1111- and 122-type IBS, the H_{c2} is still above 40 T at 20 K

 ➢ promising for applications operated at liquid helium temperature and also in moderate temperature around 20
 K, which can be obtained by cryocoolers

Comparative T-H phase diagram for different superconducting materials

Gurevich 2014 Annu. Rev. Condens. Matter Phys. 5 35

Application potential of iron-based superconductors

- $> T_{\rm c}$ = 38 and 56 K in 122 & 1111 system
- > ultrahigh H_{c2} > 80 T
- > very small anisotropy γ = 1.5~2
- strong vortex pinning

promising candidate for:

Application potential of iron-based superconductors

Superconductivity parameters for practical superconductors

Material	T _c (K)	Н _{с2, 4.2 К} (Т)	Coherence length ε _{ab} (nm)	Anisotropy γ _H
Nb47wt%Ti	9	11.5	4	Negligible
Nb ₃ Sn	18	25	3	Negligible
MgB ₂	39	25	6.5	2~2.7
YBCO	92	>100	1.5	7
Bi-2223	110	>100	1.5	50~100
Bi-2212	90	>100		50~100
Sm-1111	55	>100	1.8~2.3	5~10
Ba-122	38	>80	1.5~2.4	1.5~2
Fe(Se,Te)	16	>40	1.2	1.1~1.9

Outline

- **1. Properties & application potential of iron-based superconductors**
- 2. Microstructural defects & weak-link GBs in polycrystalline IBS
- 3. Improving the J_c -performance of IBS wires and tapes
- 4. Progress on practical wires for high-field applications
- 5. Summary & prospects

$J_{\rm c}$ in IBS single crystals and films

Grain boundary nature of 122 pnictides

Co doped Ba-122 IBS thin films on bicrystals

> J_c decreases exponentially with increasing GB angle > the critical angle θ_c of Ba-122 GBs is 9°, larger than YBCO ($\theta_c \sim 5^\circ$)

the traditional **powder-in-tube (PIT) method**, which has been utilized in commercial Nb₃Sn, Bi-2223 and MgB₂ wires, is promising for the large-scale manufacture of IBS conductors

Structural defects in polycrystal pnictides

Low Temperature Laser Scanning Microscopy (LTLSM) + SEM

Katase T et al. 2009 APL 95 142502

1111-type polycrystal IBS bulks

im-O

Well-connected

GBs

Fe-As phase

Cracks on

GBs

- cracks and low density (porosity) always lead to poor grain connection
- impurity phases (such as Fe-As) that wet the grain boundaries
- \succ inter-grain J_c in polycrystalline IBS was largely suppressed

Structural defects in polycrystal pnictides

➢ Grain boundaries in the Sr122 polycrystals are usually coated by impurity amorphous layers (10-30 nm), which show significant oxygen enrichment

These oxygen-rich layers undoubtedly obstructed many grain boundaries, consequently resulting in a poor grain connection.

Outline

- **1. Properties & application potential of iron-based superconductors**
- 2. Microstructural defects & weak-link GBs in polycrystalline IBS
- 3. Improving the J_c -performance of IBS wires and tapes
- 4. Progress on practical wires for high-field applications
- 5. Summary & prospects

Powder-in-tube method for IBS wires and tapes

The first IBS wire developed in IEECAS

The first 1111-IBS wire in 2008

SmFeAsO_{1-x} F_x wire sheathed with Ta T_c = 52 K, H_{c2} = 120 T But the transport current can not be measured

Gao 2008 Sust 21 112001

The 122-IBS wire and tape in 2010 $Sr_xK_{1-x}Fe_2As_2$ wire sheath with Ag/Fe $J_{c,self field} = 1200 \text{ A/cm}^2$ Using silver sheath, we obtained transport current for the first time.

Wang 2010 Physica C 470 183

> At present, Ag is the most widely used sheath materials for high- J_c IBS wires and tapes since it does not react with IBS cores during heat treatment

in-situ

Wang 2010 Physica C 470 183

*J*_c (4.2 K, 0 T) = **1200** A/cm²

after the *ex-situ* synthesis was proposed, the transport J_c of 122-IBS increased much more rapidly than 1111-IBS, which still suffers from low purity precursor.

VS

ex-situ

Qi 2010 SuST 23 055009

$J_{\rm c}$ (4.2 K, 0 T) = **3750** A/cm²

Sr-122 wires

- fewer impurity phases
- higher mass density
- better crystallinity

rolling induced c-axis texture

Sr-122 tape

*J*_c (4.2 K, 0 T) = **5400** A/cm²

rolling texture + Sn addtion

*J*_c (4.2 K, 10 T) = **1.7**×**10**⁴ A/cm²

Gao 2012 Sci.Rep. 2 998

Wang L 2011 Physica C 471 1689

grain texture can reduce the high-angle GBs, and suppress the influence of weak-link effect for inter-grain currents

Ba-122 round wire made in

hot isostatic press (HIP)

(a) <u>400 μm</u>

175 MPa, 700 °C

Ba-122 wire made in IEECAS

Liu 2017 SuST 30 115007 J_c (4.2 K, 10 T) = ~1 × 10⁴ A/cm² 200 MPa, 700 °C

- Highly dense superconducting core with mass density near 100%
- almost no grainorientation (texture)

Gao 2014 Sci. Rep. 4 4465

cold press process

Ba-122 tapes made by NIMS, Japan J_{c} (4.2 K, 10 T) = 8.6×10⁴ A/cm²

- Cold pressing can largely increase the mass density of 122-IBS phase
- cracks cannot be completely healed by subsequent heat treatment.

hot press process

SEM (*ab* plane) Zhang 2014 *APL* 104 202601

(Sr-122 tapes by IEECAS)

HRTEM J_c (4.2 K, 10 T) = **1.0**×**10**⁵ A/cm²

EBSD

strongly improved c-axis texture and core density, thus greatly improving transport $J_{\rm c}$

30 MPa, 850~900 °C

Lin 2014 *Sci. Rep.* 4 6944 J_c (4.2 K, 10 T) = 1.2×10⁵ A/cm²

Continuously increased J_c for 122-IBS wires and tapes

Continuously increased J_c for 122-IBS wires and tapes

Recently in IEECAS, a new J_c record was achieved in Ba-122 tapes

22

Outline

- **1. Properties & application potential of iron-based superconductors**
- 2. Microstructural defects & weak-link GBs in polycrystalline IBS
- 3. Improving the J_c -performance of IBS wires and tapes
- 4. Progress on practical wires for high-field applications
- 5. Summary & prospects

Challenges in practical applications

chemical stability

Fabrication process for multifilament wires and tapes

The first 122 iron-pnictide multifilamentary wire

Yao et al. 2013 APL 102 082602

7-, 19- & 114-filament Sr-122 wires with Ag/Fe sheath

transverse cross-sections

longitudinal cross-sections

When increasing the number of filaments and reducing the filament diameter:

- degraded uniformity of mass density for Sr-122 filaments;
- degraded uniformity of interface
 between Sr-122 filaments and Ag sheath;

7-, 19- & 114-filament Sr-122 wires with Ag/Fe sheath

Gauss fits of particle size inside the Sr-122 filaments

 J_{c} (4.2 K, 10 T): 7-fil: 1.4×10⁴ A/cm² 19-fil: 8.4×10³ A/cm² 114-fil: 6.3×10³ A/cm²

The refined grains can increase the density of grain boundaries and reduce the degree of grain texture, which are not beneficial to the J_c improvement

Yao et al. 2015 JAP 118 203909

Monel, any of a group of nickel-copper alloys, first developed in 1905, containing about 66 % <u>nickel</u> and 31.5 % <u>copper</u>, with small amounts of iron, manganese, carbon, and silicon.

Advantages :

- ✓ a melting range of 1300-1350 °C;
- ✓ It also has good ductility and thermal conductivity.
- excellent mechanical properties at subzero temperatures, does not undergo a ductile-to-brittle transition even when cooled to the temperature of liquid hydrogen. This is in marked contrast to many ferrous materials which are brittle at low temperatures despite their increased strength

typical values of Vickers hardness after annealed at 800~900 °C:

pure silver: 30~40; iron: 90~100; Monel: 150~180 Yao et al. 2015 JAP 118 203909; Yao et al. 2017 SuST 30 075010

7-filament Sr-122 wires with Ag/Monel composite sheath

Transverse cross-sections for 7-filament Sr-122/Ag/Monel wires 2.0 mm in diameter and tapes 0.75 and 0.45 mm in thickness

- Heat treatment temperature up to 850 °C is safe for Ag/Monel sheath, higher than 770 °C for Ag/Cu sheath
- flat rolled tapes with a thickness down to 0.4 mm can be made

Yao et al. 2017 *SuST* 30 075010

Transport J_c of 7-filament Sr-122/Ag/Monel tapes

- For the rolled tapes, the transport J_c gradually grows with the reduction of tape thickness from 0.9 to 0.45 mm.
- For the hot-pressed tapes, a high transport J_c of 3.6×10⁴ A cm⁻² was achieved at 4.2 K and 10 T.
- For the 0.6 mm thick tapes, the transport J_c decreases with the decline of heat treatment temperature.

Vickers hardness of 7-filament Sr-122/Ag/Monel tapes

- low annealing temperature or large deforming ratio is possible to cause inhomogeneous microstructure for the Sr-122 filaments
- a well-fitted positive semi-logarithmic correlation between the Sr-122 hardness and transport J_c

Microstructure of 7-filament Sr-122/Ag/Monel tapes

the microstructure of the Sr-122 filaments is well in accordance with their $J_{\rm c}$ performance

$J_{\rm c}$ -strain relationship of Sr-122/Ag tapes

➤ the irreversible strain ε= 0.25% under tensile stress, comparable to Bi-2212 wire
➤ Reversible critical currents under a large compressive strain of ε = -0.6 % observed for
Sr-122/Ag wire; when the applied strain exceeds the irreversible tensile strain limit, the
critical current drops rapidly, and a significant crack is found along the sample width.

*J*_c-strain relationship of 7-filament Sr-122/Ag/Monel tapes

almost no J_c degradation under a large compressive strain of 0.6%

cooperate with Prof. Huajun Liu group in Institute of Plasma Physics, CAS

low-cost copper as sheath for 122-IBS tapes

single copper sheath

copper and thin silver double sheath

The first 10-meter class iron-based superconducting wire

The average J_c is 1.84×10^4 A/cm² for the 11 m long Sr122/Ag wire The fluctuations of the J_c is ~5%

The first 100-meter class iron-based superconducting wire

made in IEECAS

Outline

- **1. Properties & application potential of iron-based superconductors**
- 2. Microstructural defects & weak-link GBs in polycrystalline IBS
- 3. Improving the J_c -performance of IBS wires and tapes
- 4. Progress on practical wires for high-field applications
- 5. Summary & prospects

Prospects for iron-based superconducting wires

• further improving transport J_c for multifilamentary 122 IBS wires

find optimized conditions for cold work process and heat treatment improve the interface uniformity between IBS filaments and sheath improve the microstructure of IBS phase inside filaments

- improving the architecture of multifilamentary 122 IBS wires increase the filament number for high-field applications increase the engineering critical current density $J_{\rm E}$
- developing long-length 122 IBS wires with composite sheath employ intermediate annealing in the cold-work process to alleviating the deformation hardening effect of sheath

Summary

- The transport J_c of 122-type iron-based superconducting wire is rapidly increasing, and has surpassed the practical level at 4.2 K and 10 T with a maximum of 1.5×10⁵ A/cm²
- Composite sheath is quite promising for developing high-strength, high-J_c performance and low cost multifilamentary iron-based superconducting wires, which can be strong candidates for highfield application such as IMR, NMR and accelerator.
- The world's first 100-meter class iron-based superconducting wire was achieved in IEECAS, demonstrating the great potential for large-scale manufacture.

Thank you for your attention !

