

Superior performance. Powerful technology.

REBCO HTS Wire Manufacturing and Continuous Development at SuperPower

Yifei Zhang, Satoshi Yamano, Drew Hazelton, and Toru Fukushima

2018 IAS-HEP

Mini-Workshop on High Temperature Superconducting Materials and Magnets

- The Hong Kong University of Science and Technology
- January 18, 2018

Outline

- Introduction to SuperPower Inc.
- REBCO wire and its manufacturing
- Applications of REBCO wire
- Performance and quality of REBCO wire
- Development and challenges
- Summary

Introduction to SuperPower

Superior performance. Powerful technology.

- Formed in 2000
- Location: Schenectady, New York
- Number of employees:
 30
- President & CEO : Dr. Toru Fukushima
- Product: REBCO 2G HTS wire
- A subsidiary of Furukawa Electric Co. Ltd. Since 2012

A brief history of SuperPower

- 2000-2006: The Intermagnetics Years
 - SuperPower formed under IGC (Intermagnetics General Corporation)

- 2G HTS wire technology research & development
- Demonstration projects electric power applications
- 2006-2012: The Philips Years
 - Production scale-up
 - Market exploration
 - Performance improvements, flux pinning enhancement
- From 2012 onward: The Furukawa Years
 - Steady expansion of production capacity
 - Continuous performance improvements
 - Continuous R&D, customization
 - Processing optimization for quality and yield enhancement

Furukawa has a long history in LTS

Nb-Ti wire with various Cu ratio & filament sizes

Low ac loss Nb-Ti wire

Al-stabilized Nb-Ti wire

High Jc Nb₃Sn wire

High strength Nb₃Sn wire

Al-stabilized Nb-Ti Rutherford cable

99999

Nb-Ti Rutherford cable with cored bar

REBCO wire manufacturing at SuperPower

Sputtering Silver Overlayer

2 µm

MOCVD (RE)BCO - HTS (epitaxial)

l µm

IBAD/Magnetron Sputtering

Buffer Stack

Electroplating Copper Stabilizer

20 µm

* not to scale; SCS4050

Electropolishing

IBAD

Buffer Deposition

MOCVD

Electropolishing

50 µm

~1.8 µm

20 µm

~0.2 µm Substrate

Electroplating

IBAD-MOCVD based technologies

2018 IAS-HEP = Hong Kong = January 18, 2018

REBCO wire – basic information

Item	Value	Note
Composition	REBa2Cu3O7-δ	RE=Rear Earth
Width (mm)	(1), 2, 3, 4, 6, 12	
Substrate Thickness (µm)	30, 50, 100	Hastelloy
Ag Thickness (μm)	1~5	Sputtered
Cu Thickness (µm)	10~115 total	Electroplated
Insulation	Polyimide tape	Wrapped
Piece Length (m)	300~500	
Joint resistance (n Ω)	<20	Soldered
Ic(77K, s.f.) (A/12mm)	300~600	at 1µV/cm
σc,0.95 (MPa)	~550	γs dependent
ε c,0.95 (%)	~0.4	
Min Bending D (mm)	5, 11, or 25	Substrate dependent

Cross-sectional image of a Cu-plated wire

Targeted applications of REBCO HTS wires

Energy	Defense	Transportation	Industrial	Medical	Science/ Research
 Cables FCLs Generators Transformers SMES Fusion Reactors 	 Motors Cables 	 Maglev Motors 	 Induction Heaters Motors Generators Magnetic Separation Bearings 	 MRI Particle Therapy Current Leads 	 HF Magnets NMR Accelerators Neutron and X-ray Scattering Undulators

32T hybrid user magnet by NHMFL

HTS/LTS hybrid magnet

•LTS	15T
•HTS	17Ţ
•Uniformity 1 cm DSV	5·10 ⁻⁴
 Total inductance 	254 H
 Stored energy 	8.6 MJ
 Ramp to 32 T 	1 hour
Cycles	50,000

HTS conductor

- Wire width 4mm
- Wire thickness <0.170mm
- Ic at 17T, 18°, 4.2K >256A
- •n-value at 17T, 18°, 4.2K >25

180A

- Stabilizer RRR >50
- •lop

1.3 GHz hybrid NMR by MIT

H800

- •Top=4.2K, lop=251A
- 3-nested-coil formation
- NI DP coils
- Tape width 6mm
- Tape total thickness 75µm
- •Cu stabilizer 10µm per side
- Coil 1: 26 DP, 369MHz, 8.66T
- Coil 2: 32 DP, 242MHz, 5.68T
- Coil 3: 36 DP, 189MHz, 4.44T
- •HTS contribution: 61.5% of 30.5T

ARC fusion reactor – proposed by MIT (Affordable, Robust and Compact)

- HTS magnets at 9.2T on axis, 23T on coil
- Much smaller than ITER
 - $-1/10^{th}$ the volume
 - -same gain
- 5,000 tons
- 60,000 kAm of HTS
- Demountable joints for maintenance

Spherical fusion reactor by Tokamak Energy

ST25 (HTS)

ST40 (LN2 cooled Cu)

ST140 (HTS)

tokamak energy

CORC ® (Conductor on Round Core) Cable

- Fabricated by winding multiple wires in a helical way around a small round former
- High currents and current densities
- Mechanically strong
- Flexible
- High level of conductor transposition

Advanced Conductor Technologies LLC www.advancedconductor.com

First commercial sale (CERN)

- 12 meter CORC® cable (38 tapes)
- Cable for detector magnets
- Delivered August 2014

Courtesy of D. van der Laan, ACT LLC

Canted-Cosine-Theta magnets wound from CORC® wires

CORC® CCT magnet program goals

- Reach 5 T in CORC® CCT insert with 10 T (15 T) LTS CCT outsert
- Develop the CORC® CCT magnet technology in several steps
- C1: 1 T 4.2 K, self-field, low-Je CORC® wire
- C2: 4-5 T 4.2 K, self-field, 2-3 T in 10 T, high-Je CORC® wire
- C3: 5 T in 15 T background, advanced CORC® wires

CCT C1

Advanced Conductor Technologies LLC www.advancedconductor.com

Courtesy of D. van der Laan, ACT LLC

CCT C2-0

Twisted Stacked-Tape Cable (TSTC)

32 YBCO tape Twisted Stacked-Tape Cable (TSTC) with 200 mm twist pitch

For example:

- REBCO tapes are stacked between two thick copper strips.
- The stacked-tapes with the copper strips are loosely wrapped with a fine stainless steel wire.
- 3. Then the stacked-tape cable is twisted.

Courtesy of M. Takayasu, MIT-PSFC

1117

PSFC

Stacked-Tape Twist-Winding (STTW) Method for 3D Magnets

Stacked tape cable is twisted during winding.

A curved saddle winding of 50 YBCO tapes on a 50 mm diameter tube.

Twisted Stacked-Tape Cable (TSTC) Conductor Scale-up

TSTC basic conductors to fabricate multi-stage twisted cable.

CICC TSTC conductor

Roebel Cable

- Fabricated by winding mechanically punctured meandering tapes
- High current and low AC loss

Stacked-tape Cable

- Two-step cabling
- 16 tapes per strand, twisted at 32 cm. 20 strands per cable, twisted at 100cm
- 60kA at 12T

Nikolay Bykovsky et al, EUCAS 2017

Performance and quality of REBCO wire

- *I*_c(*B*, *T*, θ)
 - Field dependence
 - Angular dependence
 - Minimum $I_{c}(\theta)$
 - Engineering current density, Je
- Uniformity along length (piece length) and consistency
- Electromechanical properties (stress and strain limits)
 - Critical stress and strain
 - Irreversible stress and strain
 - Fatigue (in various stress states)
- Overcurrent stability
- Joint
 - Geometry
 - Resistance (resistivity)
 - Electromechanical strength (stress and strain limits)
- AC losses
- Insulation

In-field performance

In-field performance – tailored structure

- Effect of Zr doping level on $Ic(BT\theta)$
 - 7.5%Zr, 15%Zr, or higher
 - Field, temperature and angular dependence
- Wire classification optimized for various applications
 - High-temperature low-field
 - Intermediate-temperature intermediate-field
 - Low-temperature high-field

Cross-section, TEM, 15%Zr

Cross-section, TEM, 7.5%Zr

In-field performance – correlation

Earlier work at University of Houston suggested

- There is no correlation between Ic(30K, 3T//c) and Ic(77K, 0T)
- There is a fairly good correlation between Ic(30K, 3T//c) and Ic(77K, 3T//c)

V. Selvamanickam, et al, SUST, 27(2014)055010

In-field performance – correlation

Our recent data suggested

 There is a loosely inverse correlation between Ic(4.2K, 5T//c) and Ic(77K, 0T)

 There is a fairly good correlation between lc(4.2K, 17T//c) and lc(4.2K, 5T//c)

- There is a fairly good correlation between Ic(4.2K, 8T//c) and Ic(30K,

2T//c)

Angular dependence and anisotropy

- Biaxially textured REBCO film is essentially highly anisotropic material

 Ic is dependent on magnetic field orientation
- The anisotropy is determined by the pinning landscape
- C-axis oriented BZO nano columns effectively enhance the pinning when B//c, therefore change the anisotropy
- The pinning effect from BZO is temperature and field dependent

*I*_c uniformity along length – magnetic measurement

Position (cm)(on a 4 mm wide wire)

- Non-contact measurement
- High spacial resolution, high speed, and reel-to-reel
- Monitoring I_c at multiple production points after MOCVD
- Capable of quantitative 2D uniformity inspection

Ic uniformity along length – transport measurement

Consistent in-field performance

Higher $J_{\rm e}$ (engineering current density) wire with thinner substrate

- Thinner substrates (30µm or thinner) lead to higher Je without compromising the functionality of stabilizer that needs to be of certain thickness
- Higher $J_{\rm e}$ and the flexibility of thinner wire facilitates fabrication of high current cables

2018 IAS-HEP = Hong Kong = January 18, 2018

Higher J_{e} (engineering current density) wire with thinner substrate

LBC3 HTS insert in 31T resistive magnet reached 45.46T

Hahn, et al EUCAS 2017

Mechanical and electromechanical properties and testing

- Axial tensile test at room temperature or at 77K (with I_c)
 - Measurement of elastic modulus and yield stress
 - Determination of critical stress and irreversible stress (strain)
- Torsion-tension test at 77K (with I_c)
 - Measurement of critical tensile stress under twist
- Transverse (*c*-axis) compressive test at 77K (with *I*_c)
 - Measurement of critical compressive stress
- Bending test at 77K (with I_c)
 - Measurement of minimum bending diameter
- Measurement of delamination strength various testing methods
 - Peel test: at room temperature
 - Pin-pull (c-axis tensile) test: at room temperature
 - Anvil (*c*-axis tensile) test: at room temperature or at 77K (with *I*_c)

Uniaxial tension

Torsion + tension

Peel Test

Effect of stabilizer thickness ratio on critical stress under uniaxial tension

2018 IAS-HEP - Hong Kong - January 18, 2018

Continuous development and engineering

- Wire on thinner substrates
 - Higher engineering current density and enhanced mechanical flexibility
 - For fabrication of high current cables and high-field magnets
- Different REBCO formula tailored for various operating conditions
 - Intermediate-temperature (30-50K) and intermediate-field (2-4T) applications
 - Low-temperature (4.2K) high-field (>10T) applications
- Bonded wires
 - Enhanced performance and specific functionality
- Wire filamentization
 - Reduction of AC loss
 - Mitigation of screening effect
- Alternative insulation
 - Thinner and more uniform
- Current Leads
 - AgAu instead of pure Ag
- Solder Coating
 - Facilitate cabling

Summary

- In a longer term REBCO HTS wire holds a great promise for electric power, transportation and medical applications (high reliability required)
- REBCO HTS wire has the advantages over other superconducting wires and its Ic level is high enough for many high-field magnet applications
- Different types of high-current /low-AC-loss cables are being developed, which will facilitate the adoption of REBCO HTS wire for magnet applications
- Continuous development efforts are focused on
 - Further reduction in wire price and increase in wire production capacity
 - Further improvements in wire performance and quality
 - Technology advancements in AC loss reduction, joint and termination fabrication, insulation, quench detection/protection

