Probing 6D Operators at Future e-e+ Colliders

LYU Kunfeng, HKUST

Based on 1711.04046, in collaboration with Wen Han Chiu, Iris Leung, Tao Liu and Lian-Tao Wang

Motivation

- UV physics typically generates a set of operators in lowenergy EFT. Many analyses have been done on the probe for these EFT operators, in various contexts.
- We will pursue a relatively complete analysis on the sensitivities at future e-e+ colliders, by taking into account the correlation among the relevant operators.
- According to such analyses, we hope to obtain a global picture on the scientific performance of several e-e+ collider configurations proposed, including ILC, FCC-ee and CEPC

Six-Dimensional Operators

$$\begin{array}{ll} \mathcal{O}_{WW} = g^2 |H|^2 W^a_{\mu\nu} W^{a,\mu\nu} & \mathcal{O}_T = \frac{1}{2} (H^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H)^2 & \mathcal{O}_L^{(3)l} = (iH^{\dagger} \sigma^a \overset{\leftrightarrow}{D}_{\mu} H) (\bar{L}_L \gamma^{\mu} \sigma^a L_L) \\ \mathcal{O}_{WB} = gg' H^{\dagger} \sigma^a H W^a_{\mu\nu} B^{\mu\nu} & \mathcal{O}_H = \frac{1}{2} (\partial_{\mu} |H|^2)^2 & \mathcal{O}_{LL}^{(3)l} = (\bar{L}_L \gamma_{\mu} \sigma^a L_L) (\bar{L}_L \gamma^{\mu} \sigma^a L_L) \\ \mathcal{O}_{BB} = g'^2 |H|^2 B_{\mu\nu} B^{\mu\nu} & \mathcal{O}_6 = \lambda |H^{\dagger} H|^3 & \mathcal{O}_L^l = (iH^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H) (\bar{L}_L \gamma^{\mu} L_L) \\ \mathcal{O}_{3W} = g \frac{\varepsilon_{abc}}{3!} W^{a\nu}_{\mu} W^{b\rho}_{\nu} W^{a\mu}_{\rho} & \mathcal{O}_R^e = (iH^{\dagger} \overset{\leftrightarrow}{D}_{\mu} H) (\bar{l}_R \gamma^{\mu} l_R) \end{array}$$

10 CP even operators relevant to ZH process and O3W

- Renormalize wavefunction
- Shift EW inputs (G_F, M_Z, α) scheme
- Induce new vertices

Field Redefinition

$$h = Z_h h' = \left(1 - \frac{v^2}{2\Lambda^2} c_H\right) h'$$

$$Z^{\mu} = Z_Z Z'^{\mu} = \left(1 + \frac{v^2}{\Lambda^2} c_w s_w gg' c_{WB}\right) Z'^{\mu}$$

$$A^{\mu} = Z_A A'^{\mu} + \delta Z_X Z'^{\mu}$$

$$= \left(1 - \frac{v^2}{\Lambda^2} c_w s_w gg' c_{WB}\right) A'^{\mu} - \frac{v^2}{\Lambda^2} (c_w^2 - s_w^2) gg' c_{WB} Z'^{\mu}$$

Input Shift

$$G_F^{sm} = G_F^{(r)} \left(1 + \frac{2\left(c_{LL}^{(3)l} - c_L^{(3)l}\right)v_{sm}^2}{\Lambda^2} \right)$$
$$M_Z^{sm} = M_Z^{(r)} \left(1 - \delta Z_Z + \frac{c_T v_{sm}^2}{2\Lambda^2} \right)$$
$$\alpha^{sm} = \alpha^{(r)} (1 - 2\delta Z_A)$$

Observables

- Signal rates of Higgs events
- Z-pole observables and EWPO
- Angular observables in Higgs events (Craig et al. arXiv:1512.06877)

$$X^{(r)} = \left(1 + \frac{\delta X}{X^{(\mathrm{SM})}}(c_i, M_Z, \alpha, G_F)\right) X^{(\mathrm{SM})}$$

- Assume measured value = SM prediction
 - → The allowed BSM correction is within experimental precision

EWPT observables

Observables	ILC		FCC-ee		CEPC		
N_{ν}	0.0013 [4]	Z lineshape,100 ${\rm fb}^{-1}$	1.58×10^{-3} [34]	Z pole,150ab ⁻¹	0.0018 [19]	240 GeV, 100fb^{-1}	
A^b_{FB}	-	-	-	-	$(\pm 15 \pm 2_{\rm in}) \times 10^{-4}$ [6]	Z pole, $150 {\rm fb}^{-1}$	
A^{μ}_{FB}	-	-	$7.1 imes 10^{-4}$ [34, 40]	Z pole,150ab ⁻¹	-	-	
A_b	0.001 [4]	Z pole,100 $\rm fb^{-1}$	-	-	-	-	
R_b	$6.5 imes 10^{-4}$ [4]	Z pole,100 $\rm fb^{-1}$	$3.6 imes 10^{-4}$ [34, 40]	Z pole,150ab ⁻¹	8×10^{-4} [6]	Z pole, $100 {\rm fb}^{-1}$	
R_{μ}	2×10^{-4} [35]	Z pole,100 $\rm fb^{-1}$	$6.1 imes 10^{-5}~[34,~40]$	Z pole,150ab ⁻¹	5×10^{-4} [6]	Z pole, $100 {\rm fb^{-1}}$	
R_{τ}	2×10^{-4} [35]	Z pole,100 $\rm fb^{-1}$	$6.1 imes 10^{-5}~[34,~40]$	Z pole,150ab ⁻¹	5×10^{-4} [6]	Z pole, $100 {\rm fb^{-1}}$	
$\Gamma_Z(MeV)$	$\pm 1 \pm 0.21_{in} \ [4, \ 38]$	Z pole,100 $\rm fb^{-1}$	$\pm 0.1 \pm 0.08_{\rm th} \pm 0.065_{\rm in} \ [{\bf 38}, \ {\bf 40}]$	Z pole,150ab ⁻¹	$\pm 0.1 \pm 0.08_{\rm th} \pm 0.13_{\rm in} \ [6, \ 38]$	Z pole, $150 {\rm fb^{-1}}$	
$\sin^2\theta_{\rm eff}^{\rm lep}(10^{-5})$	$\pm 1.3 \pm 1.5_{th} \pm 2.2_{in} \ [4, \ 38]$	Z pole,100 $\rm fb^{-1}$	$\pm 0.3 \pm 1.5_{\rm th} \pm 1.6_{\rm in} \ [38, \ 40]$	Z pole,150ab ⁻¹	$\pm 2.3 \pm 1.5_{\rm th} \pm 2.5_{\rm in}$ [6, 38]	Z pole, $150 {\rm fb^{-1}}$	
m_W (MeV)	$\pm 2.5 \pm 1_{\rm th} \pm 2.8_{\rm in} \ [{\bf 38}, {\bf 41}]$	$250 \text{GeV}, 2 \text{ab}^{-1}$	$\pm 1.2 \pm 1_{\rm th} \pm 0.91_{\rm in}$ [34, 38]	WW threshold, 10 $\rm ab^{-1}$	$\pm 3 \pm 1_{\rm th} \pm 3.8_{\rm in}$ [6, 38]	$240 \text{GeV}, 5 \text{ab}^{-1}$	

• These observables only depend on 6 Wilson coefficients

 $c_{WB}, c_T, c_{LL}^{(3)l}, c_L^l, c_L^{(3)l}, c_R^e$

Precision of Higgs Events + Diboson process

Observables	ILC		FCC-ee		CEPC		
$\sigma(Zh)$	2.0% [25]	$250 \text{GeV}, 2ab^{-1}$	0.5% [34]	$240 \text{GeV}, 5 \text{ab}^{-1}$	0.5% [6]	$240 \text{GeV}, 5 \text{ab}^{-1}$	
	4.2% [25]	$500 \text{GeV}, 4 \text{ab}^{-1}$	-	-	-	-	
$\sigma(\nu\bar{\nu}h)$	3.89% [5]	$250 \text{GeV}, 2 \text{ab}^{-1}$	0.97% [19]	$350 \text{GeV}, 1.5 \text{ab}^{-1}$	2.86% [19]	$240 \text{GeV}, 5 \text{ab}^{-1}$	
	1.45% [5]	$500 \text{GeV}, 4 \text{ab}^{-1}$	-	-	-	-	
$\sigma(Zhh)$	15.0% [5]	$500 \text{GeV}, 4 \text{ab}^{-1}$	-	-	-	-	
$\sigma(W^+W^-)$	0.0200%[39]	$250 \text{GeV}, 2 \text{ab}^{-1}$	0.0136% [<mark>39</mark>]	$240 \text{GeV}, 5 \text{ab}^{-1}$	0.0136% [<mark>39</mark>]	$240 \text{GeV}, 5 \text{ab}^{-1}$	
	0.0191% [<mark>39</mark>]	$500 \text{GeV}, 4 \text{ab}^{-1}$	-	-	-	-	
$\mathcal{A}_{ heta_1}$	0.0083 [32]	$250 \text{GeV}, 2ab^{-1}$	0.0060 [32]	$240 \text{GeV}, 5 \text{ab}^{-1}$	0.0060 [32]	$240 \text{GeV}, 5 \text{ab}^{-1}$	
$\mathcal{A}_{c heta_1,c heta_2}$	0.0092 [32]	$250 \text{GeV}, 2 \text{ab}^{-1}$	0.0067 [32]	$240 \text{GeV}, 5 \text{ab}^{-1}$	0.0067 [32]	$240 \text{GeV}, 5 \text{ab}^{-1}$	
${\cal A}_{\phi}^{(3)}$	0.0092 [32]	$250 {\rm GeV}, 2 {\rm ab}^{-1}$	0.0067 [32]	$240 \text{GeV}, 5 \text{ab}^{-1}$	0.0067 [32]	$240 \text{GeV}, 5 \text{ab}^{-1}$	
${\cal A}_{\phi}^{(4)}$	0.0092 [<mark>32</mark>]	$250 {\rm GeV}, 2 {\rm ab}^{-1}$	0.0067 [<mark>32</mark>]	$240 {\rm GeV}, 5 {\rm ab}^{-1}$	0.0067 [32]	$240 \text{GeV}, 5 \text{ab}^{-1}$	

ILC Polarized Beam P(e-,e+) = (-0.8,0.3)

Fitting Strategy

- Calculate the shift in observables in terms of Wilson coefficients (only linear terms)
- Combine different observables using χ^2 fit
- Individual Fitting:

Turn on one operator each time

• In order to study the correlation among operators, marginalized fitting is exploited:

Turn on multiple operators one time and then make projection

EWPO + Z pole observables

CEPC results

$\xi_0 = -1.1c_{WB} + 2c_T - 4c_T - 4c$	$c_L^{(3)l} + 4c_{LL}^{(3)l} \qquad \xi_{\pm} = c_L^{(3)l} \pm c_L^l$
N_{ν}	$\xi_0 \xi_+ \xi c^e_R$
$A_b R_b$	ξ_0
$A^b_{FB} A^\mu_{FB} \sin^2 \theta^{ m lep}_{ m eff}$	$\xi_0 \xi_+ c^e_R$
$R_{\mu}~~R_{ au}$	$\xi_0 \xi_+ c^e_R$
Γ_Z	Other dependency
m_W	

Due to the relative low precision of $A_b R_b$ and lack of 6-th observables to break the degeneracy, the constraint of the 6 operators are not high enough

EWPO + Z pole observables

0.01

OT

O_{WW} O_{WB} O_{BB}

O_H O_{LL}^{(3)I}

0^{(3)|}

 O'_L

 O_R^e

061 03W

under consideration.

Comparative study at future e-e+ collider

Light: Individual Fitting Dark: Marginalized Fitting

ILC 250 : ILC data at 250 GeV + EWPOs at LEP ILC500 : ILC 250 + ILC data at 500 GeV ILC: ILC 500 with LEP replaced by GigaZ

FCC-ee performs better than CEPC due to the higher luminosity

ILC 250 and ILC 500

There is a big uncertainty about the GigaZ operation. But, the measurement at 500 GeV can largely compensate the relevant sensitivity loss.

	\mathcal{O}_{WW}	\mathcal{O}_{WB}	\mathcal{O}_{BB}	\mathcal{O}_T	\mathcal{O}_H	$\mathcal{O}_{LL}^{(3)l}$	$\mathcal{O}_L^{(3)l}$	\mathcal{O}_L^l	\mathcal{O}_R^e	\mathcal{O}_6	\mathcal{O}_{3W}
ILC250	1.30	0.697	0.384	1.29	0.401	9.62	2.92	1.83	1.29	0.0309	0.469
$+\sigma(W^+W^-)$	1.30	2.17	0.386	4.08	0.468	9.63	6.78	6.11	4.08	0.0389	0.523
$+\sigma(Zh)$	1.75	2.21	0.493	4.16	0.897	9.78	6.89	6.21	4.16	0.0895	0.531
$+\sigma(Zhh)$	1.95	3.22	0.498	6.19	1.28	12.2	8.83	8.45	6.20	0.428	0.644
$+\sigma(\nu\nu h) = \text{ILC500}$	2.01	3.29	0.498	6.34	1.97	12.3	8.90	8.60	6.36	0.428	0.647

After adding the four channels in ILC 500

- (1) Higgs cubic coupling (O6) can be probed at tree level
- (2) Previous 6 operators contributing to EWPOs can be greatly enhanced
- (3) ILC 250 behave poorer than CEPC and FCC-ee but ILC 500 performs better.
- (4) O3W operator is still poorly constrained due to the noninterference at massless limit, angular analysis needs to be added.

Application to Composite Higgs Models

- Scenario: a light composite Higgs associated with strong dynamics at a higher scale
- SILH parametrization

$$\mathcal{L}_{\text{SILH}} = \frac{\tilde{c}_H}{f^2} \mathcal{O}_H + \frac{\tilde{c}_T}{f^2} \mathcal{O}_T - \frac{\tilde{c}_6 \lambda}{f^2} \mathcal{O}_6 + \frac{\tilde{c}_W}{m_\rho^2} \mathcal{O}_W + \frac{\tilde{c}_B}{m_\rho^2} \mathcal{O}_B + \frac{\tilde{c}_{HW}}{16\pi^2 f^2} \mathcal{O}_{HW} + \frac{\tilde{c}_{HB}}{16\pi^2 f^2} \mathcal{O}_{HB} + \frac{\tilde{c}_{\gamma} g'^2}{16\pi^2 f^2 g_\rho^2} \mathcal{O}_{BB} + \frac{3! g^2 \tilde{c}_{3W}}{16\pi^2 m_\rho^2} \mathcal{O}_{3W}$$

$$\mathcal{L}_{\text{SILH}} \supset \frac{c_H}{\Lambda^2} \mathcal{O}_H + \frac{c_T}{\Lambda^2} \mathcal{O}_T + \frac{c_L^{(3)l}}{\Lambda^2} \mathcal{O}_L^{(3)l} + \frac{c_L^l}{\Lambda^2} \mathcal{O}_L^l + \frac{c_R^e}{\Lambda^2} \mathcal{O}_R^e$$

- Holographic Composite Higgs Model
- Littlest Higgs Model

$$\begin{split} \tilde{c}_T &= 0 \quad \tilde{c}_H = 1 \quad \tilde{c}_W = \tilde{c}_B \approx 1.0 \\ \tilde{c}_T &= -\frac{1}{16} \quad \tilde{c}_H = \frac{1}{4} \quad \tilde{c}_W = \frac{1}{2} \quad \tilde{c}_B = 0 \end{split}$$

- After plugging in c_{i} , there remain only two free parameters, g_{ρ} and m_{ρ} $(m_{\rho}=g_{\rho}f)$
- Using all observables except Z pole observables involving hadronic sector.

Summary

- We make both individual and marginalized fitting in three future lepton colliders, giving optimistic and conservative results.
- In the optimistic case, $\{\mathcal{O}_{WB}, \mathcal{O}_T, \mathcal{O}_{LL}^{(3)l}, \mathcal{O}_L^{l}, \mathcal{O}_R^e\}$ can be probed to dozens of TeV while $\{\mathcal{O}_{WW}, \mathcal{O}_{BB}, \mathcal{O}_H, \mathcal{O}_{3W}\}$ can only reach up to TeV or several TeVs at three colliders.
- In the conservative case operators $\{\mathcal{O}_{WB}, \mathcal{O}_T, \mathcal{O}_{LL}^{(3)l}, \mathcal{O}_L^l, \mathcal{O}_R^e\}$ can be probed to $\sim O(1-10)$ TeV while $\{\mathcal{O}_{WW}, \mathcal{O}_{BB}, \mathcal{O}_H, \mathcal{O}_{3W}\}$ can only be probed to sub-TeV.
- ILC 500 GeV is high beneficial and can compensate the relatively lower precision of EWPOs at ILC 250.
- As an application, fitting in SILH scenario can probe the breaking scale up to several TeV.

Thank you!

Degeneracy for EWPOs

 $N_{\nu} A_b R_b A_{FB}^b A_{FB}^{\mu} \sin^2 \theta_{\text{eff}}^{\text{lep}} R_{\mu} R_{\tau}$

 $\frac{\Delta g_L^i}{g_L^i} - \frac{\Delta g_R^i}{g_R^i} \quad \frac{\Delta g_L^\nu}{g_L^\nu} - \frac{\Delta g_R^l}{g_R^l} \quad \sim 2\delta\theta_w - \delta Z_X + \cdots$