

Electroweak Physics in CEPC

Zhijun Liang

IHEP,CAS

中國科學院為能物理研究所 Institute of High Energy Thysics

Introduction

- CEPC have good potential in electroweak precision physics.
- Precision measurement is important
 - Precision electroweak measurement constrain new physics beyond the standard model.
 - Eg: Radiative corrections of the W or Z boson is sensitive to new physics

中國科學院為能物現研究所 Institute of High Energy Esysics

W mass measurement: threshold scan

- Current PDG precision : 80.385±0.015 GeV
 - Possible goal for CEPC : ~5 MeV
 - 1.Threshold scans of W+W- cross section (vs=160GeV)
 - Disadvantage:
 - Higher cost
 - Require dedicated runs 100fb⁻¹ on WW threshold (~160GeV)
 - Low statistics: low cross section below threshold
 - high requirement on beam momentum uncertainty
 - LEP (~50ppm)
 - Require CEPC to be less than 10ppm
 - Advantage:
 - Very robust method, can achieve high precision.

	LEP	CEPC (100 fb ⁻¹)	¥V)
Statistical error	200 MeV	2 MeV	研究和
Syst error	70 MeV	2~4 MeV	Physics

W mass measurement: direct reconstruction

- Method 2: direct reconstruction (Vs=250GeV)
 - Decays model : WW-> lvqq , WW->lvlv
 - Advantage :
 - No additional cost :measured in ZH runs (sqrt(s)=250GeV)
 - Higher statistics: 10 times larger than WW threshold region
 - Lower requirement on beam energy uncertainty.
 - Disadvantage :
 - Larger uncertainty due to initial/final state photon radiation modeling

Some study on jet energy resolution in CEPC ZH runs

• Direct reconstruction Need to have very good jet energy resolution

• Use ee_KT as jet algorithm

Jet clustering algorithm at hadron collider

$$d_{ij} = \min(k_{ti}^{2p}, k_{tj}^{2p}) \frac{\Delta y^2 + \Delta \phi^2}{R^2}$$
 $d_{iB} = k_{ti}^{2p}$

for CEPC, beam jets negligible

ee_kt_algorithm

S. Catani, Y. L. Dokshitzer, M. Olsson, G. Turnock and B. R. Webber, Phys. Lett. B 269, 432 (1991)

name	$d_{ij} =$	$d_{iB} =$	remark
ee_kt_algorithm	$2(1 - \cos \theta_{ij}) \frac{\min(E_i^2, E_j^2)}{s}$	-	also known as Durham
kt_algorithm	$\min(p_{t,i}^2, p_{t,j}^2) \frac{(y_i - y_j)^2 + (\phi_i - \phi_j)^2}{R^2}$	$p_{t,i}^2$	y is pseudorapidity
cambridge-aachen	$\min(p_{t,i}^0, p_{t,j}^0) \frac{(y_i - y_j)^2 (\phi_i - \phi_j)^2}{R^2}$	$p_{t,i}^0$	no energy weighting
$antikt_algorithm$	$\min(p_{t,i}^{-2}, p_{t,j}^{-2}) \frac{(y_i - y_j)^2 + (\phi_i - \phi_j)^2}{R^2}$	$p_{t,i}^{-2}$	start with merging high energy particles

Some study on jet energy resolution in CEPC ZH runs (2)

Large uncertainty due to jet clustering algorithm

中國科學院為能物現研究所 Institute of High Energy Biysics

Some study on jet energy resolution in CEPC ZH runs (3)

- Another attempt: use PFA object directly
 - No uncertainty due to jet clustering, works for lvqq channel
 - Main systematics is PFA object momentum scale
 - the neutral object energy scale in PFA algorithm

院為能物招研究所 fHigh Energy Physics

Expected systematics in W mass measurement

R m

	LEP	CEPC@240GeV (5ab-1)	CEPC@ 240GeV (5ab-1)
	lvqq	Lvqq (dijet mass)	Lvqq (kinematic fit)
Statistical error	30 MeV	<1 MeV	<1 MeV
Beam energy	17 MeV	-	1~2 MeV
Detector resolution	14MeV	2~3 MeV	<1 MeV
Hadronisation	19MeV	1~2 MeV	1~2 MeV
QED	20MeV	1~2MeV	1~2 MeV
			中國科學院為能物理Z Institute of High Energy

Summary on W mass

- No strong motivation to have dedicated WW threshold scan (vs=160GeV runs) in CEPC.
- Direct W mass measurement in ZH runs (Vs=250GeV) have potential to reach less than 5 MeV level precision.
 - More detailed estimation need to be done in next month with Most simulation

m_z measurement

- LEP measurement : 91.1876 ± 0.0021 GeV
 - Stat uncertainty : 1MeV
 - Syst uncertainty: ~1.5 MeV
 - beam energy uncertainty
 - lepton momentum scale uncertainty
- CEPC possible goal: 0.5~1 MeV
 - Stat uncertainty: 0.2 MeV , syst uncertainty: 0.5~1MeV
- Z mass threshold scan is needed to achieve high precision.
 - Precision in direct measurement in ZH runs is much lower
 - Z threshold scan is very important for energy scale calibration

- Reduce charm mistag and light jet mistag and hemi corrections systematics
- Stat error (0.04%)
- Syst error (0.07%)
 - Charm mistag (0.05%)
 - Gluon radiation (g->bb , g->cc) (0.1%)

中國科學院為能物現研究所 Institute of High Energy Thysics

Backward-forward asymmetry measured from b jet

- LEP measurement : 0.1000+-0.0017 (Z peak)
 - Stat error: ~1.2% (4 experiments)
 - Systematics: ~1.4% (combination of three methods)
 - Method 1: Soft lepton from b/c decay (~2%)
 - Branching rate of b/c decay into lepton (1.5%)
 - B-tag and jet charge (1.1%)
 - Lepton pT and lepton Identification (0.9%)
 - Method 2: jet charge method using Inclusive b jet (~1.2%)
 - B-tag efficiency (0.4%)
 - charge correlations due to B tag/ jet charge (0.1%)
 - Sample statistics in light/heavy flavor jet sample (0.74%)

• CEPC

- Should focus on soft lepton method
- Expected Stat error (0.1%) (>100 times of LEP stat)
- Expected Systematics (0.12%) :
 - Charge misID (0.1%)
 - Uncertainty in branching ratio (0.1%)

中國科學院為能物現研究所 Institute of High Energy Physics

中國科學院為能物理研究所 Institute of High Energy Physics

LEP/SLD measurement : 0.23153 ± 0.00016 – 0.1% precision.

- Stat error in off -peak runs dominated.
- CEPC
 - Stat error : 0.02% ;
 - systematics error : 0.01%
 - The statistics of off-Z peak runs is key issue.
 - Need at least 10 fb⁻¹ for off-peak runs to reach high precision.

6

Weak mixing angle $\sin^2 \theta_{eff}^{lept}$

Branching ratio (R^{mu})

- LEP result: 0.2% total error
 - Stat : 0.15%
 - Syst : 0.1%

• CEPC: 0.05% total error expected

- Better EM calorimeter is the key
- Stat: 0.01%
- Syst: 0.05%

Systematics source	LEP	CEPC
Radiative events (Ζ->μμγ)	0.05%	0.05%
Photon energy scale	0.05%	0.01%
Muon Momentum scale	0.009%	0.003%
Muon Momentum resolution	0.005%	0.003%

Number of neutrino generation (

- LEP measurement :
 - Indirect measurement (Z line shape method): 2.984+-0.008
 - Direct measurement (neutrino counting method): 2.92+-0.05
 - Stat error (1.7%), Syst error (1.4%)
- CEPC measurement :
 - Stat error (0.1%), Syst error (0.15%)
 - expected better granularity in calorimeter can help photon identification
 - Should focus on direct measurement
 - Need to consider photon trigger in early stage
 - Photon Trigger performance is key for this measurement

Systematics source	LEP	CEPC
Photon Trigger efficiency	0.5%	0.1%
Photon Identification efficiency	0.5%	0.1%
Calorimeter energy scale	0.5%	<0.05%

Summary

- Still lots of work need to be done to understand the electroweak physics potential in CEPC
 - Especially W mass measurement
- Welcome to join the CEPC electroweak physics study

Branching ratio (R^{tau})

- LEP result: ~0.2% total error
 - Stat: 0.15%
 - Syst: 0.17%
 - Tau selection efficiency : 0.08%
 - Consistency of analysis cuts in different dataset: 0.11%
 - Background (Bhabha events ...): 0.08%
 - BG Modelling is not good
- CEPC result:
 - Stat (0.01%)
 - Syst (0.04%)
 - Expect better BG MC modelling , no consistency issue
 - Tau selection efficiency : 0.03%
 - Background (Bhabha events ...): 0.03%

中國科學院為能物現研究所 Institute of High Energy Physics

Number of neutrino generation (N_v)

- LEP measurement :
 - Indirect measurement (Z line shape method): 2.984+-0.008
 - Measured in Z peak region
 - No much room to improve
 - Direct measurement (neutrino counting method): 2.92+-0.05
 - Measured in 180~209 GeV runs
 - Using single photon + missing energy events
 - Stat error (1.7%)
 - Systematics (1.4%)
 - » Photon Trigger efficiency (0.5%)
 - » Photon Identification efficiency (0.5%)
 - » Calorimeter energy scale (0.5%)
- CEPC
 - focus on direct measurement
 - Need to consider Photon trigger in early stage
 - Trigger performance is key for this measurement
- Measured in ZH runs (cms[~] 250GeV)
 - Stat error (0.1%)
 - Syst error (0.15%)
 - -expected-better-granularity-in-calorimeter-can-help-photon-identification
 - Photon Trigger efficiency (0.1%)
 - Photon Identification efficiency (0.1%)
 - Calorimeter energy scale (<0.05%)

 $e^+e^- \rightarrow \nu \bar{\nu} \gamma$

中國科學院為能物招研究所 Institute of High Energy Physics