The MDI of CEPC

Chenghui Yu

for CEPC team

Jan. 24, 2018

Outline

- Start from detector solenoid 3.0T
- The MDI of CEPC
- Assembly nearby the IP
- Summary

Start from detector solenoid 3.0T 0.018 0.016 0.014 0.012 0.01 0.008 0.008 0.006 0.004 0.002 0 1.6 1.8 2.2 2.4 2.6 2.8 1.4 2 3

Emittance growth caused by the fringe field of solenoids

Design emitY/emitX H: 3.6pm/1.21nm (0.3%) W: 1.6pm/0.54nm (0.3%) Z: 1.0pm/0.17nm (0.5%) expected contribution 0.36pm 0.16pm 0.09pm real contribution 0.14pm (0.01%) 0.47pm (0.09%) **2.9pm (1.7%)**

Start from detector solenoid 3.0T

Start from detector solenoid 3.0T

Start from detector solenoid 3.0T

If CEPC has higher luminosity requirement @Z

Design emitY/emitX Z: 1.0pm/0.17nm (0.5%) Z: 1.0pm/0.17nm (0.5%) Z: 7.8pm/1.48nm (0.5%)

expected contribution 0.1pm (2T solenoid) 1pm Real contribution 2.9pm (1.71%) 0.2pm (0.12%) 2.9pm (0.20%)

- Set the detector solenoid at 2T or < 2T during Z operation Higher luminosity & Lower difficulty of SC magnet & More free space nearby IP
 - Dedicated lattice for Z with large emittance

The definition of beam stay clear

- To satisfy the requirement of injection: $BSC > 13 \sigma_x$
- To satisfy the requirement of beam lifetime after collision $BSC > 12\sigma_v$

✓ L*=2.2m, θ c=33mrad, β x*=0.36m, β y*=1.5mm, Detector solenoid=3.0T

- Lower strength requirements of anti-solenoids (~7.2T)
- Enough space for the SC quadrupole coils in two-in-one type (Peak field 3.8T & 136T/m) with room temperature vacuum chamber.
- The control of SR power from the superconducting quadrupoles.

Superconducting QD coils

120.0 X [mm]

110

--- b5

---- b6

radius 13mm

Central field

gradient (T/m)

136

Magnet

OD0

Superconducting QD coils

Two layers of shield coil are introduced outside the QD coil to improve the field quality.

Integral field harmonics with shield coils $(\times 10^{-4})$

n	$B_{n}/B_{2}@R=9.8 \text{ mm}$
2	10000
3	-0.57419
4	1.525573
5	0.375555
6	-0.13735
7	0.015413
8	-0.03117
9	-1.70E-03
10	-0.05809

The conductor for the shield coil is round NbTi wire with diameter of 0.5mm. There are 44 turns in each pole with different length to optimize the field harmonics along the QD coil.

Superconducting QD coils

There is iron yoke around the quadrupole coil for QF1. Since the distance between the two apertures is larger enough and the usage of iron yoke, the field cross talk between two apertures of QF1 can be eliminated.

Rutherford NbTi-Cu Cable

Room-temperature vacuum chamber with a clearance gap of 7 mm

Magnet	Central field gradient (T/m)	Magnetic length (m)	Width of Beam stay clear (mm)	Min. distance between beams centre (mm)		
QF1	110	1.48	27.0	146.20		

Integral field harmonics with shield coils $(\times 10^{-4})$

n	$B_n/B_2@R=13.5mm$		
2	10000		
6	1.08		
10	-0.34		
14	0.002		

Magnet name	QD0				
Field gradient (T/m)	136				
Magnetic length (m)	2.0				
Coil turns per pole	21				
Excitation current (A)	2400				
Shield coil turns per pole	44				
Shield coil current (A)	126				
Coil layers	2				
	Rutherford NbTi-Cu Cable, width 3				
Conductor size (mm)	mm, mid thickness 0.95 mm,				
	keystone angle 1.6 deg				
Stored energy (KJ)	19.0				
Inductance (H)	0.007				
Peak field in coil (T)	3.2				
Coil inner diameter (mm)	40				
Coil outer diameter (mm)	53				
Coil outer diameter (mm) X direction Lorentz	53				
Coil outer diameter (mm) X direction Lorentz force/octant (kN)	53 54				
Coil outer diameter (mm) X direction Lorentz force/octant (kN) Y direction Lorentz	53 54 112				

Magnet name	QF1			
Field gradient (T/m)	110			
Magnetic length (m)	1.48			
Coil turns per pole	29			
Excitation current (A)	2250			
Coil layers	2			
	Rutherford NbTi-Cu Cable, width 3			
Conductor size (mm)	mm, mid thickness 0.95 mm,			
	keystone angle 1.6 deg			
Stored energy (KJ)	30.5			
Inductance (H)	0.012			
Peak field in coil (T)	3.8			
Coil inner diameter (mm)	56			
Coil outer diameter (mm)	69			
X direction Lorentz	110			
force/octant (kN)	110			
Y direction Lorentz	120			
force/octant (kN)	-120			

Specification of QD0 and QF1

22 anti-Solenoid sections with different inner coil diameters

∫B_zds within 0~2.12m. Bz < 300Gauss away from 2.12m with local cancellation structure

The skew quadrupole coils are designed to make fine tuning of Bz over the QF&QD region instead of the mechanical rotation.

Geometry and Lattice

Crab-waist scheme with local chromaticity correction

- The central part is Be pipe with the length of 14cm and inner diameter of 28mm.
- IP upstream: Ec < 120 keV within 400m. Last bend(66m)Ec = 45 keV
- IP downstream: Ec < 300 keV within 250m, first bend Ec = 97 keV

Reverse bending direction of last bends Background control & SR protection

The total SR power generated by the QD magnet is 639W in horizontal and 166W in vertical. The critical energy of photons are about 1.3 MeV and 397keV in horizontal and vertical.

The total SR power generated by the QF1 magnet is 1567W in horizontal and 42W in vertical. The critical energies of photons are about 1.6MeV and 225keV in horizontal and vertical.

No SR hits directly on the beryllium pipe. SR power contributed within $\pm 6\sigma_x$ will go through the IP.

3 mask tips are added to shadow the beam pipe wall from 0.7 m to 3.93 m reduces the number of photons that hit the Be beam pipe from 2×10^4 to about 200 (100 times lower).

Assembly nearby the IP

1, IP Chamber (supporting)

2, Bellows and Lumical (remotely) (supporting system)

4, Move Lumical back and attach to the cover of cryostat by alignment holes (remotely)

We are studying the special installation tools for the remote connection of bellows.

The boundary between detector and accelerator is still not clear. The design of HOM absorber and the special tool can't be confirmed in short period.

Assembly nearby the IP

Crotch region

Parameters of lumiCal

			CEPC	OPAL	11	D
		z to IP (m)	.95 ~ 1.11 m	2.5 m	2.5	m
		radius (mm)	28 .5 ~ 100 mm	62 - 142 mm	80 – 19	95 mm
		θ range	28.5 ~ 100 mRac	25 - 57 mRad	40 - 69	mRad
		Si r-pitch	Scale by Z to OPAL/ILD	2.5 mm	1.8	mm
		radius precision		4.4 µm		
		Ref.		arXiv-0206074v1 EPJC 14 373	Procedia	a 37 258
				Parameter	unit	limit
Detector		: Si & W sandwich option: BGO + diamond ring		$\Delta E_{\rm CM}$	MeV	120
				$E_{e^{+}} - E_{e^{-}}$	MeV	240
	$\frac{\delta \sigma_{E_{beam}}}{\sigma_{E_{beam}}}$				Effect cancelle	
				Δx_{IP}	mm	2
	a.c. 1.1			Δz_{IP}	mm	10
Tungsten	Multilayer	PCB		Beam synchronisation	ps	15
	Wire Bonds	e Bonds		$\sigma_{x_{\mathrm{IP}}}$	mm	1
Sensor				$\sigma_{z_{ m IP}}$	mm	>10
	FE ADC ASIC ASIC	FPGA	_	r _{in}	μm	10
				$\sigma_{r_{ m shower}}$	mm	>1
				Δd_{IP}	μm	500
Glue Kapton						

- Detector solenoid 3.0T is a relatively hard start point for the accelerator design.
- The finalization of the beam parameters and the specification of special magnets have been finished. The parameters are all reasonable.
- Preliminary procedures for the installation of IP elements are studying. The boundary between detector and accelerator is still not clear. Very long time is needed to confirm the final scheme.
- The optimization to reduce machine cost and improve the luminosity is always under studying.