CEPC and FCCee parameters from the viewpoint of the beam-beam and electron cloud effects

> K. Ohmi (KEK) IAS-HEP, HKUST, Hong Kong Jan. 22-25, 2018

CEPC Parameters Y. Zhang, CEPC conference Nov. 2017, IHEP

	Higgs	W	Z	
Number of IPs	2			
Energy (GeV)	120	80	45.5	
Circumference (km)		100		
SR loss/turn (GeV)	1.68	0.33	0.035	
Half crossing angle (mrad)		16.5		
Piwinski angle	2.75	4.39	10.8	
N_e /bunch (10 ¹⁰)	12.9	3.6	1.6	
Bunch number	286	5220	10900	
Beam current (mA)	17.7	90.3	83.8	
SR power /beam (MW)	30	30	2.9	
Bending radius (km)	10.9			
Momentum compaction (10 ⁻⁵)	1.14			
$\beta_{IP} x/y (m)$	0.36/0.002			
Emittance x/y (nm)	1.21/0.0036	0.54/0.0018	0.17/0.0029	
Transverse σ_{IP} (um)	20.9/0.086	13.9/0.060	7.91/0.076	
$\xi_{\chi}/\xi_{\gamma}/\mathrm{IP}$	0.024/0.094	0.009/0.055	0.005/0.0165	
RF Phase (degree)	128	134.4	138.6	
$V_{RF}(\text{GV})$	2.14	0.465	0.053	
f_{RF} (MHz) (harmonic)	650			
Nature bunch length σ_{z} (mm)	2.72	2.98	3.67	
Bunch length σ_z (mm)	3.48	3.7	5.18	
HOM power/cavity (kw)	0.46 (2cell)	0.32(2cell)	0.11(2cell)	
Energy spread (%)	0.098	0.066	0.037	
Energy acceptance by RF (%)	2.06	1.48	0.75	
Photon number due to beamstrahlung	0.25	0.11	0.08	
<i>F</i> (hour glass)	0.93	0.96	0.986	
L_{max} /IP (10 ³⁴ cm ⁻² s ⁻¹)	2.0	4.1	1.0	

	parameter	Z	W	H (ZH)	ttbar	ttbar
	beam energy [GeV]	45.6	80	120	175	182.5
	arc cell optics	60/60	90/90	90/90	90/90	90/90
	momentum compaction [10 ⁻⁵]	1.48	0.73	0.73	0.73	0.73
ers	horizontal emittance [nm]	0.27	0.28	0.63	1.34	1.45
	vertical emittance [pm]	1.0	1.0	1.3	2.7	2.9
	horizontal beta* [m]	0.15	0.2	0.3	1	1
	vertical beta* [mm]	0.8	1	1	2	2
	length of interaction area [mm]	0.42	0.5	0.9	1.95	2.0
	tunes, half-ring (x, y, s)	(0.569, 0.61, 0.0125)	(0.577, 0.61, 0.0115)	(0.565, 0.60, 0.0180)	(0.553, 0.59, 0.0343)	(0.553, 0.59, 0.0349)
	longitudinal damping time [ms]	414	77	23	7.5	6.6
	SR energy loss / turn [GeV]	0.036	0.34	1.72	7.8	9.21
	total RF voltage [GV]	0.10	0.44	2.0	9.5	10.9
	RF acceptance [%]	1.9	1.9	2.3	5.0	4.7
	energy acceptance [%]	1.3	1.3	1.5	2.5	2.5
	energy spread (SR / BS) [%]	0.038 / 0.132	0.066 / 0.153	0.099 / 0.151	0.147 / 0.192	0.153 / 0.195
	bunch length (SR / BS) [mm]	3.5 / 12.1	3.3 / 7.65	3.15 / 4.9	2.45 / 3.25	2.5 / 3.3
	Piwinski angle (SR / BS)	8.2 / 28.5	6.6 / 15.3	3.4 / 5.3	1.0 / 1.33	1.0 / 1.3
	bunch intensity [10 ¹¹]	1.7	1.5	1.5	2.7	2.8
	number of bunches / beam	16640	2000	393	48	39
	beam current [mA]	1390	147	29	6.4	5.4
	luminosity [10 ³⁴ cm ⁻² s ⁻¹]	230	32	7.8	1.8	1.5
	beam-beam parameter (x / y)	0.004 / 0.133	0.0065 / 0.118	0.016 / 0.108	0.095 / 0.157	0.090 / 0.148
	luminosity lifetime [min]	70	50	42	39	39
	time between injections [sec]	122	44	31	32	32
	allowable asymmetry [%]	±5	±3	±3	±3	±3
	required lifetime by BS [min]	29	16	11	12	12
	actual lifetime (w) by BS [min]	> 200	20	20	24	25

FCCee parameters

D. Shatilov, Aug-Oct 2017

Major difference between CEPC and FCCee

	CEPC-Z	FCCee-Z	CEPC-H	FCCee-H
ε _x (nm)/ ε _y (pm)	0.17/2.9	0.27/1.0	1.21/3.6	0.63/1.3
β _x / β _y (mm)	360/2	150/0.8	360/ <mark>2</mark>	300/ <mark>1</mark>
σ _z (mm)/σ _{z,BS} (mm)	3.67/5.18	3.5/12.1	2.72/3.48	3.15/4.9
θ (mrad), θ_{P}	0.0165, 10.8	0.015, 28.5	0.0165,2.75	0.015, 5.3
N _e	1.6-4.8x10 ¹⁰	17x10 ¹⁰	12.9x10 ¹⁰	15x10 ¹⁰
N _{bunch} , t _{sp} (ns)	10900, 35	16640, 20	286	393
L _{tot} (cm ⁻² s ⁻¹)	1-9	230	2.0	7.8
ξ _x / ξ _y	0.005-0.015/ 0.0165-0.048	0.004/0.133	0.024/ <mark>0.094</mark>	0.016/ <mark>0.108</mark>

$$L = \frac{N\xi_y}{2r_e\beta_y^*}f$$

These are not latest parameters

H: Luminosity is $2x10^{34}$ and $8x10^{34}$ cm⁻²s⁻¹ for CEPC-H and FCCee-H. The difference is due to beta (1:2) and beam current (1:2). Similar beam-beam tune shift ~0.1/IP. Z: Lum for FCCee-Z is 230-30 times higher than CEPC-Z. Beam current of FCC is 10-3 times higher. Target beam-beam parameter of FCC is 8-3 times higher. $\beta_v^*=2mm,0.8mm$.

Issues related to beam-beam effects

- Beamstrahlung and beam life time mainly in Higgs factories.
- Beamstrahlung is also important in Z for bunch lengthening.
- Coherent beam-beam instability mainly in Z factories.
- Beam-beam simulations, especially strong-strong simulations, give answers feasibility of the future circular colliders, CEPC, FCCee...

Beamstrahlung: essential for Higgs factory

- Synchrotron radiation during beam-beam collision
- Calculate trajectory interacting with colliding beam.
- Particles emit synchrotron radiation due to the momentum kick dp/ds.

Coherent beam-beam instability in correlated head-tail mode

 Localized Cross wake field gives correlation of two colliding beam by convolution of each dipole moment.

$$\Delta p_{x,\mp}(z_{\mp}) = -\int_{-\infty}^{\infty} W_x^{(\mp)}(z_{\mp} - z'_{\pm}) \rho_x^{(\pm)}(z'_{\pm}) dz'_{\pm}$$
$$W_x^{(-)}(z) = -\frac{N^{(+)}r_e}{\gamma^{(-)}\bar{\sigma}_x^2} \left[1 - \frac{\sqrt{\pi}\theta_P z}{2\bar{\sigma}_z} \operatorname{Im} w\left(\frac{\theta_P z}{2\bar{\sigma}_z}\right) \right]$$

• Mode coupling theory for the localized cross wake force

$$M_{k\ell,k'\ell'} = \pm \frac{\beta_x}{2} i^{l-l'-1} \int_{-\infty}^{\infty} d\omega Z(\omega) g_{kl}(\omega) g_{k'l'}(\omega)$$

$$M_W = \begin{pmatrix} 1 & 0 \\ -2M_{klk'l'} & 1. \end{pmatrix}$$

Solve eigenvalue problem for M_0M_w .

Beam-beam simulation, luminosity evaluation

- Strong-strong simulation
- Each beam is represented by many macro-particles (10⁶).
- Beam-beam force is calculated by solving Poisson equation for colliding beam distribution or by formula for fitted Gaussian distribution.
- Luminosity and beam sizes are calculated turn-by-turn.

CEPC-H

Strong-strong simultion

 L_{tot}=0.72x10³²x286=2.06x10³⁴ cm⁻²s⁻¹~ design value.

Beam lifetime

- Beamstrahlung enhances non-Gaussian tail in energy distribution.
- Lifetime estimated by weak-strong and strong-strong simulations
- In equilibrium, particles escape a boundary is the same number as damping from the boundary. [M. Sands, SLAC-R-121 (1970)]

$$\frac{dN}{dt} = f(J_i)\frac{dJ_i}{dt} \qquad \qquad \frac{dJ_i}{dt} = -\frac{2J_i}{\tau_i}$$

$$\tau_{\ell} = \frac{N}{\frac{dN}{dt}} = \frac{t_i}{2J_{i,max}f(J_{i,max})}$$

We focus longitudinal distribution, i=z.

f(J): equilibrium beam distribution. For example $f(J)=exp(-J/\epsilon)$ for Gaussian. Now f(J) is given numerically by beambeam simulation.

Accumulate 1000-3000 turns, $N_p = 10^6$, $N_p Turn = 2x10^9$ (StrongStrong) 10^8 turns, $N_p = 10^2$, $N_p Turn = 10^{10}$ (WeakStrong)

Beam current asymmetry, L/bunch and $\sigma_{z,x}$

- e+: 90% e-:100%
- $\sigma_{z,x,y}$ (e-)< $\sigma_{z,x,y}$ (e+)
- Stable condition exists for the 10% current asymmetry.

Beam current asymmetry, lifetime

• e+: 90% e-:100%

Strong-strong simulation-FCCee-H

- L is slightly higher than the design
- Coherent motion in <xz> damps smoothly, no residual effects.
- Horizontal beam size is the same as the design.

FCCee-H

• There is no problem for 10% current asymmetry (90% e+)

5.1

5

4.9

4.8

e+

Coherent beam-beam instability in CEPC-H

- N₀: design bunch population
- Threshold is 80% of the design current.
- No signal in the strong-strong beam-beam simulation.

FCCee-H

- N₀: design bunch population
- Threshold is 80% of the design current.
- No signal in the strong-strong beam-beam simulation.
- Dynamic beta effect squeezes $\beta_{\text{x}}\text{=}0.3\text{m}$ to 0.25m may suppress the instability.

Summary for H factories

- Luminosity is 2x10³⁴ and 8x10³⁴ cm⁻²s⁻¹ for CEPC-H and FCCee-H. The difference is due to beta (1:2) and beam current (1:2). Simulations showed the luminosities of H's were feasible.
- Threshold of coherent beam-beam head-tail instability is around 0.7-0.8 for both H's. No clear effect is seen. Perhaps fast damping rate and/or dynamic beta suppress the instability. The instability was seen in old FCCee-H parameters (PRL).

CEPC-Z

- In the early design, the luminosity is 10^{34} cm⁻¹s⁻¹ and the beam-beam tune shift is very small ξ_v =0.016.
- It seems there is room to increase luminosity and tune shift, 9x and 3x.
- Beam-beam simulation for ξ_y =0.024 and 0.048, L=2.2 and 9x10^{34} cm^{-2} s^1 were performed.

Luminosity and horizontal beam size

• Strong-strong using Gaussian fit

Parameters at Nov 2017.

Coherent motion

• X

<xz>

• Higher order mode is hard to see in <xz>.

x-z distribution after 300 turns Ne=4.8x10¹⁰.

L>=2 mode is seen.

Crossing tilt is removed in this plot.

Crossing tilt is taken into account.

CEPC-Z Eigen mode analysis, ξ_x =0.0094, θ_p =12

• Tune

Growth rate

• Threshold, N=0.6N₀.

FCCee-Z

- Early design of FCCee-Z suffered the coherent beam-beam instability.
- β_x^{*} was squeezed, Piwinski angle was increased and tune x was optimized.
 (D. Shatilov and K. Oide)
- L=2x10³⁶ cm⁻²s⁻¹ is achieved in simulations

Flip flop is very strong noted by D. Shatilov

- Beam-beam simulation with current asymmetry.
- Luminosity degrade is seen even asymmetry of 2% (98%e+). It is hard to maintain the asymmetry <2%.
- D. Shatilov said 5% asymmetry was acceptable by his code Lifetrack using Bootstrap (preset σ_z for Beamstrahlung).

Bunch length

 σ_z asymmetry appears even in the perfect transparency condition. Preset σ_z =12.1mm

Horizontal beam size

Perhaps, change of σ_z enhances the coherent beam-beam instability. Need to check.

Eigen mode analysis for FCCee-Z (Aug. 17)

• Stable at the design current, but close to the threshold.

Summary for Z

- CEPC-Z Ne=2.4-4.8x10¹⁰ (ξ_y =0.024-0.048), coherent head-tail beambeam instability has been seen.
- The threshold is 0.6-0.7 times of the design bunch population.
- Coherent instability in σ_x was seen, because of L=2 mode.
- Parameter tuning, decreases β_x 0.36->0.2m and/or the bunch population 4.8->4e10. Then the instability is cured now.
- FCCee-Z (ξy=0.133) seems stable for the coherent instability at the design current.
- The bunch length related to beamstrahlung is too sensitive for current asymmetry. Even equal current, bunch length asymmetry occurs.
- Horizontal beam size increases for increasing bunch length asymmetry.

Electron cloud instability in Z

Z (45.5GeV)

Higgs (120GeV)

	CEPC-Z	FCCee-Z	CEPC-H	FCCee-H
ε _x (nm)/ ε _y (pm)	0.17/2.9	0.27/1.0	1.21/3.6	0.63/1.3
β _x / β _y (mm)	360/2	150/0.8	360/2	300/1
σ _z (mm)/σ _{z,BS} (mm)	3.67/5.18	3.5/12.1	2.72/3.48	3.15/4.9
θ (mrad), θ_{P}	0.0165, 10.8	0.015, 28.5	0.0165,2.75	0.015, 5.3
N _e	1.6-4.8x10 ¹⁰	17x10 ¹⁰	12.9x10 ¹⁰	15x10 ¹⁰
N _{bunch} , t _{sp} (ns)	10900, 35	16640, 20	286	393
L _{tot} (cm ⁻² s ⁻¹)	1-9	230	2.0	7.8
ξ _x / ξ _y	0.005-0.015/ 0.0165-0.048	0.004/0.133	0.024,0.094	0.016/0.108

Electron production

• Number of photon emitted by an positron E=45.5GeV

$$N_{\gamma} = \frac{5\pi}{\sqrt{3}} \frac{\alpha \gamma}{C} \qquad \qquad \alpha = \frac{1}{137}$$

- N_γ=0.06m⁻¹ (, C=100km)
- PEY=0.1 (number of electron produced by a photon)
- N_{pe} =0.006 m⁻¹. (number of electron produced by a positron)

CEPC-Z & FCCee-Z

- N_b=4.8e10 & 17e10 , bunch spacing 35 ns & 20 ns
- The number of electron produced by an e⁺ bunch $N_{pe} N_b = 2.9 \times 10^8 \text{ m}^{-1} \& 1.0 \times 10^9 \text{ m}^{-1}$
- Beam line density, λ_{b} =4.6x10⁹ m⁻¹ & 2.8x10¹⁰ m⁻¹

Electron cloud density in drift space

Electron cloud density in bending magnet

- Direct emitted photon create electrons at the side of chamber. The electrons do not come to the chamber center.
- Synchrotron radiation reflected. Assume 10% of primary photon hit wall uniformly.

-20

Other parameter cases

• Np=8e10, tsp=35ns

Np=8e10, 20ns

Threshold density for single bunch electron cloud instability

• Electron oscillation inside a positron bunch

 $\omega_{e} = \sqrt{\frac{\lambda_{p}r_{e}c^{2}}{\sigma_{y}(\sigma_{x} + \sigma_{y})}} \qquad \lambda_{p} = N_{p}/(\sqrt{2\pi}\sigma_{z})$ $\omega_{e}\sigma_{z}/c=13.6, \ \beta_{x}=\beta_{y}=50m, \ \sigma_{z}=4.33mm, Np=4.8e10$ $\omega_{e}\sigma_{z}/c=17.6 \ \beta_{x}=\beta_{y}=50m, \ \sigma_{z}=4.33mm, Np=8.e10$ $\omega_{e}\sigma_{z}/c=36.6, \ \beta_{x}=\beta_{y}=50m, \ \sigma_{z}=12.1mm, Np=17.e10$

Positron line density

• Threshold $\rho_{e,th} = \frac{2\gamma\nu_z\omega_e\sigma_z/c}{\sqrt{3}KQr_e\beta_yL}$

 $\begin{array}{lll} \rho_{e,th} = 2.9 \times 10^{10} \ m^{-3} & \rho_e(drift) = 5 \times 10^{10} \ m^{-3} & \rho_e(bend) = 0.6 \times 10^{10} \ m^{-3}. & 4.8 e10 \\ \rho_{e,th} = 2.9 \times 10^{10} \ m^{-3} & \rho_e(drift) = 7 \times 10^{10} \ m^{-3} & \rho_e(bend) = 1 \times 10^{10} \ m^{-3}. & 8 e10, 35 ns \ \& 20 ns \\ \rho_{e,th} = 1.87 \times 10^{10} \ m^{-3}. \ \rho_e(drift) = 5.5 \times 10^{10} \ m^{-3} & \rho_e(bend) = 1 \times 10^{10} \ m^{-3}. & 17 e10 \end{array}$

Summary for electron cloud effects

- Electron cloud build up for CEPC-Z, FCCee-Z have been studied.
- Area w/wo bending magnet is 6/1. Normal cell consists of 60m bend and 10m drift
- CEPC 4.8e10, 35ns $\rho_{e,ave}$ =5/7+0.6*6/7=1.2x10¹⁰ cm⁻³.
- 8e10 , 35ns $\rho_{e,ave}$ =7/7+1*6/7=1.86x10¹⁰ cm⁻³.
- FCCee-Z $\rho_{e,ave} = 5.5/7 + 1*6/7 = 1.64 \times 10^{10} \text{ cm}^{-3}$.
- Threshold

 $\begin{array}{lll} \mbox{CEPC 4.8e10:} & \rho_{e,th} \mbox{=} 2.9 x 10^{10} \ m^{\mbox{-}3} \ , \mbox{8e10:} & \rho_{e,th} \mbox{=} 2.9 x 10^{10} \ m^{\mbox{-}3} \ , \\ \mbox{FCCee-Z:} \ \rho_{e,th} \mbox{=} 1.87 x 10^{10} \ m^{\mbox{-}3} \end{array}$

 All 4 cases, Np=4.8e10, Np=8e10, t_{sp}=35ns and 20ns, are stable for electron cloud single bunch instability.

Thank you for your attention

CEPC-H

- Y. Zhang, Oct 16, 2017, $\sigma_{z,0}$ =3.79mm
- L_{tot}=0.72x10³²x286=2.06x10³⁴ cm⁻²s⁻¹~ design value.

Old

tune