Dynamic Aperture of CEPC

Y. Zhang, D. Wang, Y. Wang, H. Geng

IAS Program on High Energy Physics (22-25 Jan, 2018), Hongkong Many thanks: K. Oide(KEK), Y. Cai(SLAC)

Outline

- Introduction
- Dynamic Aperture
 - β_y^* (2mm, 1.5mm, 1mm)
 - More knobs
 - Combined Function Dipole(+Sextupole)
 - Beam-Beam Effect
- Summary

MODE:

Multi-Objective optimization by Differential Evolution

The parallel algorithm is referencing to J. Qiang(IPAC'13)

High Parallel + High Scalability

- Even the time taken by different task is different
- Even some node is very busy

The difference between the DA boundary and real DA is defined as the objective cost value

DownhillSimplex in SAD

Try to optimize the total DA

$$F = -\sum_{j=1}^{6} \left(\sum_{i} w(i) * DA_{j}(i) \right) \qquad w(i) = \exp \left[2* \left(\frac{|i*\sigma_{\delta}|}{m*\sigma_{\delta}} \right) \right] \qquad (i = -m, ..0, ..m.)$$

- -- $DA_j(i)$: DA for $i^*\sigma_\delta$ energy deviation with the jth initial phase (totally 6 phases)
- -- w(i): DA weight for $i^*\sigma_{\delta}$ energy deviation
 - 1. Scan the strength of sextupoles;
 - 2. DA tracking for the energy list
 - 3. Calculate the objective function (DA)
 - 4. Find the minimum of the objective function by the downhill simplex method
 - 5. Go to 1.
 - 6. Optimization stop when

(fmax-fmin)/(abs(fmax)+abs(fmin)) < Tolerance

CEPC DA Optimization Knobs

50(234) knobs in total

- IR sextupoles: (10)
- Arc Sextupole (32) (or 56*4)
- Phase advance (8)

IR knobs

- Main Chromaticity Sextupoles (2)
- Neighbor weaker sextupole to correct finite length effect (2)
- A. Bogomyagkov, ArXiv:0909.4872
- Sextupole to correct higher order chromaticity in vertical direction (1)
- Y. Cai, PRAB.19.111006

Different strength between Upstream and Downstream of IP.

10 knobs in IR.

Arc sextupole

- 90/90 FODO
- Non-interleave sextupole scheme
- 4 SF + 4 SD sextupole configurations in one arc section
- 7 sub-period in in one arc section,
- 4 arc section in half ring

Total knobs: 32

Phase Advance Tuning

10 knobs in x/y direction

Keep tune fixed

• Only 8 free knobs

Model used in DA tracking

SAD:

Synchrotron motion, synchrotron radiation in dipoles, quads and sextupoles, tapering, Maxwellian fringes, kinematical terms, crab waist are included.

DAMPONLY vs SR Fluctuation

Suppress noise of DA with SR fluctuation

Χ

- DA is tracked with different initial phase: $\left(0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\right)$ for different energy
- 10 more times survey for on-momentum particle is tracked, and the minimum value is treated as the onmomentum DA
- Tracked DA result will be clipped to ensure DA at large momentum deviation will be less than that at small deviation
- Only two objective: min-DA of $(0,\pi)$ and min-DA of $\left(\frac{\pi}{2},\frac{3\pi}{2}\right)$

Optimized at IP. DA at INJ shown.

By=2mm, DownhillSimplex (234 knobs)

By=2mm, MODE (50 knobs)

Optimized at INJ.

Optimized at IP. DA at INJ shown. Older version lattice, By=2mm, MODE (50 knobs) **INJ** 40 40 20 20 Phase=0 -20 -20 min -40 -40 avg max 40 40 Phase= $\pi/2$ 20 20 -20 -20 -40 -40 10 20 -20 -10 10 20 -10

 $\Delta x/\sigma_x$

 $\Delta x/\sigma_x$

Arc Phase Tuning by=2mm, DownhillSimplex(234 knobs)

Optimized at IP. DA at INJ shown.

By=1.5mm, DownhillSimplex (234 knobs)

By=1.5mm, MODE (50 knobs) Optimized at INJ.

Optimized at IP. DA at INJ shown.

By=1mm, DownhillSimplex (234 knobs)

By=1mm, MODE (50 knobs)

Optimized at INJ.

More knobs (20)

- The octupole magnets in the immediate vicinity of the FF quadrupoles (QD0 and QF0) (4) slac-pub-12716
- Octupoles are added to ccs sextupoles for the optimization
 (4)
 K. Oide
- Non-interleave sextupole pair in RF region(2)
- Octupole to correct higher order chromaticity in vertical direction (2)
- More sextupole in dispersive region(8)

20 more knobs: by=2mm (1-2 sigma enlargement at small momentum deviation)

20 more knobs: by=1.5mm (1-2 σ enlargement at small momentum deviation)

Combined D+S scheme

The power consumption of the arc sextupoles are too high.

Sextupole: 16.7 MW (copper coils)

Dipole: 6.5 MW (Al coils)

Reducing the strength of the stand-alone sextupoles can help.

Combined function magnet: dipole + sextupole

Combined sextupoles: half of linear chromaticity

Stand-alone sextupoles: Chromaticity and DA

No additional power sources for combined SF and SD

DA of DS Scheme

By=1.5mm, DownhillSimplex (234 knobs)

DA at Z with combined DS

We do not need to worry about the break of non-interleave sextupole scheme

20 more knobs: by=1.5mm DS Scheme (no so clear contribution from 20 more knobs)

Beam Distribution: by=1.5mm Lattice + Beamstrahlung + SR Fluctuation

Beam Lifetime: by=1.5mm Lattice + Beamstrahlung + SR Fluctuation

Achieved DA: $\sim 15\sigma_x$, $\sim 15\sigma_y$, ~ 0.015

100min, DA requirement: $7.5\sigma_x$, 12.5 σ_y , 0.0135

Summary & Discussion

- By*=1.5mm, The DA requirement (lifetime/injection) is met without error, nearly no margin so far.
- We only focus on the delta-x aperture in optimization, but the vertical phase is also tuned, which may breaks the symmetry in delta-y space.
- We only focus on the DA at one point in the ring. Free all the sextupoles(56*4) in arc may bring worse symmetry.
- 20 more knobs could help enlarge the transverse DA
- Combined function Dipole(+S) may enlarge the momentum acceptance. But the conclusion is not finalized, since cutting long dipole into 5 pieces may help.