Axial Vector Z' and Anomaly Cancellation

Ahmed Ismail, Wai-Yee Keung, KT and James Unwin 1609.02188

University of Illinois at Chicago

(HK) IAS Program on High Energy Physics Jan 25, 2017

consider pure axial vectorial Z',

i.e.
$$q_{f,L} = -q_{f,R}$$

rich phenomenology

generating anomaly free fermions spectrum:

SM is Anomaly Free

$$\mathcal{A}_{WWB} := \sum_{f_L/w \text{ SU}(2)} d_3[f_L] Y[f_L] - \sum_{f_R/w \text{ SU}(2)} d_3[f_R] Y[f_R] = 0$$

$$\mathcal{A}_{ggB} := \sum_{f_L/w \text{ SU}(3)} d_2[f_L] Y[f_L] - \sum_{f_R/w \text{ SU}(3)} d_2[f_R] Y[f_R] = 0$$

$$\mathcal{A}_{GGB} := \sum_{f_L} d_2[f_L] d_3[f_L] Y[f_L] - \sum_{f_R} d_2[f_R] d_3[f_R] Y[f_R] = 0$$

$$\mathcal{A}_{BBB} := \sum_{f_L} d_2[f_L] d_3[f_L] (Y[f_L])^3 - \sum_{f_R} d_2[f_R] d_3[f_R] (Y[f_R])^3 = 0$$

where d_N is the dimension of the representation under SU(N), and Y is the hypercharge.

U(1)' Anomaly Free Conditions

Analogously with the SM anomaly cancellation condition, there are $\mathcal{A}_{WWZ'}$, $\mathcal{A}_{ggZ'}$, $\mathcal{A}_{GGZ'}$, and $\mathcal{A}_{Z'Z'Z'}$ and two additional Cancellations from U(1) and U(1)'.

$$\mathcal{A}_{Z'Z'B} := \sum_{f_L} d_2[f_L] d_3[f_L] Y[f_L] (z[f_L])^2 - \sum_{f_R} d_2[f_R] d_3[f_R] Y[f_R] (z[f_R])^2
= 0
\mathcal{A}_{BBZ'} := \sum_{f_L} d_2[f_L] d_3[f_L] z[f_L] (Y[f_L])^2 - \sum_{f_R} d_2[f_R] d_3[f_R] z[f_R] (Y[f_R])^2
= 0$$

Exotics and Anomaly Free

In the case of a pure Axial vector coupling to both the SM and DM:

$$z_q^{(i)} := z_Q^{(i)} = -z_u^{(i)} = -z_d^{(i)}; \ z_I^{(i)} := z_L^{(i)} = -z_e^{(i)}; \ z_{\rm DM} := z_{\chi_L} = -z_{\chi_R}$$

Field Name	$\mathrm{U}(1)_Y$	$\mathrm{SU}(2)_L$	SU(3)	Notation
$Q_L^i,Q_{L,R}'$	1/3	2	3	$(3,2)_{(1/3,\ z)}$
$u_R^i,u_{L,R}'$	4/3	1	3	$(3,1)_{(4/3, z)}$
$d_R^i,d_{L,R}'$	-2/3	1	3	$(3,1)_{(-2/3, z)}$
$L_L^i,L_{L,R}'$	-1	2	1	$(1,2)_{(-1,\ z)}$
$e_R^i,e_{L,R}'$	-2	1	1	$(1,1)_{(-2,\ z)}$
$\nu_R,\chi_{L,R}$	0	1	1	$(1,1)_{(0,\ z)}$
H	1	2	1	$(1,2)_{(1,\ z)}$

Straightforwardly, anomaly cancellation is solved by a general and unique set of equations:

$$z_{Q'_{R}} = z_{Q'_{L}} + 2z_{SM}, \quad z_{u'_{R}} = 7z_{SM} + z_{u'_{L}},$$

$$z_{d'_{R}} = z_{d'_{L}} + z_{SM}, \quad z_{L'_{R}} = z_{L'_{L}} + 6z_{SM}, \quad z_{d'_{L}} \neq 2z_{Q'_{L}} + \frac{101}{2}z_{SM} + 14z_{u'_{L}},$$

$$z_{e'_{L}} = \frac{1}{3}(z_{d'_{L}} + 6z_{L'_{L}} - 2z_{Q'_{L}} - 28z_{SM} - 14z_{u'_{L}}),$$

$$z_{e'_{R}} = \frac{1}{3}(z_{d'_{L}} + 6z_{L'_{L}} - 2z_{Q'_{L}} - 37z_{SM} - 14z_{u'_{L}}),$$

$$z_{L'_{L}} = \frac{1}{\Omega}\left(-8z_{d'_{L}}^{2} - 4z_{d'_{L}}z_{Q'_{L}} - 32z_{Q'_{L}}^{2} - 74z_{d'_{L}}z_{SM} + 58z_{Q'_{L}}z_{SM} - 404z_{SM}^{2} - 28z_{d'_{L}}z_{u'_{L}} + 56z_{Q'_{L}}z_{u'_{L}} + 469z_{SM}z_{u'_{L}} + 133z_{u'_{L}}^{2}\right),$$

where $\Omega = 606z_{\mathrm{SM}} + 168z_{u'_{t}} - 12z_{d'_{t}} + 24z_{Q'_{t}}$

If
$$z_{\rm SM} = z_{Q'_L} = 1$$
 and $z_{u'_L} = -z_{Q'_R} = -3$:

$$z_{u'_R}=4$$
, $z_{d'_L}=3$, $z_{d'_R}=4$, $z_{L'_L}=-9$,

$$z_{L_R'} = -3, \quad z_{e_L'} = -13, \quad z_{e_R'} = -16.$$

Name	n_G	Lepto-phobic/philic?
#1. Universal Model	3	×
#2. /w DM Model	3	X
$\sharp 3.$ L-phobic Model	3	Leptophobic
$\sharp 4.$ L-philic Model	3	Leptophilic
#5. 1G-Model	1	N/A
#6. <i>t-b</i> -Model	1	Leptophobic

Field	#1	#2	#3	#4	# 5	# 6
$z[Q_L]$	1	1	1	0	1	1
$z[u_R]$	-1	-1	-1	0	-1	-1
$z[d_R]$	-1	-1	-1	0	-1	-1
$z[L_L]$	1	1	0	1	1	0
$z[e_R]$	-1	-1	0	-1	-1	0
$z[\chi_L]$	-	9	9	-9/4	1	1
$z[\chi_R]$	-	-9	-9	9/4	-1	-1

Field	#1	#2	#3	#4	# 5	# 6
$z[Q_L']$	1	1	1	-	-	-
$z[Q_R']$	3	-1	0	-	1	1
$z[u_L']$	-3	-2	-2	-2	-1	-1
$z[u_R']$	4	3	-1	5/2	-	-
$z[d_L']$	3	-6	-2	2	-1	-1
$z[d_R']$	4	5	11	-5/2	-	-
$z[L_L']$	-9	-82/3	-49/12	-157/48	-	-
$z[L_R']$	-3	-28/3	95/12	-13/48	1	0
$z[e_L']$	-13	-100/3	103/6	-85/24	-1	0
$z[e_R']$	-16	-127/3	67/6	-121/24	-	-
$z[u_R]$	-	-	-	-	1	1
$N[u_R]$	-	-	-	-	2	2

SM Fermions

For axial vector couplings $z[\bar{Q}_L u_R] = 2z_0$ and $z[\bar{Q}_L d_R] = 2z_0$, the gauge invariant mass operator $H^{\dagger}\bar{Q}_L u_R$ requires that $z[H^{\dagger}] = -2z_0$.

However, $H\bar{Q}_L d_R$ breaks down U(1)' gauge invariance. There are two ways out:

- Type II Two Higgs Doublet Model
- ► EFT higher dimension operators $\frac{1}{\Lambda}SH^{\dagger}Q_{L}\overline{u}_{R}$. S is a SM singlet and gets vev $\langle S \rangle \equiv v'$ to break U(1)' (Froggatt-Nielson).
- ho $m_{Z'} \simeq g'v'$; $m_S \simeq \lambda_S v'$ (λ_S is the S quartic coupling.)

Exotic Fermion Masses

Model #1

$$z[H] = 2$$
, $z[S_1] = 1$ and $z[S_4] = 4$

$$\mathcal{L}_{\mathrm{SMY}} \supset y_u^i H \bar{Q}_L u_R + rac{y_d^i}{\Lambda} S_4 H^\dagger \bar{Q}_L d_R + rac{y_l^i}{\Lambda} S_4 H^\dagger \bar{L}_L e_R$$

$$\mathcal{L}_{\text{Ex}} \supset y_{Q'} S_{1}^{2} Q'_{L} \bar{Q}'_{R} + \frac{y_{u'}}{\Lambda^{2}} S_{4}^{2} S_{1}^{\dagger} u'_{L} \bar{u}'_{R} + y_{d'} S_{1} d'_{L} \bar{d}'_{R} + \frac{y_{L'}}{\Lambda^{2}} S_{4} S_{1}^{2} L'_{L} \bar{L}'_{R} + \frac{y_{e'}}{\Lambda} S_{4} S_{1}^{\dagger} e'_{L} \bar{e}'_{R}$$

$$L_{\mathrm{UV}} \supset y_{\psi} H^{\dagger} \bar{L}_{L} \psi_{L} + y_{\psi}' S_{4} \bar{\psi}_{L} e_{R} + m_{\psi} \bar{\psi}_{L} \psi_{R}$$

where $\Lambda=rac{m_{\psi}}{y_{\psi}y_{\psi}'}$ and ψ_L , ψ_R in the representation $(1,1)_{-2,3}$

Mass Generation For Mirror Construction

In order to have above EW massive mirror exotics, additional U(1)' neutral charged exotics fermions are introduced:

$$\mathcal{L}_{Mir}\supset S\bar{Q}'_LQ'_R+S\bar{u}'_Lu'_R+S\bar{d}'_Ld'_R+S\bar{L}'_LL'_R+S\bar{e}'_Le_R$$
.

where
$$z[Q'_L] = z[u'_R] = z[d'_R] = z[L'_L] = z[e'_R] = 0$$
 and $z[S] = -1$

The Non-Perturbative Limit

 ${\sf U}(1)'$ coupling strength $\alpha'\equiv g'^2/4\pi$ runs with the energy scale Q is given by

$$\frac{d\alpha'^{-1}}{d \ln Q} = -\frac{b}{2\pi}$$
 with $b = \sum_{f} \frac{2}{3} z_f^2 + \sum_{s} \frac{1}{3} z_s^2$

If the new fermions enter at the scale M, the running of g' to some UV scale Λ is described by

$$\alpha'^{-1}(\Lambda) = \alpha'^{-1}(m_{Z'}) - \int_{m_{Z'}}^{M} \frac{b_{Z'}}{2\pi} d\ln Q - \int_{M}^{\Lambda} \frac{b_{Z'} + b_{M}}{2\pi} d\ln Q$$

where $b_{Z'}$ the sum is over the SM states and DM.

The Non-Renormalizable Limit

The scale limit Λ_R for an anomaly EFT theory maintaining renormalizable without introducing exotics to cancel anomaly at scale M is: (Preskill 1991)

$$M < m_{Z'} \left(\frac{64\pi^3}{|g_R^3 \mathcal{A}_{Z'Z'Z'}|} \right) \equiv \Lambda_R$$

where $g_{R} \equiv g(\Lambda_{R})$ and $A_{Z'Z'Z'} = \text{Tr}[z^{3}]$ is the U(1)'³ anomaly coefficient calculated in the EFT below the scale of the exotics M.

Purple contours: g' runs non-perturbative. Grey region: $\Lambda_{p'} < M$. Red curves: $\Lambda_{p'}$ for $m_{Z'} \sim 1$ TeV(dashed), and 100 TeV(solid). Yellow curves: Unitarity for $m_{Z'} \sim 1$ TeV(dashed), and 100 TeV(solid).

Summary and more coming

 Systematic construction of extra spectrum for Anomaly cancellation.

Where are the new exotics?

Mass structure

More on t-b-philic DM work