Status of the continuous ion suppression detector modules for CEPC TPC

Huirong QI

Institute of High Energy Physics, CAS

January 25th, 2017, IAS High Energy Physics, Hong Kong

Outline

- Physics requirement
- Simulation and experiment
- Progress on collaboration
- Summary

First question: Why we need continuous IBF suppression in **TPC module as the tracker option?**

CEPC and its beam structure

Circular e⁺e⁻ Higgs (Z) factory two detectors, 1M ZH events in 10yrs $E_{cm} \approx 240$ GeV, luminosity $\sim 2 \times 10^{34}$ cm⁻²s⁻¹, can also run at the Z-pole

	tt	н	W	Z	
Beam Energy [GeV]	175	120	80	45.5	Imj (L558) Imj (L552)
Bunch charge [nC]	22.6	18	16.8	7.4	
Bunch length [mm]	2.7	2.9	3.9	4	C = 100 Km Station(Z)
Bunches / beam	98	555	3000	65716	
Bunch spacing [ns]	1704	301	56	3	Exrt (LSS6) [P_ee (LSS5)]
Train spacing [us]	83.5	83.5	84	98.6	
β [*] _y [mm]	2		1		

Layout of CEPC Double Ring

Compare with ILC beam structure

□ In the case of ILD-TPC

- Bunch-train structure of the ILC beam (one ~1ms train every 200 ms)
- Bunches time ~554ns
- Duration of train ~0.73ms
- Used Gating device
- Open to close time of Gating: 50µs+0.73ms
- Shorter working time
- In the case of CEPC-TPC
 - Bunch-train structure of the CEPC beam (one bunch every ~90µs) or partial double ring
 - No Gating device with open and close time
 - Continuous device for ions
 - Long working time

Gating device could NOT be used due to the limit time! _5.

Critical challenge: Ion Back Flow and Distortion

In the case of ILD-TPC

- Distortions by the primary ions at ILD are negligible
- Ions from the amplification will be concentrated in discs of about 1 cm thickness near the readout, and then drift back into the drift volume Shorter working time
- 3 discs co-exist and distorted the path of seed electron
- The ions have to be neutralized during the 200 ms period used gating system

In the case of CEPC-TPC

- Distortions by the primary ions at CEPC are negligible too
- More than 10000 discs co-exist and distorted the path of seed electron >10000 trains
- The ions have to be neutralized during the ~4us period continuously

Amplification ions@ILC

Amplification ions@CEPC

Requirements of Ion Back Flow / estimation

- **Electron:**
 - Drift velocity $\sim 6-8 \text{ cm/us} (a) 200 \text{ V/cm}$
 - Mobility $\mu \sim 30-40000 \text{ cm}^2/(\text{V.s})$
- Ion:
 - Mobility $\mu \sim 2 \text{ cm}^2/(\text{V.s})$
 - in a "classical mixture" (Ar/Iso)

$$S_{N} = \sqrt{\left(\frac{\partial}{\partial x_{1}}\right)^{2}S_{x_{1}}^{2} + \left(\frac{\partial}{\partial x_{2}}\right)^{2}S_{x_{2}}^{2} + \left(\frac{\partial}{\partial x_{3}}\right)^{2}S_{x_{3}}^{2}}$$

 $D_{t/l}^2$

Standard error propagation function

Transverse and

New ideas for the ions?

- Our group was asked to "think" on an alternative option for CEPC TPC concept design
- And we did our best ...
- We proposed and investigated the performance of a novel configuration for TPC gas amplification: GEM plus a Micromegas (GEM+Micromegas)
- Hybrid micro-pattern gaseous detector module
- **GEM+Micromegas detector module**
 - **GEM** as the preamplifier device
 - GEM as the device to reduce the ion back flow continuously
 - Stable operation in long time
 - Low material budget of the module

ANSYS-Garfield++ simulation (0T, Left: ions; Right: electrons)

Hybrid detector

Simulation and IBF study

z (cm)

0.1

0.08

0.06

0.04

0.02

-0.02

- □ Garfield++/ANSYS to simulate the ions back to drift
 - **GEM and Micromegas Module using ANSYS**
 - **Record** the ions to drift layer, mesh layer, and sensitive layer

Micromegas standalone

0

0.01

0.02

x (cm)

-0.01

- □ Garfield++/ANSYS to simulate the ions back to drift
 - **GEM and Micromegas Module using ANSYS**
 - **Record the ions to drift layer, mesh layer, and sensitive layer**

Ions end to the mesh of the Micromegas detector

- □ Garfield++/ANSYS to simulate the ions back to drift
 - **350LPI/ 420LPI/ 500LPI/ 1000LPI**
 - **Ea is electric field of amplifier of Micromegas**

Electric field of amplifier VS Electric field of Drift

□ Garfield++/ANSYS to simulate the ions back to drift

Voltage of the GEM detector

- □ Garfield++/ANSYS to simulate the ions back to drift
 - □ 350LPI/ 420LPI/ 500LPI with GEM detector@150V
 - **Ea is electric field of amplifier of Micromegas**

Electric field of amplifier VS Electric field of Drift

Test of the new module

- **Test of GEM+Micromegas module**
 - □ Assembled with the GEM and Bulk-Micromegas
 - □ Active area: 50mm × 50mm
 - □ X-tube ray and X-ray radiation source
 - Simulation using the Garfield
 - Ion back flow with the higher X-ray: from 1% to 3%
 - Stable operation time: more than 48 hours
 - □ Separated GEM gain: 1~10

Photo of the GEM+Micromegas Module with X-ray

HV Drift E_d 4mm HV GEM E_t 1.4mm HV Mesh Cathley Anode

Supported by 高能所创新基金

Energy spectrum@⁵⁵Fe

Source: 55 Fe, Gas mix: Ar(97) + iC₄H₁₀(3)

An example of the 55Fe spectra showing the correspondence between the location of an X-ray absorption and each peak.

Gain of GEM + MM

Test with Fe-55 X-ray radiation source

- Reach to the higher gain than standard Micromegas with the pre-amplification GEM detector
- Similar Energy resolution as the standard Micromegas
- □ Increase the operating voltage of GEM detector to enlarge the whole gain

Discharge and working time

□ Test with Fe-55 X-ray radiation source

- Discharge possibility could be mostly reduced than the standard Bulk-Micromegas
- Discharge possibility of hybrid detector could be used at Gain~10000
- **•** To reduce the discharge probability more obvious than standard Micromegas
- At higher gain, the module could keep the longer working time in stable

IBF preliminary result-1

Gas gain and IBF versus (a): GEM voltage, micromesh $V_{mesh} = 420V$ and (b): micromesh voltage, $V_{GEM} = 340V$. $E_d = 250V/cm$, $E_t = 500V/cm$

□ Test with X-tube@21kV~25kV using the Hybrid module

- Charge sensitive preamplifier ORTEC 142IH
- Amplifier ORTEC 572 A
- **MCA of ORTEC ASPEC 927**
- Mesh Readout
- **Gas: Ar-iC4H10(95-5)**
- **Gain:** ~6000

Contribution of the ions from the drift region to be γ , calculation of IBF, η :

$$I_{mesh} = G\gamma$$

$$I_c = \gamma + G\gamma\eta = \gamma + \eta I_{mesh}$$

G is the gas gain of the detector.

IBF preliminary result-2

- 20 -

	GEM+MMG 420LPI (IHEP)	2GEMs + MMG 450 LPI (Yale University)	Micromegas only 450 LPI (Yale University)
Ion Back Flow	0.1-0.2% Edrift = 0.25 kV/cm	(0.3 –0.4)% Edrift = 0.4 kV/cm	(0.4 –1.5)% Edrift= (0.1-0.4) kV/cm
<ga></ga>	4000~5000	2000	2000
ε-parameter(=IBF*GA)	4~5	6~8	8~30
E -resolution	~16%	<12%	<= 8%
Gas Mixture (2-3 components)	Ar + iC4H10	Ne+CO2+N2, Ne+CO2,Ne+CF4, Ne+CO2+CH4	X + iC4H10 (Ar+CF4+iC4H10)
Sparking (²⁴¹ Am)	<10 ⁻⁸	< 3.*10 ⁻⁷ (Ne+CO2) (N.Smirnov report)	~ 10 ⁻⁷ (S. Procureur report)
Possible main problem	Thin frame	More FEE channel	#
Goals	CEPC TPC	ALICE upgrade	#

Laser calibration for TPC prototype Supported by 国家基金委重点基金

• Goals of laser for TPC detector

- The ionization in the gas volume along the laser path occurs via two photon absorption by organic impurities
- Drift velocity, gain uniformity
- To reduce the distortion effect
 - E×B effect study
 - Drift Velocity measurement
 - Good resolution in space and tin
 - **No production of σ-rays**
 - No multiple scattering
- Baseline design (DONE)
 - Nd:YAG laser device
 - $\lambda = 266 \text{ nm or } E = hv = 4.66 \text{ eV}$
 - Energy: ~100 uJ/pulse
 - Duration of pulse: 5 ns
 - Active area:200mm × 200mm
 - Drift length: 500mm
 - Outer diameter:~400mm
 - GEM readout

Laser calibration baseline design

The assembled module test with 266nm laser

Tsinghua and IHEP Cooperation

Laser calibration for TPC prototype

- Optimization of the laser map
 - 6 rods laser map to 4 rods laser map
 - some devices selection
 - Preliminary design with parameters (DONE)

В

Tsinghua and IHEP Cooperation

Participate in the collaboration@2016

- Promote domestic cooperation and exchanges
- Participated in the international collaboration group (LC-TPC)
- Singed MOA and joined in LC-TPC collaboration @Dec. 14,2016

Some activities for domestic cooperation

Communicate meeting

- Tsinghua University
- IHEP, CAS
- UCAS, CAS
- Lanzhou University
- IMP, CAS
- USTC
- SINAP, CAS
- CIEA
- Shandong University
- SJTU

Invited talks

- Saga University
- CEA Saclay
- Korean Mecaro

TPC Tracker Detector Technology mini-Workshop

Participate in the collaboration group

Collaboration for the IBF R&D: CEA Scalay (France) IHEP, Tsinghua Univ. (China)

Aleksan Roy (Saclay) GAO Yuanning (THU) QI Huirong (IHEP)

Collaboration for the Beam test with Asia Module:

- KEK (Japan)
- **DESY (Germany)**
- IHEP, Tsinghua Univ. (China)

Targets:

- R&D of IBF used UV light
- QI Huirong (IHEP)
 - Goal: ~0.1% IBF, Resistive Micromegas modules, Hybrid modules
- TPC Prototype design with Laser calibration
 - Readout active area: ~200mm², Drift length: ~500mm
- Beam test experiment and data analysis
 - Fixed date: 30,Oct./2016~14,Nov./2016
 - GEM module with the field shaper in 1.0 Tesla in PCMAG
- Toward CEPC CDR

Keisuke Fujii (KEK) Schrader, Andrea(DESY) GAO Yuanning (THU) QI Huirong (IHEP)

Participate in the collaboration@2016

Collaboration with Saclay

- Joint meeting with Saclaty/THU/IHEP
- Design the Micromegas PCB boards
- Prepare to assemble the R/Micromegas

Collaboration with KEK

- GEM module with gate GEM in 1.0 Tesla
- **5.0Gev electron beam test**
- Join in group and participate in analysis

Summary

Physics requirements for CEPC TPC modules

- Continuous Ion Back Flow due to the continuous beam structure
- Gating device could NOT be used due to the limit time
- Ion back flow is the most critical issue for the TPC module at circular colliders

Some activities for the module

- IBF simulation of the detector have been started and further simulated.
- Some preliminary IBF results of the continuous Ion Backflow suppression detector modules has been analyzed.
- The IBF value would be estimated and the reasonable value would be studied.
- **R&D** work within the some collaboration is starting.

Thanks very much for your attention !

More further estimation for Z-pole / starting Manqi

TPC Hit Profile of Full Simulated Z->qq events From Manqi's simu.

Manqi

At 1E35, k = 100 & Velocity = 5m/s

Distortion, 1 order of magnitude higher than intrinsic resolution – unacceptable!!

-LO TPO-

Ion Back Flow Distortions

S.Ganjour

Secondary ions yield distortions of about 20 μm for IBFxGain=1 for the case of continious charge density along z axis