Double Higgs Production at the 14 TeV LHC and 100 TeV pp-collider
 Gang Li
 Peking University

Based on arXiv: 1611.09336, in collaboration with
Qing-Hong Cao, Bin Yan, Dong-Ming Zhang, Hao Zhang

IAS Program at HKUST, Jan. 25, 2017

Motivations

- The Higgs potential is still undetermined

$$
\begin{array}{ll}
V(h)=\frac{1}{2} m_{h}^{2} v^{2}+\lambda v h^{3}+\frac{1}{4} \tilde{\lambda} h^{4} & m_{h}=125 \mathrm{GeV} \\
v=\left(2 G_{F}\right)^{-1 / 2} \\
\mathrm{SM}: \lambda=\tilde{\lambda}=\lambda_{\mathrm{SM}}=m_{h}^{2} /\left(2 v^{2}\right) &
\end{array}
$$

- λ and $\tilde{\lambda}$ can vary independently, for example by adding a higher dimensional operator $\left(H^{\dagger} H\right)^{3}$
- So it is necessary to probe λ and $\tilde{\lambda}$ directly in multi-Higgs production
- The measurements of $\tilde{\lambda}$ in triple Higgs production is much more challenging than and depends on the measurements of λ in double Higgs production
T. Plehn, M. Rauch, Phys.Rev. D72, 053008 (2005)

Pioneering works (before Higgs discovery):
F. Gianotti, M.L. Mangano, T. Virdee, et. al, hep-ph/0204087, Eur.Phys.J. C39 (2005) 293
U. Baur, T. Plehn, D. L. Rainwater, Phys.Rev.Lett. 89, 151801 (2002); Phys.Rev. D67, 033003 (2003);

Phys.Rev. D 68, 033001 (2003); Phys.Rev. D 69, 053004 (2004); Phys.Rev. D69 (2004) 053004
M. J. Dolan, C. Englert, M. Spannowsky, JHEP 1210 (2012) 112

Theoretical status (after Higgs discovery)
J. Baglio, A. Djouadi, R. Grober, M.M. Muhlleitner, J. Quevillon, M. Spira, JHEP 1304 (2013) 151

Motivations

- The cross section of double Higgs production in the SM is small

Baglio, Djouadi, Quevillon, Rep. Prog. Phys. 79 (2016) 116201

- However, it has received a lot of attention after the Higgs boson was discovered since it is very sensitive to NP

Motivations

- $g g \rightarrow h h:$

Contino, Ghezzi, Moretti, Panico, Piccinini, Wulzer, JHEP08(2012)154
Chuan-Ren Chen, Ian Low, Phys.Rev. D90, 013018 (2014)
Goertz, Papaefstathiou, Yang, Zurita, JHEP 1504 (2015) 167
Dawson, Ismail, Low, Phys.Rev. D91, 115008 (2015)
Chih-Ting Lu, Jung Chang, Kingman Cheung, Jae Sik Lee, JHEP 1508 (2015) 133
Azatov, Contino, Panico, Son, Phys.Rev. D92, 035001 (2015)
Qing-Hong Cao, Bin Yan, Dong-Ming Zhang, Hao Zhang, Phys.Lett. B752 (2016) 285
Ligong Bian, Ning Chen JHEP 1609 (2016) 069
Hong-Jian He, Jing Ren, Weiming Yao, Phys. Rev. D 93, 015003 (2016)

- $q q^{\prime} \rightarrow h h q q^{\prime}:$

Bishara, Contino, Rojo, 1611.03860

- $q \bar{q} / g g \rightarrow t \bar{t} h h:$

Tao Liu, Hao Zhang, 1410.1855
Ning Liu, Yanming Zhang, Jinzhong Han, Bingfang Yang, JHEP 1509 (2015) 008

- $q \bar{q}^{\prime} \rightarrow V h h:$

Qing-Hong Cao, Yandong Liu, Bin Yan, 1511.03311

Motivations

- I will focus on $g g \rightarrow h h$
- In the SM, there is large cancellation between

Low energy theorem B. A. Kniehl, M. Spira Z.Phys. C69 (1995) 77 A. Pierce, J. Thaler, L-T Wang JHEP 0705 (2007) 070

- The current constraint on gluon fusion double Higgs production (8 TeV)

$$
\sigma_{h h} \leq 0.69 \mathrm{~Pb} \sim 70 \sigma_{h h}^{S M}
$$

Motivations

- NP enters in double Higgs production in different ways

- A model independent way to study the NP effects is EFT

Goertz, Papaefstathiou, Yang, Zurita, JHEP 1504 (2015) 167

$$
\begin{aligned}
\mathcal{L}_{\text {eff }} & =-\frac{m_{t}}{v} \bar{t}\left(c_{t}+\tilde{c}_{t} \gamma_{5}\right) t h-\frac{m_{t}}{2 v^{2}} \bar{t}\left(c_{2 t}+\tilde{c}_{2 t} \gamma_{5}\right) t h^{2}-c_{3} \frac{m_{h}^{2}}{2 v} h^{3} \\
& +\frac{\alpha_{s} h}{12 \pi v}\left(c_{g} G_{\mu \nu}^{A} G^{A, \mu v}+\tilde{c}_{g} G_{\mu \nu}^{A} \tilde{G}^{A, \mu v}\right)+\frac{\alpha_{s} h^{2}}{24 \pi v^{2}}\left(c_{2 g} G_{\mu \nu}^{A} G^{A, \mu v}+\tilde{c}_{2 g} G_{\mu \nu}^{A} \tilde{G}^{A, \mu v}\right)
\end{aligned}
$$

- $c_{t}=c_{3}=1$ and others $=0$ in the SM

Chih-Ting Lu, Jung Chang, Kingman Cheung, Jae Sik Lee, JHEP 1508 (2015) 133

- $\mathcal{O}_{H G}=H^{\dagger} H G_{\mu \nu}^{A} G^{A, \mu \nu}$

$$
\tilde{\mathcal{O}}_{H G}=H^{\dagger} H G_{\mu \nu}^{A} \widetilde{G}^{A, \mu \nu}
$$

$$
\longmapsto \begin{aligned}
& c_{g}=c_{2 g} \\
& \tilde{c}_{g}=\tilde{c}_{2 g}
\end{aligned}
$$

Partial wave analysis

Partial wave analysis

Partial wave analysis

- The $g g \rightarrow h h$ is dominated by s wave?
- Yes!

$$
\mathcal{M}_{h h}=\sum_{\ell=0,2} \mathcal{M}_{\ell}(\hat{s}) P_{\ell}(\cos \theta) \quad \ell=0, \text { s wave, } \ell=2 \text {, d wave }
$$

$$
\frac{d \hat{\sigma}_{h h}}{d \cos \theta}=\hat{\sigma}_{0}(\hat{s})+\hat{\sigma}_{2}(\hat{s}) P_{2}(\cos \theta)^{2}+\hat{\sigma}_{\text {int }}(\hat{s}) P_{2}(\cos \theta)
$$

Partial wave analysis

- The $g g \rightarrow h h$ is dominated by s wave?
- Yes!

$$
\mathcal{M}_{h h}=\sum_{\ell=0,2} \mathcal{M}_{\ell}(\hat{s}) P_{\ell}(\cos \theta) \quad \ell=0, \mathrm{~s} \text { wave, } \ell=2, \mathrm{~d} \text { wave }
$$

$$
\int d \cos \theta \frac{d \hat{\sigma}_{h h}}{d \cos \theta}=\int d \cos \theta\left[\hat{\sigma}_{0}(\hat{s})+\hat{\sigma}_{2}(\hat{s}) P_{2}(\cos \theta)^{2}\right]
$$

The d-wave contribution is at most 10%

Cut efficiency function

- The $g g \rightarrow h h$ is dominated by s wave
- So what?
- We consider $g g \rightarrow h h \rightarrow b \bar{b} \gamma \gamma$. Owing to the (pseudo)scalar feature of the Higgs boson, there is no spin correlation among the initial and final state particles, thus $p_{T}^{b}, p_{T}^{\gamma}, \eta_{b}, \eta_{\gamma}$ mainly depend on $m_{h h}$
- Therefore, the cut efficiency is insensitive to the Higgs effective couplings
$\longmapsto \frac{d \sigma_{\mathrm{cut}}}{d m_{h h}}=\frac{d \sigma}{d m_{h h}} \times \boldsymbol{A}\left(\boldsymbol{m}_{\boldsymbol{h h}}\right) \quad \sigma_{\mathrm{cut}}=\int d m_{h h} \frac{d \sigma}{d m_{h h}} \times \boldsymbol{A}\left(\boldsymbol{m}_{\boldsymbol{h} \boldsymbol{h}}\right)$
$\boldsymbol{A}\left(\boldsymbol{m}_{\boldsymbol{h} \boldsymbol{h}}\right)$: cut efficiency function, which can be derived analytically with the parameter obtained by fitting
- Does this method work? Yes!

Cut efficiency function

- At the 14 TeV LHC, ATL-PHYS-PUB-2014-019
$p_{T}^{b_{1}}>40 \mathrm{GeV}, p_{T}^{b_{2}}>25 \mathrm{GeV},\left|\eta^{b}\right|<2.5$,
$p_{T}^{\gamma}>30 \mathrm{GeV},\left|\eta^{\gamma}\right|<1.37$ or $1.52<\left|\eta^{\gamma}\right|<2.37$,
$\Delta R_{0}<\Delta R_{b b, \gamma \gamma}<2.0, \Delta R_{b \gamma}>\Delta R_{0}, \Delta R_{0}=0.4$,
$100 \mathrm{GeV}<m_{b b}<150 \mathrm{GeV}, p_{T}^{b b}>110 \mathrm{GeV}$,
$123 \mathrm{GeV}<m_{\gamma \gamma}<128 \mathrm{GeV}, p_{T}^{\gamma \gamma}>110 \mathrm{GeV}$

- Similar at the 100 TeV pp-collider

$\boldsymbol{m}_{\boldsymbol{h} \boldsymbol{h}}$ distribution

$$
\begin{aligned}
\mathcal{M}_{h h} & =-\frac{\alpha_{s} \hat{\delta} \delta^{a b}}{4 \pi v^{2}} \epsilon_{\mu}^{a}\left(p_{1}\right) \epsilon_{v}^{b}\left(p_{2}\right)\left\{\left[c_{t}^{2} F_{\square}+\tilde{c}_{t}^{2} F_{\square}^{(1)}+\frac{3 m_{h}^{2}}{\hat{s}-m_{h}^{2}} c_{3 h}\left(c_{t} F_{\Delta}+\frac{2}{3} c_{g}\right)+\frac{2}{3} c_{g}+c_{2 t} F_{\Delta}\right] A^{\mu \nu}\right. \\
& \left.\left.+\left(c_{t}^{2} G_{\square}+\tilde{c}_{t}^{2} G_{\square}^{(1)}\right) B^{\mu \nu}-c_{t} \tilde{c}_{t} F_{\square}^{(2)}+\frac{3 m_{h}^{2}}{\hat{s}-m_{h}^{2}} c_{3 h}\left(\tilde{c}_{t} F_{\Delta}^{(1)}+\frac{2}{3} \tilde{c}_{g}\right)+\frac{2}{3} \tilde{c}_{g}+\tilde{c}_{2 t} F_{\Delta}^{(1)}\right] C^{\mu \nu}\right\}
\end{aligned}
$$

- LET:

$$
\begin{gathered}
F_{\square} \rightarrow-\frac{2}{3}, G_{\square} \rightarrow \mathcal{O}\left(\frac{\hat{s}}{m_{t}^{2}}\right), F_{\Delta} \rightarrow \frac{2}{3} \\
F_{\square}^{(1)} \rightarrow \frac{2}{3}, F_{\square}^{(2)} \rightarrow 2, G_{\square}^{(1)} \rightarrow \mathcal{O}\left(\frac{\hat{s}}{m_{t}^{2}}\right), F_{\Delta}^{(1)} \rightarrow-1
\end{gathered}
$$

$\boldsymbol{m}_{\boldsymbol{h} \boldsymbol{h}}$ distribution

$$
\begin{aligned}
\mathcal{M}_{h h} & =-\frac{\alpha_{s} \hat{s} \delta^{a b}}{4 \pi v^{2}} \epsilon_{\mu}^{a}\left(p_{1}\right) \epsilon_{v}^{b}\left(p_{2}\right)\left\{\left[c_{t}^{2} F_{\square}+\tilde{c}_{t}^{2} F_{\square}^{(1)}+\frac{3 m_{h}^{2}}{\hat{s}-m_{h}^{2}} c_{3 h}\left(c_{t} F_{\Delta}+\frac{2}{3} c_{g}\right)+\frac{2}{3} c_{g}+c_{2 t} F_{\Delta}\right] A^{\mu \nu}\right. \\
& \left.+\left(c_{t}^{2} G_{\square}+\tilde{c}_{t}^{2} G_{\square}^{(1)}\right) B^{\mu \nu}-\left[c_{t} \tilde{c}_{t} F_{\square}^{(2)}+\frac{3 m_{h}^{2}}{\hat{s}-m_{h}^{2}} c_{3 h}\left(\tilde{c}_{t} F_{\Delta}^{(1)}+\frac{2}{3} \tilde{c}_{g}\right)+\frac{2}{3} \tilde{c}_{g}+\tilde{c}_{2 t} F_{\Delta}^{(1)}\right] C^{\mu \nu}\right\}
\end{aligned}
$$

- LET:

$$
\begin{gathered}
F_{\square} \rightarrow-\frac{2}{3}, G_{\square} \rightarrow \mathcal{O}\left(\frac{\hat{s}}{m_{t}^{2}}\right), F_{\Delta} \rightarrow \frac{2}{3} \\
F_{\square}^{(1)} \rightarrow \frac{2}{3}, F_{\square}^{(2)} \rightarrow 2, G_{\square}^{(1)} \rightarrow \mathcal{O}\left(\frac{\hat{s}}{m_{t}^{2}}\right), F_{\Delta}^{(1)} \rightarrow-1
\end{gathered}
$$

$\boldsymbol{m}_{\boldsymbol{h} \boldsymbol{h}}$ distribution

Cross section

$$
\frac{\sigma(p p \rightarrow h h \rightarrow b \bar{b} \gamma \gamma)}{\sigma(p p \rightarrow h h \rightarrow b \bar{b} \gamma \gamma)}=\mu_{h h} \times \mu_{b b} \times \mu_{\gamma \gamma}
$$

- $\mu_{h h}=\frac{\sigma_{h h}}{\sigma_{h h}^{S M}}$

$$
\begin{aligned}
\mu_{h h} & =A_{1} c_{3 h}^{2} c_{g}^{2}+A_{2} c_{3 h}^{2} c_{g} c_{t}+A_{3} c_{3 h}^{2} c_{t}^{2}+A_{4} c_{3 h} c_{g}^{2}+A_{5} c_{3 h} c_{g} c_{t}^{2}+A_{6} c_{3 h} c_{g} c_{t}+A_{7} c_{3 h} c_{g} \tilde{c}_{t}^{2} \\
& +A_{8} c_{3 h} c_{t}^{3}+A_{9} c_{3 h} c_{t} \tilde{c}_{t}^{2}+A_{10} c_{g}^{2}+A_{11} c_{g} c_{t}^{2}+A_{12} c_{g} \tilde{c}_{t}^{2}+A_{13} c_{t}^{4}+A_{14} c_{t}^{2} \tilde{c}_{t}^{2}+A_{15} \tilde{c}_{t}^{4} \\
& +A_{16} c_{33}^{2} \tilde{c}_{g}^{2}+A_{17} c_{3 h}^{2} \tilde{c}_{g} \tilde{c}_{t}+A_{18} c_{3 h}^{2} \tilde{c}_{t}^{2}+A_{19} c_{3 h} \tilde{c}_{g}^{2}+A_{20} c_{3 h} \tilde{c}_{g} c_{t} \tilde{c}_{t}+A_{21} c_{3 h} \tilde{c}_{g} \tilde{c}_{t} \\
& +A_{22} \tilde{c}_{g}^{2}+A_{23} \tilde{g}_{g} c_{t} \tilde{c}_{t}+A_{24} c_{2 t}^{2}+A_{25} c_{2 t} c_{3 h} c_{g}+A_{26} c_{2 t} c_{3 h} c_{t}+A_{27} c_{2 t} c_{g}+A_{28} c_{2 t} c_{t}^{2} \\
& +A_{29} c_{2 t} \tilde{c}_{t}^{2}+A_{30} c_{t} \tilde{c}_{t} \tilde{c}_{2 t}+A_{31} c_{3 h} \tilde{c}_{t} \tilde{c}_{2 t}+A_{32} c_{g} \tilde{c}_{2 t}+A_{33} \tilde{c}_{2 t}+A_{34} \tilde{c}_{g}
\end{aligned}
$$

- $\mu_{h h}$ has no dependence on odd-number-power \tilde{c}_{i}
- $\mu_{h h}$ have sensitivities on $c_{t}, \tilde{c}_{t}, c_{g}, \tilde{c}_{g}, c_{2 t}, \tilde{c}_{2 t}, c_{3} h$

$$
\begin{aligned}
& \kappa_{g}^{2}=\frac{\left|c_{t} F_{\Delta}+\frac{2}{3} c_{g}\right|^{2}+\left|\tilde{c}_{t} F_{\Delta}^{(1)}+\frac{2}{3} \tilde{c}_{g}\right|^{2}}{\left|F_{\Delta}\right|^{2}} \\
& \kappa_{\gamma}^{2}=\frac{\left|F_{1}\left(\tau_{W}\right)+\frac{4}{3} c_{t} F_{\Delta}\right|^{2}+\left|\frac{4}{3} \tilde{c}_{t} F_{\Delta}^{(1)}\right|^{2}}{\left|F_{1}\left(\tau_{W}\right)+\frac{4}{3} F_{\Delta}\right|^{2}}
\end{aligned}
$$

Cross section

$$
\frac{\sigma(p p \rightarrow h h \rightarrow b \bar{b} \gamma \gamma)}{\sigma(p p \rightarrow h h \rightarrow b \bar{b} \gamma \gamma)}=\mu_{h h} \times \mu_{b b} \times \mu_{\gamma \gamma}
$$

partial width to diphoton

$$
\mu_{f} \equiv \mu_{b b} \times \mu_{\gamma \gamma}=\frac{\kappa_{\gamma}^{2}}{\left[1+\left(\kappa_{g}^{2}-1\right) \mathrm{BR}_{g}^{\mathrm{SM}}+\left(\kappa_{\gamma}^{2}-1\right) \mathrm{BR}_{\gamma}^{\mathrm{SM}}\right]^{2}} \quad \begin{aligned}
& \mathrm{BR}_{g}^{\mathrm{SM}}=8.187 \% \\
& \mathrm{BR}_{\gamma}^{\mathrm{SM}}=0.227 \%
\end{aligned}
$$

total width

- μ_{f} can be modified significantly with a large κ_{g}
- Since $F_{\Delta} \rightarrow \frac{2}{3}, F_{\Delta}^{(1)} \rightarrow-1$ and

$$
\kappa_{g}^{2}=\frac{\left|c_{t} F_{\Delta}+\frac{2}{3} c_{g}\right|^{2}+\left|\tilde{c}_{t} F_{\Delta}^{(1)}+\frac{2}{3} \tilde{c}_{g}\right|^{2}}{\left|F_{\Delta}\right|^{2}}
$$

large κ_{g} means large $c_{g},\left|\tilde{c}_{g}\right|$

Sensitivities to Higgs effective couplings

- We follow the analysis at the HL-LHC by the ATLAS Collaborarion and the analysis at the 100 TeV pp-collider in Physics at a 100 TeV pp collider: Higgs and EW symmetry breaking studies
- We use the cut efficiency functions $A\left(m_{h h}\right)$ to mimic the experimental cuts and detector effects

$$
\frac{d \sigma_{\mathrm{cut}}}{d m_{h h}}=\frac{d \sigma}{d m_{h h}} \times \boldsymbol{A}\left(\boldsymbol{m}_{h h}\right) \quad \sigma_{\mathrm{cut}}=\int d m_{h h} \frac{d \sigma}{d m_{h h}} \times \boldsymbol{A}\left(\boldsymbol{m}_{\boldsymbol{h} \boldsymbol{h}}\right)
$$

- We can extract the sensitivities on the Higgs effective couplings from the exclusion limit/discovery potential of (non-SM) double Higgs production
- On the other hand, we have included the constraints on the Higgs effective couplings from the measurements of κ_{g} and κ_{γ} (and EDMs)

$$
\begin{aligned}
& \qquad\left|\tilde{c}_{t}\right|<0.01,\left|\tilde{c}_{g}\right|<0.01 \\
& \text { J. Brod, U. Haisch, J. Zupan, JHEP 11, 180 (2013), } 1310.1385 \\
& \text { Y. T. Chien, V. Cirigliano, W. Dekens, J. de Vries, E. Mereghetti (2015) }
\end{aligned}
$$

Sensitivities to Higgs effective couplings

- 2σ exclusion and 5σ discovery of double Higgs production

Sensitivities at the 100 TeV pp-collider with $\mathcal{L}=10 \mathrm{fb}^{-1}$ are comparable to those at the HL-LHC

$\mathcal{L}=30 \mathrm{ab}^{-1}$ Sensitivities to Higgs effective couplings

5σ discovery of NP, where the SM hh is treated as bkg

$$
3.7 c_{g}^{2}-0.29 c_{g}+3.7 \tilde{c}_{g}^{2} \geq 0.1
$$

c_{t}

$3.7 c_{g}^{2}-0.29 c_{g}+4.5 \tilde{c}_{t}^{2} \geq 0.1$

Additional CP-violating interaction has to be included to respect the strict EDM constraints if double Higgs production in NP models is discovered outside the grey region

Summary

- $g g \rightarrow h h$ with CP violation is parametrized in the EFT approach
- $g g \rightarrow h h$ is dominated by s wave
- We use the cut efficiency function to mimic the experimental cuts and detector effects at the HL-LHC and the 100 TeV pp-collider
- We investigate the sensitivities to the Higgs effective couplings, especially we provide the analytical expressions corresponding to the 5σ discovery of NP

Backup slides

Higgs self-coupling in 2HDM

- Two-Higgs-doublet model: in the decoupling limit $\cos (\beta-\alpha) \rightarrow 0$

$$
\lambda_{3}=\frac{3 m_{h}^{2}}{v}\left(1+\cos ^{2}(\beta-\alpha)\left(\frac{3}{2}-\frac{2 M^{2}}{m_{h}^{2}}\right)\right) \quad M^{2}=\frac{m_{3}^{2}}{s_{\beta} c_{\beta}}
$$

V. Barger, L. L. Everett et al, PRD 90 (2014) 095006
S. Kanemura, Y. Okada, E. Senaha, C.-P. Yuan, Phys.Rev. D70, 115002 (2004)

$\boldsymbol{g} \boldsymbol{g} \rightarrow \boldsymbol{h} \boldsymbol{h}:$ spin 1

- For a CP-mixed Higgs boson

$$
\mathcal{O}_{4}^{h h Z}=h\left(\partial_{\mu} h\right) Z^{\mu}
$$

C. Englert, K. Nordström, K. Sakurai, M. Spannowsky, 1611.05445

It originates from a dimension-8 operator for a linearly-realized model
M.B. Gavela, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia, L. Merlo, S. Rigolin, J. Yepes, JHEP 1410 (2014) 044

