

CLIC Status

Philip Burrows

John Adams Institute

Oxford University

On behalf of the CLIC Collaborations Thanks to all colleagues for materials

CLIC Collaborations

31 Countries – over 70 Institutes

Outline

- Brief introduction to CLIC
- CLIC Review
- Rebaselining + project staging
- Strategic plans \rightarrow 2019 and beyond

Apologies for skipping many results + details

CLIC layout (3 TeV)

CLIC physics context

Energy-frontier capability for electron-positron collisions,

> for precision exploration of potential new physics that may emerge from LHC

CLIC physics context

Energy-frontier capability for electron-positron collisions,

> for precision exploration of potential new physics that may emerge from LHC

Full exploitation of the LHC:

- □ successful operation of the nominal LHC (Run 2, LS2, Run 3)
- Construction and installation of LHC upgrades: LIU (LHC Injectors Upgrade) and HL-LHC

Scientific diversity programme serving a broad community:

- □ current experiments and facilities at Booster, PS, SPS and their upgrades (Antiproton Decelerator/ELENA, ISOLDE/HIE-ISOLDE, etc.)
- participation in accelerator-based neutrino projects outside Europe (presently mainly LBNF in the US) through CERN Neutrino Platform

Preparation of CERN's future:

- vibrant accelerator R&D programme exploiting CERN's strengths and uniqueness (including superconducting high-field magnets, AWAKE, etc.)
- □ design studies for future accelerators: CLIC, FCC (includes HE-LHC)
- ☐ future opportunities of scientific diversity programme ("Physics Beyond Colliders" Study Group)

Important milestone: update of the European Strategy for Particle Physics (ESPP), to be concluded in May 2020

F. Gianotti 11/1/17

Full exploitation of the LHC:

- □ successful operation of the nominal LHC (Run 2, LS2, Run 3)
- Construction and installation of LHC upgrades: LIU (LHC Injectors Upgrade) and HL-LHC

Scientific diversity programme serving a broad community:

- □ current experiments and facilities at Booster, PS, SPS and their upgrades (Antiproton Decelerator/ELENA, ISOLDE/HIE-ISOLDE, etc.)
- participation in accelerator-based neutrino projects outside Europe (presently mainly LBNF in the US) through CERN Neutrino Platform

Preparation of CERN's future:

vibrant accelerator R&D programme exploiting CERN's strengths and uniqueness (including superconducting high-field magnets, AWAKE, etc.)

- design studies for future accelerators: CLIC, FCC (includes HE-LHC)
- □ future opportunities of scientific diversity programme ("Physics Reyond Colliders" Study Group)

Important milestone: update of the European Strategy for Particle Physics (ESPP), to be concluded in May 2020

F. Gianotti 11/1/17

Full exploitation of the LHC:

- □ successful operation of the nominal LHC (Run 2, LS2, Run 3)
- Construction and installation of LHC upgrades: LIU (LHC Injectors Upgrade) and HL-LHC

Scientific diversity programme serving a broad community:

- □ current experiments and facilities at Booster, PS, SPS and their upgrades (Antiproton Decelerator/ELENA, ISOLDE/HIE-ISOLDE, etc.)
- participation in accelerator-based neutrino projects outside Europe (presently mainly LBNF in the US) through CERN Neutrino Platform

Preparation of CERN's future:

- vibrant accelerator R&D programme exploiting CERN's strengths and uniqueness (including superconducting high-field magnete, AWAKE, etc.)
- design studies for future accelerators: CLIC, FCC (includes HE-LHC)
- □ future opportunities of scientific d versity programme ("Physics Reyond Colliders" Study Group)

We are vigorously preparing input for European Strategy PP Update:

- Project Plan for CLIC as a credible post-LHC option for CERN
- Initial costs compatible with CERN budget
- Upgradeable in stages over 20-30 years

CLIC Accelerator Study – Review of objectives for the MTP 2016-2019

March 1st, 2016

Report from the Review Panel

Members: O. Brüning; P. Collier, J.M. Jimenez, R. Losito; R. Saban, R. Schmidt;

F. Sonnemann; M. Vretenar (Chair).

Introduction and general remarks

The Panel was very impressed by the enormous amount of work that was presented, by the enthusiasm of the CLIC team and by the wealth of knowledge accumulated by the CLIC study. The CLIC accelerator study has reached a high level of maturity and has been able to establish a large community consisting in about 50 collaborating laboratories and universities, working together on a number of technical challenges

After the publication of the Conceptual Design report in 2012, the CLIC Study is presently in the Development Phase, to prepare a more detailed design and an implementation plan for the next European Strategy Upgrade in 2018-19. This phase is expected to be followed by a Preparation Phase covering the period 2019-25; in case of a positive decision, a construction

Report: some key points

- Produce optimized, staged design: 380 GeV \rightarrow 3 TeV
- Optimise cost and power consumption
- Support efforts to develop high-efficiency klystrons
- Support 380 GeV klystron-only version as alternative
- Consolidate high-gradient structure test results
- Exploit Xboxes + nurture high-gradient test capabilities
- Develop plans for 2020-25 ('preparation phase') + structure conditioning strategy
- Continuing and enhanced participation in KEK/ATF2

'Rebaselining'

Optimize machine design w.r.t. cost and power for a staged approach to reach multi-TeV scales:

- ~ 380 GeV (optimised for Higgs + top physics) ~ 1500 GeV
- ~ 3000 GeV

(working assumptions: exact choices of higher c.m. energies depend on LHC findings)

for various luminosities and safety factors

- Expect to make significant cost and power reductions for the initial stages
- Choose new staged parameter sets, with a corresponding consistent upgrade path, also considering the possibility of the initial-stage being klystron-powered

Rebaselining document

CERN-2018-004 12 August 2018

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLÉAR RESEARCH

UPDATED BASELINE FOR A STAGED COMPACT LINEAR COLLIDER

> DENEXS No.6

The Compact Linear Collider (CLIC) is a multi-TeV high-luminosity linear e^+e^- collider under development. For an optimal exploitation of its physics potential, CLIC is foreseen to be built and operated in a staged approach with three centre-of-mass energy stages ranging from a few hundred GeV up to 3 TeV. The first stage will focus on precision Standard Model physics, in particular Higgs and top measurements. Subsequent stages will focus on measurements of rare Higgs processes, as wells as searches for new physics processes and precision measurements of new states, e.g. states previously discovered at LHC or at CLIC itself. In the 2012 CLIC Conceptual Design Report, a fully optimised 3 TeV collider was presented, while the proposed lower energy stages were not studied to the same level of detail. This report presents an updated baseline staging scenario for CLIC. The scenario is the result of a comprehensive study addressing the performance, cost and power of the CLIC accelerator complex as a function of centre-of-mass energy and it targets optimal physics output based on the current physics landscape. The optimised staging scenario foresees three main centre-of-mass energy stages at 380 GeV, 1.5 TeV and 3 TeV for a full CLIC programme spanning 22 years. For the first stage, an alternative to the CLIC drive beam scheme is presented in which the main linac power is produced using X-band klystrons.

CERN-2016-004

arXiv:1608.07537

Rebaselining: first stage energy ~ 380 GeV

Parameter	Unit	380 GeV	3 TeV
Centre-of-mass energy	TeV	0.38	3
Total luminosity	10 ³⁴ cm ⁻² s ⁻¹	1.5	5.9
Luminosity above 99% of vs	10 ³⁴ cm ⁻² s ⁻¹	0.9	2.0
Repetition frequency	Hz	50	50
Number of bunches per train		352	312
Bunch separation	ns	0.5	0.5
Acceleration gradient	MV/m	72	100
Site length	km	11	50

New CLIC layout 380 GeV

New CLIC layout 3 TeV

Legend

0000

CERN existing LHC Potential underground siting : CLIC 380 Gev CLIC 1.5 TeV

CLIC 3 TeV

Jura Mountains

Lake Geneva

ező 10 GOOgl

Geneva

Cr2011 Geogle CO2011 GN-France age: 0/2011 GeoEye

P

Current rebaselined parameters

Table 8: Parameters for the CLIC energy stages. The power consumptions for the 1.5 and 3 TeV stages are from the CDR; depending on the details of the upgrade they can change at the percent level.

Parameter	Symbol	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	\sqrt{s}	GeV	380	1500	3000
Repetition frequency	f_{rep}	Hz	50	50	50
Number of bunches per train	n_b		352	312	312
Bunch separation	Δt	ns	0.5	0.5	0.5
Pulse length	$\tau_{\rm pulse}$	ns	244	244	244
Accelerating gradient	G	MV/m	72	72/100	72/100
Total luminosity	L	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.5	3.7	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.9	1.4	2
Main tunnel length		km	11.4	29.0	50.1
Charge per bunch	Ν	10 ⁹	5.2	3.7	3.7
Bunch length	σ_z	μm	70	44	44
IP beam size	σ_x/σ_y	nm	149/2.9	$\sim 60/1.5$	$\sim 40/1$
Normalised emittance (end of linac)	$\varepsilon_x/\varepsilon_y$	nm	_	660/20	660/20
Normalised emittance	$\varepsilon_x/\varepsilon_y$	nm	950/30	_	
Estimated power consumption	P _{wall}	MW	252	364	589

Current rebaselined parameters

Table 8: Parameters for the CLIC energy stages. The power consumptions for the 1.5 and 3 TeV stages are from the CDR; depending on the details of the upgrade they can change at the percent level.

Parameter	Symbol	Unit	Stage 1	Stage 2	Stage 3
Centre-of-mass energy	\sqrt{s}	GeV	380	1500	3000
Repetition frequency	f_{rep}	Hz	50	50	50
Number of bunches per train	n_b		352	312	312
Bunch separation	Δt	ns	0.5	0.5	0.5
Pulse length	$\tau_{\rm pulse}$	ns	244	244	244
Accelerating gradient	G	MV/m	72	72/100	72/100
Total luminosity	L	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	1.5	3.7	5.9
Luminosity above 99% of \sqrt{s}	$\mathscr{L}_{0.01}$	$10^{34} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	0.9	1.4	2
Main tunnel length		km	11.4	29.0	50.1
Charge per bunch	Ν	10 ⁹	5.2	3.7	3.7
Bunch length	σ_z	μm	70	44	44
IP beam size	σ_x/σ_y	nm	149/2.9	$\sim 60/1.5$	$\sim 40/1$
Normalised emittance (end of linac)	$\varepsilon_x/\varepsilon_y$	nm	_	660/20	660/20
Normalised emittance	$\varepsilon_x/\varepsilon_y$	nm	050/30	_	_
Estimated power consumption	P _{wall}	MW	252	364	589

Preliminary cost estimate (380GeV)

Table 11: Value estimate of CLIC at 380 GeV centre-of-mass energy.

	Value [MCHF of December 2010]
Main beam production	1245
Drive beam production	974
Two-beam accelerators	2038
Interaction region	132
Civil engineering & services	2112
Accelerator control & operational infrastructure	216
Total	6690

Klystron version (380 GeV)

Klystron version (380 GeV)

Parameter	Symbol	Unit	DB	K	DB244	K244
Frequency	f	GHz	12	12	12	12
Acceleration gradient	G	MV/m	72.5	75	72	79
RF phase advance per cell	$\Delta \phi$	0	120	120	120	120
Number of cells	$N_{\rm c}$		36	28	33	26
First iris radius / RF wavelength	a_1/λ		0.1525	0.145	0.1625	0.15
Last iris radius / RF wavelength	a_2/λ		0.0875	0.09	0.104	0.1044
First iris thickness / cell length	d_1/L_c		0.297	0.25	0.303	0.28
Last iris thickness / cell length	d_2/L_c		0.11	0.134	0.172	0.17
Number of particles per bunch	Ν	10 ⁹	3.98	3.87	5.2	4.88
Number of bunches per train	$n_{\rm b}$		454	485	352	366
Pulse length	$ au_{ m RF}$	ns	321	325	244	244
Peak input power into the structure	$P_{\rm in}$	MW	50.9	42.5	59.5	54.3
Cost difference (w. drive beam)	$\Delta C_{\rm w. DB}$	MCHF	-50	(20)	0	(20)
Cost difference (w. klystrons)	$\Delta C_{\rm w.~K}$	MCHF	(120)	50	(330)	240

Klystron version (380 GeV)

Costings relative to drive-beam version may be lower ~ 5%

Parameter	Symbol	Unit	DB	K	DB244	K244
Frequency	f	GHz	12	12	12	12
Acceleration gradient	G	MV/m	72.5	75	72	79
RF phase advance per cell	$\Delta \phi$	0	120	120	120	120
Number of cells	$N_{\rm c}$		36	28	33	26
First iris radius / RF wavelength	a_1/λ		0.1525	0.145	0.1625	0.15
Last iris radius / RF wavelength	a_2/λ		0.0875	0.09	0.104	0.1044
First iris thickness / cell length	d_1/L_c		0.297	0.25	0.303	0.28
Last iris thickness / cell length	d_2/L_c		0.11	0.134	0.172	0.17
Number of particles per bunch	N	10 ⁹	3.98	3.87	5.2	4.88
Number of bunches per train	$n_{\rm b}$		454	485	352	366
Pulse length	$ au_{ m RF}$	ns	321	325	244	244
Peak input power into the structure	$P_{\rm in}$	MW	50.9	42.5	59.5	54.3
Cost difference (w. drive beam)	$\Delta C_{\rm w. \ DB}$	MCHF	-50	(20)	0	(20)
Cost difference (w. klystrons)	$\Delta C_{\rm w.~K}$	MCHF	(120)	50	(330)	240

Updated CLIC run model

Stage	\sqrt{s} (GeV)	$\mathscr{L}_{int}(fb^{-1})$
1	380	500
1	350	100
2	1500	1500
3	3000	3000

CLIC Higgs physics processes

Figure 2: The three highest cross section Higgs production processes at CLIC.

Figure 3: The main processes at CLIC involving the top Yukawa coupling g_{Htt} , the Higgs boson trilinear self-coupling λ and the quartic coupling g_{HHWW} .

CLIC Higgs physics capabilities

Parameter	Re	lative precisi	on
	$350{ m GeV}\ 500{ m fb}^{-1}$	+ 1.4 TeV + 1.5 ab ⁻¹	$+ 3 \text{ TeV} + 2 \text{ ab}^{-1}$
8 _{HZZ}	0.8%	0.8%	0.8%
8 _{HWW}	1.3%	0.9%	0.9%
8 _{Hbb}	2.8%	1.0%	0.9%
8 _{Hcc}	6.0%	2.3%	1.9%
8HTT	4.2%	1.7%	1.4%
<i>8</i> Нµµ	_	14.1%	7.8%
g _{Htt}	_	4.1%	4.1%
$g^{\dagger}_{\mathrm{Hgg}}$	3.6%	1.7%	1.4%
$g^{\dagger}_{\rm H\gamma\gamma}$	_	5.7%	3.2%
$g^{\dagger}_{\mathrm{HZ}\gamma}$	_	15.6%	9.1%
$\Gamma_{\rm H}$	6.4%	3.7%	3.6%

CLIC Higgs physics capabilities

Higgs couplings to heavy particles benefit from higher c.m. energies:

> ttH ~ 4% HH ~ 10%

CLIC Higgs physics paper

- Higgs Physics at the CLIC Electron-Positron Linear Collider (CLICdp collaboration paper)
- 40 pages, 123 authors, >25 full-simulation studies
- **<u>CLICdp-Pub-2016-001</u>** and <u>arXiv:1608.07538</u> (29/8/2016)
- Submitted to EPJC now addressing referees' comments

LINEAR COLLIDER COLLABORATION

CLIC top physics example: form factors (380 GeV)

Figure 9: Uncertainties of the top quark form factors (assuming SM values for the remaining form factors) compared between estimations for LHC, ILC and CLIC [10]. The form factors are extracted from the measured forward backward asymmetry and cross-section. For the ILC, $\pm 80\% \text{ e}^-$ polarisation and $\mp 30\% \text{ e}^+$ polarisation are considered and for CLIC, $\pm 80\% \text{ e}^-$

New CLIC detector model

Rebaselining: ongoing studies

- Optimize drive beam accelerator klystron system: higherefficiency klystrons
- Eliminated electron pre-damping ring (better e- injector)
- Systematic optimization of injector-complex linacs
- **Optimize / reduce power overhead estimates**
- Use of permanent or hybrid magnets for the drive beam (order of 50,000 magnets)

[[[••

CTF3

CTF3 Experimental Program 2016

Phase Along the Pulse

Drive-beam phase feed-forward tests

- Increase reproducibility
- Demonstrate factor ~ 10
 jitter reduction

Ongoing instrumentation tests

- Wake-Field Monitors
- Main and Drive beam BPMs ...

CLIC two-beam module tests

- Power production, stability + control of RF profile (beam loading compensation)
- RF phase/amplitude drifts along TBL, PETS switching at full power
- Alignment tests

Drive Beam

- Dispersion free-steering, dispersion matching, orbit control, chromatic corrections, emittance, stability
- Beam deceleration + optics check in TBL

CALIFES

Figure 1: The current CALIFES beam line. The length of the facility (as shown) is ~20m.

Beam parameter (end of linac)	Value range
Energy	80 - 220 MeV
Bunch charge	0.01 - 1.5 nC
Normalized emittances	2 um in both planes
Bunch length	300 um -1.2 mm
Relative energy spread	1%
Repetition rate	1 - 5 Hz
Number of micro-bunches in train	Selectable between 1 and >100
Micro-bunch spacing	1.5 GHz

Table 1: CALIFES parameters.

- Continuation of the CLIC high-gradient research
- X-band FEL collaboration (preparation for EU-proposal)
- Instrumentation tests (including WFMs)
- Discharge plasma wakefield experiments

- Impedance measurements
- Irradiation facility
- THz production
- General interest from AWAKE (including instrumentation)

CALIFES workshop

Workshop on exploitation of CALIFES as an e- beam user facility: CERN 10-12 October 2016

CALIFES Workshop 2016 10-12 October 2016 CERN Europe/Zurich timezone

https://indico.cern.ch/event/533052/

CALIFES → 'CLEAR' CERN Linear Electron Accelerator for Research

Figure 1: The current CALIFES beam line. The length of the facility (as shown) is ~20m.

-1		Γ.	
- 2	-		

80 - 220 MeV
0.01 - 1.5 nC
2 um in both planes
300 um -1.2 mm
1%
1 - 5 Hz
Selectable between 1 and >100

Table 1: CALIFES parameters.

CLIC accelerating structure

Outside

11.994 GHz X-band 100 MV/m Input power ≈50 MW Pulse length ≈200 ns Repetition rate 50 Hz

HOM damping waveguide

Inside

25 cm CLIC Project Review, 1 March 2016 6 mm diameter beam aperture

Walter Wuensch, CERN

Existing and planned Xband infrastructures

CERN	XBox-1 test stand	50 MW	Operational
	Xbox-2 test stand	50 MW	Operational
	XBox-3 test stand	4x6 MW	Commissioning
КЕК	NEXTEF	2x50 MW	Operational, supported in part by CERN
SLAC	ASTA	50 MW	Operational, one structure test supported by CERN
	Design of high-efficiency X-band klystron	30 MW	Under discussion
Trieste	Linearizer for Fermi	50 MW	Operational
PSI	Linearizer for SwissFEL	50 MW	Operational
	Deflector for SwissFEL	50 MW	Planning
DESY	Deflector for FLASHforward	50 MW	Planning (note first two may share power unit)
	Deflector for FLASH2	50 MW	Planning
	Deflector for Sinbad	50 MW	Planning

X-band test stands at KEK and SLAC

Existing and planned Xband infrastructures

AustraliaTest stand2x6 MWProposal, loan agreement from CERNEindhovenCompact Compton source6 MWProposal, request for loan from CERNUppsalaTest stand50 MWProposal, request for loan of spare klystron from CERNTsinghuaDeflector for Compton source50 MWOrderedLinearizer for Compton source6 MWPlanningSINAPLinearizer for soft X-ray FEL6 MWOrderedValenciaS-band test stand2x10 MWUnder constructionSTFCLinearizer6 MWUnder discussionDeflector10 MWUnder discussion					
EindhovenCompact Compton source6 MWProposal, request for loan from CERNUppsalaTest stand50 MWProposal, request for loan of spare klystron from CERNTsinghuaDeflector for Compton source50 MWOrderedLinearizer for Compton source6 MWPlanningSINAPLinearizer for soft X-ray FEL6 MWOrderedDeflectors for soft X-ray FEL3x50 MWPlanningValenciaS-band test stand2x10 MWUnder constructionSTFCLinearizer6 MWUnder discussionDeflector10 MWUnder discussion	Australia	Test stand	2x6 MW	Proposal, loan agreement from CERN	Electron Pulse from Linac
UppsalaTest stand50 MWProposal, request for loan of spare klystron from CERNTsinghuaDeflector for Compton source50 MWOrderedLinearizer for Compton source6 MWPlanningSINAPLinearizer for soft X-ray FEL6 MWOrderedDeflectors for soft X-ray FEL6 MWOrderedValenciaS-band test stand2x10 MWUnder constructionSTFCLinearizer6 MWUnder discussionDeflector10 MWUnder discussion	Eindhoven	Compact Compton source	6 MW	Proposal, request for loan from CERN	
TsinghuaDeflector for Compton source50 MWOrderedLinearizer for Compton source6 MWPlanningSINAPLinearizer for soft X-ray FEL6 MWOrderedDeflectors for soft X-ray FEL6 MWOrderedDeflectors for soft X-ray FEL3x50 MWPlanningValenciaS-band test stand2x10 MWUnder constructionSTFCLinearizer6 MWUnder discussionDeflector10 MWUnder discussion	Uppsala	Test stand	50 MW	Proposal, request for loan of spare klystron from CERN	
Linearizer for Compton source6 MWPlanningSINAPLinearizer for soft X-ray FEL6 MWOrderedDeflectors for soft X-ray FEL3x50 MWPlanningValenciaS-band test stand2x10 MWUnder constructionSTFCLinearizer6 MWUnder discussionDeflector10 MWUnder discussionAcceleratortbdUnder discussion	Tsinghua	Deflector for Compton source	50 MW	Ordered	
SINAPLinearizer for soft X-ray FEL6 MWOrderedDeflectors for soft X-ray FEL3x50 MWPlanningValenciaS-band test stand2x10 MWUnder constructionSTFCLinearizer6 MWUnder discussionDeflector10 MWUnder discussionAcceleratortbdUnder discussion		Linearizer for Compton source	6 MW	Planning	
Deflectors for soft X-ray FEL3x50 MWPlanningValenciaS-band test stand2x10 MWUnder constructionSTFCLinearizer6 MWUnder discussionDeflector10 MWUnder discussionAcceleratortbdUnder discussion	SINAP	Linearizer for soft X-ray FEL	6 MW	Ordered	Background (Sha
ValenciaS-band test stand2x10 MWUnder constructionSTFCLinearizer6 MWUnder discussionDeflector10 MWUnder discussionAcceleratortbdUnder discussion		Deflectors for soft X-ray FEL	3x50 MW	Planning	
STFCLinearizer6 MWUnder discussionDeflector10 MWUnder discussionAcceleratortbdUnder discussion	Valencia	S-band test stand	2x10 MW	Under construction	SXF
Deflector 10 MW Under discussion Accelerator tbd Under discussion	STFC	Linearizer	6 MW	Under discussion	
Accelerator tbd Under discussion		Deflector	10 MW	Under discussion	
		Accelerator	tbd	Under discussion	

Accelerating gradient summary

Original test structure geometry.

Baseline geometry, CLIC-G. Newly optimized geometry, based on these results,

CLIC-G* now in production pipeline.

Walter Wuensch

European National/Institute Ambitions

Andrea Latina

CompactLight – EU Horizon2020 proposal

- From previous application:
 - **ST** Elettra Sincrotrone Trieste, Italy.
 - **CERN** CERN Geneva, Switzerland.
 - **STFC** Daresbury Laboratory, UK
 - **SINAP** Shanghai Institute of Applied Physics, Shanghai, China.
 - **VDL** VDL ETG T&D B.V., Eindhoven, Netherlands.
 - **OSLO** University of Oslo, Norway.
 - **IASA** National Technical University of Athens, Greece.
 - **UU** Uppsala University, Uppsala, Sweden.
 - **ASLS** Australian Synchrotron, Clayton, Australia.
 - **UA-IAT** Institute of Accelerator Technologies, Ankara, Turkey.
 - **ULANC** Lancaster University, Lancaster, UK.
 - New, additional, participants:
 - **TU** Eindhoven Technical University, Netherlands
 - LNF Frascati National Laboratory, INFN, Italy
 - **Kyma** Undulators production, Italy-Slovenia
 - PSI Paul Scherrer Institute, Switzerland
 - **RUG** University of Groningen, Netherlands
 - IFIC CSIC/Valencia, Spain
 - ALBA CELLS, Spain
 - LAL CNRS, France
 - **KIT** Karlsruhe, Germany
- Discussing with: Singapore, CIEMAT, DESY, Milan, ENEA

to be submitted March 2017

Outlook → European Strategy

Aim to:

- Present CLIC as a credible post-LHC option for CERN
- Provide optimized, staged approach starting at 380 GeV, with costs and power not excessive compared with LHC, and leading to 3 TeV
- Upgrades in 2-3 stages over 20-30 year horizon
- Maintain flexibility and align with LHC physics outcomes

CLIC roadmap

2013 - 2019 Development Phase

Development of a Project Plan for a staged CLIC implementation in line with LHC results; technical developments with industry, performance studies for accelerator parts and systems, detector technology demonstrators

2020 - 2025 Preparation Phase

Finalisation of implementation parameters, preparation for industrial procurement, Drive Beam Facility and other system verifications, Technical Proposal of the experiment, site authorisation

2026 - 2034 Construction Phase

Construction of the first CLIC accelerator stage compatible with implementation of further stages; construction of the experiment; hardware commissioning

2019 - 2020 Decisions

Update of the European Strategy for Particle Physics; decision towards a next CERN project at the energy frontier (e.g. CLIC, FCC)

2025 Construction Start

Ready for construction; start of excavations

2035 First Beams

Getting ready for data taking by the time the LHC programme reaches completion

Outlook → European Strategy

Key deliverables:

Project plan: physics, machine parameters, cost, power, site, staging, construction schedule, summary of main tech. issues, prep. phase (2020-2025) summary, detector studies

Preparation-phase plan: critical parameters, status and next steps - what is needed before project construction, strategy, risks and how to address them

CLIC Workshop 2017

6-10 March 2017 CERN Europe/Zurich timezone

Overview	The CLIC workshop 2017 covers Accelerator as well as the Detector and Physics studies, with its present status and programme for the coming years.
	For the Accelerator studies, the workshop spans over 5 days: 6th - 10th of March. For CLICdp, the workshop is scheduled from Tuesday afternoon 7th to lunchtime on Friday 10th.
	Registration will be opened soon.
CERN Shuttle service	Programme
CERN Bike Sharing Service	Common parts:
How to come to CERN	1- An open plenary session on Wednesday afternoon March 8th, giving an overview of the CLIC
Visitors' Portable Computers Registration	project (accelerator, physics/detector), placed in the context of LHC results. This session also addresses the use of CLIC-related developments in other applications.
CLIC Study Website	3- The workshop dinner on Wednesday evening.
CLIC detector and physics website	Dedicated Accelerator sessions: 1- Parallel sessions on Monday afternoon, Tuesday and Wednesday morning
	2- A session on Thursday covering High-Efficiency RF Power sources developments for CLIC and for other accelerator applications like ESS, FCC and other high-power electron and proton linacs.
	3- A CLIC/CTF3 Collaboration Board on Friday afternoon
	Dedicated Detector and Physics sessions: 1- Topical sessions on Tuesday afternoon, Wednesday morning and all of Thursday. 2- The CLICdp Institute Board meeting will take place over lunch on Thursday.
	3- A CLICdp dinner is organised for Thursday evening.
	(Note that an FCAL meeting is scheduled at the beginning of the week, prior to the CLICdp sessions).
	We are looking for the widest possible participation and encourage in particular the involvement of

young colleagues.

CERN Courier article

"CLIC steps up to the TeV challenge" by Philipp Roloff and Daniel Schulte (November 2016)

http://cerncourier.com/cws/article/c ern/66567

C•

Backup slides

ATF/ATF2 (KEK)

CLIC + ATF/ATF2

- **Demonstration of nanometer-scale beam (~41nm achieved)**
- **Beam stabilisation at nanometre level**
- Also:
- **Beam tuning techniques**
- Beam jitter characterisation and amelioration
- **Beam feedback + feed-forward**
- Magnet development (hybrid QD0, PM octupoles)
- Beam instrumentation: BPMs, transverse beam size ...
- DR extraction kicker tests ...

Ground-motion sensor array

FONT5 'intra-train' feedbacks

Stabilising beam near IP

- 1. Upstream FB: monitor beam at IP
- 2. Feed-forward: from upstream BPMs \rightarrow IP kicker
- 3. Local IP FB: using IPBPM signal and IP kicker

Upstream FONT5 System

Stripline BPM with mover system

Latency

FONT5 system performance

Predicted jitter reduction at IP

	Position y	jitter (nm)	Angle y' jitter (urad)		
Bunch	Feedback off	Feedback on	Feedback off	Feedback on	
1	9.5 ± 0.3	10.1 ± 0.3	89 ± 3	87 ± 3	
2	9.4 ± 0.3	3.6 ± 0.1	87 ± 3	28 ± 1	

Predict position stabilised at few nanometre level...

How to measure it?!

Beam tuning at FACET (SLAC)

FACET measurements of wakefields

AC power

AC power (1.5 TeV)

Energy consumption

Structure design fixed by few parameters

 $\mathsf{a}_1, \mathsf{a}_2, \mathsf{d}_1, \mathsf{d}_2, \mathsf{N}_c, \phi, \mathsf{G}$

Beam parameters derived automatically to reach specific energy and luminosity

Consistency of structure with RF constraints is checked

Repeat for 1.7 billion cases

Design choices and specific studies

- Use 50Hz operation for beam stability
- Scale horizontal emittance with charge to keep the same risk in damping ring
- Scale for constant local stability in main linac, i.e. tolerances vary but stay above CDR values
- BDS design similar to CDR, use improved β_x -reach as reserve

Cost / power model

D. Schulte, CLIC Rebaselining Progress, Februar

Power Model

- Does not contain BDS and experiments
- Main beam injector power scaled with charge per train
- Some improvement is possible (e.g. drive beam turn-around magnets, booster linac, ...)

Cheapest machine is close to lowest power consumption => small potential for trade-off

CLIC detector concept

ILC concepts adapted to a single detector for CLIC:

- Highly-granular, deep calorimeter
- 4T solenoid
- Low-mass Si tracking system
- Precision vertexing close to IP
- 10ns time-stamping

Drive beam quadrupoles (40 MW @ 3 TeV)

High energy quad – Gradient very high Low energy quad – Very large dynamic range

Permanent Magnet solution

High energy quad – Gradient very high Low energy quad – Very large dynamic range

PM engineering concept

Permanent Magnet prototypes

BJA Shepherd et al, Tunable high-gradient permanent magnet quadrupoles, 2014 JINST 9 T11006

Low Energy Quad

Patent granted to cover both designs

Team now focussed on PM Dipoles

Now looking at PM dipoles

Туре	Quantity	Length (m)	Strength (T)	Pole Gap (mm)	Good Field Region (mm)	Field Quality	Range (%)
MB RTML	666	2.0	0.5	30	20 x 20	1 x 10 ⁻⁴	± 10
DB TAL	576	1.5	1.6	53	40 x 40	1 x 10 ⁻⁴	50–100

- Drive Beam Turn Around Loop (DB TAL)
- Main Beam Ring to Main Linac (MB RTML)
- Total power consumed by both types: 15 MW

Several possible designs considered:

70

Now looking at PM dipoles

Туре	Quantity	Length (m)	Strength (T)	Pole Gap (mm)	Good Field Region (mm)	Field Quality	Range (%)
MB RTML	666	2.0	0.5	30	20 x 20	1 x 10 ⁻⁴	± 10
DB TAL	576	1.5	1.6	53	40 x 40	1 x 10 ⁻⁴	50–100

- Drive Beam Turn Around Loop (DB TAL)
- Main Beam Ring to Main Linac (MB RTML
- Total power consumed by both types: 1

Several possible designs considered:

Recently installed 2-beam acceleration module in CTF3 (according to latest CLIC design)

DV CO

A

main beam

drive beam

6.10

0
Module mechanical characterisation test stand:

active alignment, fiducialisation + stabilisation (PACMAN)

Assembly – towards industrialization

Collaborators.

operations, supervision by CERN;

- 4 qualified companies for UP machining;
- Single-crystal diamond
- tool required.

Symmetry plane structures

VS.

Structures in parts along symmetry planes have **significant potential advantages** - **cost, joining, heat and chemical treatment, materials.** Does require 3-D micron precision milling which is now possible.

Early tries with quadrants yielded unsatisfactory results, but don't believe this was end of story. We're back!