

Electroweak physics at CEPC

Zhijun Liang

Institute of High Energy Physics, Chinese Academy of Science

CEPC accelerator

- Electron-positron circular collider
 - Higgs Factory (E_{cms}=250GeV, 10⁶ Higgs)
 - Precision study of Higgs coupling in ZH runs
 - complementary to ILC
 - See Manqi and Gang's talk this morning in Higgs section for more details
 - Z factory (E_{cms}=91 GeV, 10¹⁰ Z Boson) :
 - Precision Electroweak measurement in Z pole running
 - Major focus of this talk
- Preliminary Conceptual Design Report(Pre-CDR) available :
 - http://cepc.ihep.ac.cn/preCDR/volume.html
- Aiming to finalize Conceptual Design Report (CDR) next year

CEPC detector (1)

- ILD-like design with some modification for circular collider
 - No Power-pulsing
- Tracking system (Vertex detector, TPC detector, 3.5T magnet)
 - Expected Impact parameter resolution: less than 5µm
 - Expected Tracking resolution : δ(1/Pt) ~ 2*10⁻⁵(GeV⁻¹)
- Calorimeters: Concept of Particle Flow Algorithm (PFA) based
 - Expected jet energy resolution : σE/E ~ 0.3/√E

Motivation

- CEPC have very good potential in electroweak physics.
- Precision measurement is important
 - It constrain new physics beyond the standard model.
 - Eg: Radiative corrections of the W or Z boson is sensitive to new physics

The prospect of CEPC electroweak physics in pre-CDR study

- Expected precision on some key measurements in CEPC Pre-CDR study based on projections from LEP and ILC.
 - http://cepc.ihep.ac.cn/preCDR/volume.html
- From now to next year, plan to update the study for Conceptual Design Report (CDR) with full detector simulation

Observable	LEP precision	CEPC precision	CEPC runs
m_Z	2 MeV	0.5 MeV	Z lineshape
m_W	33 MeV	3 MeV	ZH (WW) thresholds
A_{FB}^b	1.7%	0.15%	Z pole
$\sin^2 heta_W^{ ext{eff}}$	0.07%	0.01%	Z pole
R_{b}	0.3%	0.08%	Z pole
N_{ν} (direct)	1.7%	0.2%	ZH threshold
N_{ν} (indirect)	0.27%	0.1%	Z lineshape
R_{μ}	0.2%	0.05%	Z pole
$R_{ au}$	0.2%	0.05%	Z pole

Z mass measurement

- LEP measurement: 91.1876±0.0021 GeV
- CEPC possible goal: 0.5 MeV
 - Z threshold scan runs is needed to achieve high precision.
 - Stat uncertainty: 0.2MeV
 - Better to have more than 10fb⁻¹ for off-peak runs (6 off-peaks runs)
 - Syst uncertainty: ~0.5 MeV
 - Beam energy uncertainty need to be better than 5ppm
 - start to Establishing a accelerator model relating the measured beam energy
 - Study of the resonant depolarization technique to measure beam energy (LEP approach)

Physics Requirement for accelerator

- Expected Beam momentum scale uncertainty
 - CEPC pre-CDR: 500keV precision (10¹⁰ -10¹¹ Z)
 - FCC-ee: 100keV precision (10¹³ Z)
- Precision of beam energy measurement may have a big impact to Z pole running program.
 - Pre-CDR requirement: 5-10 ppm level uncertainty on P_{beam}
 - preliminary study with compton scattering (BEPC-II approach)
 - may be able to reach 1MeV precision from
 - preliminary study in G-Y. Tang's talk
 http://indico.ihep.ac.cn/event/6495/session/4/contribution/29/material/slides/0.pdf
 - Toward CDR: check scenario of 1ppm uncertainty on P_{beam}
 - Requested by FCC-ee experts to do more study
 - beam polarization issue and resonant depolarization method (LEP approach)

Branching ratio (Rb)

 $\frac{\Gamma(Z \to b\bar{b})}{\Gamma(Z \to had)}$

LEP measurement 0.21594 ±0.00066

Stat error : 0.44%Syst error : 0.35%

Typically using 65% working points

CEPC pre-CDR

- Expected Stat error (0.04%)
- Expected Syst error (0.07%)
- Expect to use 80% working points
 - 15% higher efficiency than SLD
 - 20-30% higher in purity than SLD

Uncertainty	LEP	CEPC	CEPC improvement
charm physics modeling	0.2%	0.05%	tighter b tagging working point
hemisphere tag correlations for b events	0.2%	0.1%	Higher b tagging efficiency
gluon splitting	0.15%	0.08%	Better granularity in Calo

Branching ratio (Rb): uncertainty in gluon splitting

- Discrepancy of parton shower (PS) and matrix element calculation.
- Data/MC discrepancy in high jet multiplicity

Phys Lett B 405 (1997) 202

Backward-forward asymmetry measured from b jet

- LEP measurement : 0.1000+-0.0017 (Z peak)
 - Method 1: Soft lepton from b/c decay (~2%)
 - Select one lepton from b/c decay, and one b jets
 - Select lepton charge (Q_lepton) and jet charge (Q_jet)
 - Method 2: jet charge method using Inclusive b jet (~1.2%)
 - Select two b jets
 - use event Thrust to define the forward and background
 - Use jet charge difference (Q_F Q_B)

Backward-forward asymmetry measured from b jet

- LEP measurement : 0.1000+-0.0017 (Z peak)
 - Method 1: Soft lepton from b/c decay (~2%)
 - Method 2: jet charge method using Inclusive b jet (~1.2%)
 - Method 3: D meson method (>8%, less important method)
- CEPC pre-CDR
 - Focus more on method 2 (inclusive b jet measurement)
 - For CDR study, will try to find
 - Expected Systematics (0.15%):

Uncertainty	LEP	CEPC	CEPC improvement
charm physics modeling	0.2%	0.05%	tighter b tagging working point
tracking resolution	0.8%	0.05%	better tracking resolution
hemisphere tag correlations for b events	1.2%	0.1%	Higher b tagging efficiency
QCD and thrust axis correction	0.7%	0.1%	Better granularity in Calo

QCD correction to Thrust

- Uncertainty Afb_b due to QCD correction to Thrust
 - Higher order QCD effect is major systematics

Error source	$C_{\mathrm{QCD}}^{\mathrm{quark}}$ (%)		$C_{ m QCD}^{ m part,T}$ (%)		
	$bar{b}$	$c\bar{c}$	$bar{b}$	$c\bar{c}$	
Theoretical error on m_b or m_c	0.23	0.11	0.15	0.08	
$\alpha_s(m_{\rm Z}^2) \ (0.119 \pm 0.004)$	0.12	0.16	0.12	0.16	
Higher order corrections	0.27	0.66	0.27	0.66	
Total error	0.37	0.69	0.33	0.68	

Weak mixing angle $\sin^2\theta_{eff}^{lept}$

- LEP/SLD: 0.23153 ± 0.00016
 - 0.1% precision.
 - Stat error is one of limiting factor.
- CEPC
 - systematics error : 0.01%
 - Input From Backward-forward asymmetry measurement
 - The precision mZ is another limiting factor (uncertainty on P_{beam})

		Correlations				
		$m_{ m Z}$	$\Gamma_{ m Z}$	$\sigma_{ m had}^0$	R_ℓ^0	$A_{ m FB}^{0,\ell}$
χ^2/dof	= 172/180		A	LEPH		
	91.1893 ± 0.0031	1.000				
$\Gamma_{\rm Z} [{ m GeV}]$	2.4959 ± 0.0043	0.038	1.000			
$\sigma_{ m had}^0 [m nb]$	41.559 ± 0.057	-0.092	-0.383	1.000		
R_ℓ^0	20.729 ± 0.039	0.033	0.011	0.246	1.000	
$A_{ m FB}^{0,\ell}$	0.0173 ± 0.0016	0.071	0.002	0.001 -	-0.076	1.000

W mass measurement (1)

- PDG precision: 80.385±0.015 GeV
 - Possible goal for CEPC pre-CDR: 3 MeV
- Three methods for W mass measurements:
 - 1.WW Threshold scan (\sqrt{s} =160GeV):
 - Advantage: Very robust method, can achieve high precision.
 - Disadvantage

Higher cost , Require dedicated runs >1000fb⁻¹ on WW

threshold(~160GeV)

W mass measurement (2)

- Direct measurement of the hadronic mass (method for pre-CDR)
 - Based on 10¹⁰ Z->hadrons sample to calibrate jet energy scale (< 3MeV)
 - Advantage :
 - No additional cost :measured in ZH runs (sqrt(s)=250GeV)
 - Higher statistics: 10 times larger than WW threshold region
 - Lower requirement on beam energy uncertainty.
 - Disvantage:
 - Can not get better precision than 3MeV
 - Require Beam momentum measurement: 10ppm level on P_{beam}

Summary

- CEPC electroweak physics in Preliminary Conceptual Design Report.
 - Expected precision based on projections from LEP and ILC.
- Aim for more realistic study with full simulation for CDR next year.
 - Mainly focus on fullsim study on key measurements.
 - Understand Detector requirements and accelerator requirements
 - m_W
 - Weak mixing angle
 - mZ
 - Afb_B
 - R B
 - Short of manpower in Z/W physics
 - Need help from international collaborations
- Need input from theorists to improve the measurements!
 - Interpretations
 - Higher order calculations
 - New ideas
 - •
- Welcome to join this effort

From Pre-CDR to CDR

- Propagate beam momentum scale uncertainty to all EW measurement.
- Give a clear physics requirement to accelerator

		Correlations				
		$m_{ m Z}$	$\Gamma_{ m Z}$	$\sigma_{ m had}^0$	R_ℓ^0	$A_{ m FB}^{0,\ell}$
χ^2/dof	= 172/180		A	LEPH		
	91.1893 ± 0.0031	1.000				
$\Gamma_{\rm Z} [{ m GeV}]$	2.4959 ± 0.0043	0.038	1.000			
$\sigma_{ m had}^0 [m nb]$	41.559 ± 0.057	-0.092	-0.383	1.000		
R_ℓ^0	20.729 ± 0.039	0.033	0.011	0.246	1.000	
$A_{ m FB}^{0,\ell}$	0.0173 ± 0.0016	0.071	0.002	0.001 -	-0.076	1.000

Branching ratio (Rmu)

- LEP result: 0.2% total error (Stat: 0.15%, Syst: 0.1%)
- CEPC: 0.05% total error expected
 - Better EM calorimeter is the key

Systematics source	LEP	CEPC	
Radiative events (Z->μμγ)	0.05%	0.05%	
Photon energy scale	0.05%	0.01%	
Muon Momentum scale	0.009%	<0.003%	
Muon Momentum resolution	0.005%	<0.003%	

CEPC detector (2)

- Calorimeters:
 - Concept of Particle Flow Algorithm (PFA) based
 - EM calorimeter energy resolution: $\sigma_{\rm F}/E \sim 0.16/\sqrt{E}$
 - Had calorimeter energy resolution: $\sigma_F/E \sim 0.5/\sqrt{E}$
 - Expected jet energy resolution : $\sigma_F/E \sim 0.3/\sqrt{E}$

Plan for Weak mixing angle

More details in Mengran's talk

