Electroweak physics at CEPC

Zhijun Liang

Institute of High Energy Physics, Chinese Academy of Sciences
• Electron-positron circular collider
 • Higgs Factory \((E_{\text{cms}}=250\text{GeV}, \ 10^6 \text{Higgs}) \)
 • Precision study of Higgs coupling in ZH runs
 • complementary to ILC
 • See Manqi and Gang’s talk this morning in Higgs section for more details
 • Z factory \((E_{\text{cms}}=91 \text{GeV}, \ 10^{10} \text{Z Boson}) \) :
 • Precision Electroweak measurement in Z pole running
 • Major focus of this talk

• Preliminary Conceptual Design Report(Pre-CDR) available :
 • http://cepc.ihep.ac.cn/preCDR/volume.html
• Aiming to finalize Conceptual Design Report (CDR) next year
CEPC detector (1)

- ILD-like design with some modification for circular collider
 - No Power-pulsing
- Tracking system (Vertex detector, TPC detector, 3.5T magnet)
 - Expected Impact parameter resolution: less than 5μm
 - Expected Tracking resolution: $\delta(1/P_t) \sim 2 \times 10^{-5} \text{(GeV}^{-1})$
- Calorimeters: Concept of Particle Flow Algorithm (PFA) based
 - Expected jet energy resolution: $\sigma_{E/E} \sim 0.3/\sqrt{E}$
Motivation

- CEPC have very good potential in electroweak physics.
- Precision measurement is important
 - It constrain new physics beyond the standard model.
 - Eg: Radiative corrections of the W or Z boson is sensitive to new physics.
The prospect of CEPC electroweak physics in pre-CDR study

- Expected precision on some key measurements in CEPC Pre-CDR study based on projections from LEP and ILC.
 - http://cepc.ihep.ac.cn/preCDR/volume.html
- From now to next year, plan to update the study for Conceptual Design Report (CDR) with full detector simulation

<table>
<thead>
<tr>
<th>Observable</th>
<th>LEP precision</th>
<th>CEPC precision</th>
<th>CEPC runs</th>
</tr>
</thead>
<tbody>
<tr>
<td>m_Z</td>
<td>2 MeV</td>
<td>0.5 MeV</td>
<td>Z lineshape</td>
</tr>
<tr>
<td>m_W</td>
<td>33 MeV</td>
<td>3 MeV</td>
<td>ZH (WW) thresholds</td>
</tr>
<tr>
<td>A_{FB}</td>
<td>1.7%</td>
<td>0.15%</td>
<td>Z pole</td>
</tr>
<tr>
<td>$\sin^2 \theta_{WW}^\text{eff}$</td>
<td>0.07%</td>
<td>0.01%</td>
<td>Z pole</td>
</tr>
<tr>
<td>R_b</td>
<td>0.3%</td>
<td>0.08%</td>
<td>Z pole</td>
</tr>
<tr>
<td>N_ν (direct)</td>
<td>1.7%</td>
<td>0.2%</td>
<td>ZH threshold</td>
</tr>
<tr>
<td>N_ν (indirect)</td>
<td>0.27%</td>
<td>0.1%</td>
<td>Z lineshape</td>
</tr>
<tr>
<td>R_μ</td>
<td>0.2%</td>
<td>0.05%</td>
<td>Z pole</td>
</tr>
<tr>
<td>R_τ</td>
<td>0.2%</td>
<td>0.05%</td>
<td>Z pole</td>
</tr>
</tbody>
</table>
Z mass measurement

- LEP measurement: 91.1876 ± 0.0021 GeV
- CEPC possible goal: 0.5 MeV
 - Z threshold scan runs is needed to achieve high precision.
 - Stat uncertainty: 0.2 MeV
 - Better to have more than 10 fb$^{-1}$ for off-peak runs (6 off-peaks runs)
- Syst uncertainty: ~ 0.5 MeV
 - Beam energy uncertainty need to be better than 5 ppm
 - start to Establishing a accelerator model relating the measured beam energy
 - Study of the resonant depolarization technique to measure beam energy (LEP approach)
Physics Requirement for accelerator

- Expected Beam momentum scale uncertainty
 - CEPC pre-CDR: 500keV precision \((10^{10} - 10^{11} Z)\)
 - FCC-ee: 100keV precision \((10^{13} Z)\)
- Precision of beam energy measurement may have a big impact to Z pole running program.
 - Pre-CDR requirement: 5-10 ppm level uncertainty on \(P_{\text{beam}}\)
 - preliminary study with compton scattering (BEPC-II approach)
 - may be able to reach 1MeV precision from
 - preliminary study in G-Y. Tang’s talk
 http://indico.ihep.ac.cn/event/6495/session/4/contribution/29/material/slides/0.pdf

- Toward CDR: check scenario of 1ppm uncertainty on \(P_{\text{beam}}\)
 - Requested by FCC-ee experts to do more study
 - beam polarization issue and resonant depolarization method (LEP approach)
Branching ratio (R^b)

- LEP measurement: 0.21594 ± 0.00066
 - Stat error: 0.44%
 - Syst error: 0.35%
 - Typically using 65% working points

- CEPC pre-CDR
 - Expected Stat error: 0.04%
 - Expected Syst error: 0.07%
 - Expect to use 80% working points
 - 15% higher efficiency than SLD
 - 20-30% higher in purity than SLD

Uncertainty

<table>
<thead>
<tr>
<th>Uncertainty</th>
<th>LEP</th>
<th>CEPC</th>
<th>CEPC improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>charm physics modeling</td>
<td>0.2%</td>
<td>0.05%</td>
<td>tighter b tagging working point</td>
</tr>
<tr>
<td>hemisphere tag correlations for b events</td>
<td>0.2%</td>
<td>0.1%</td>
<td>Higher b tagging efficiency</td>
</tr>
<tr>
<td>gluon splitting</td>
<td>0.15%</td>
<td>0.08%</td>
<td>Better granularity in Calo</td>
</tr>
</tbody>
</table>
Branching ratio (R^b): uncertainty in gluon splitting

- Discrepancy of parton shower (PS) and matrix element calculation.
- Data/MC discrepancy in high jet multiplicity

Backward-forward asymmetry measured from b jet

- LEP measurement: $0.1000^{+0.0017}_{-0.0017}$ (Z peak)
 - Method 1: Soft lepton from b/c decay (\sim2%)
 - Select one lepton from b/c decay, and one b jets
 - Select lepton charge (Q_{lepton}) and jet charge (Q_{jet})
 - Method 2: jet charge method using Inclusive b jet (\sim1.2%)
 - Select two b jets
 - Use event Thrust to define the forward and background
 - Use jet charge difference ($Q_F - Q_B$)

$Q_{\text{lepton}} - Q_{\text{jet}}$ in method 1

$Q_F - Q_B$ in method 2
Backward-forward asymmetry measured from b jet

* LEP measurement: $0.1000^{+0.0017}_{-0.0017}$ (Z peak)
 * Method 1: Soft lepton from b/c decay (~2%)
 * Method 2: Jet charge method using Inclusive b jet (~1.2%)
 * Method 3: D meson method (>8%, less important method)

* CEPC pre-CDR
 * Focus more on method 2 (inclusive b jet measurement)
 * For CDR study, will try to find
 * Expected Systematics (0.15%):

<table>
<thead>
<tr>
<th>Uncertainty</th>
<th>LEP</th>
<th>CEPC</th>
<th>CEPC improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>charm physics modeling</td>
<td>0.2%</td>
<td>0.05%</td>
<td>tighter b tagging working point</td>
</tr>
<tr>
<td>tracking resolution</td>
<td>0.8%</td>
<td>0.05%</td>
<td>better tracking resolution</td>
</tr>
<tr>
<td>hemisphere tag correlations for b events</td>
<td>1.2%</td>
<td>0.1%</td>
<td>Higher b tagging efficiency</td>
</tr>
<tr>
<td>QCD and thrust axis correction</td>
<td>0.7%</td>
<td>0.1%</td>
<td>Better granularity in Calo</td>
</tr>
</tbody>
</table>
QCD correction to Thrust

- Uncertainty A_{fb_b} due to QCD correction to Thrust
 - Higher order QCD effect is major systematics

CERN-EP/98-23

<table>
<thead>
<tr>
<th>Error source</th>
<th>C_{QCD}^{quark} (%)</th>
<th>$C_{QCD}^{\text{part}, T}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$b\bar{b}$ or $c\bar{c}$</td>
<td>0.23</td>
<td>0.15</td>
</tr>
<tr>
<td>$\alpha_s(m_Z^2)$ (0.119 ± 0.004)</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Higher order corrections</td>
<td>0.27</td>
<td>0.27</td>
</tr>
<tr>
<td>Total error</td>
<td>0.37</td>
<td>0.33</td>
</tr>
</tbody>
</table>
Weak mixing angle $\sin^2 \theta_{\text{lept}}^{\text{eff}}$

- **LEP/SLD**: 0.23153 ± 0.00016
 - 0.1% precision.
 - Stat error is one of limiting factor.

- **CEPC**
 - Systematics error: 0.01%
 - Input From Backward-forward asymmetry measurement
 - The precision mZ is another limiting factor (uncertainty on P_{beam})

Correlations

<table>
<thead>
<tr>
<th></th>
<th>m_Z</th>
<th>Γ_Z</th>
<th>σ_{had}^0</th>
<th>R^0_ℓ</th>
<th>$A_{\text{FB}}^{0,\ell}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi^2/\text{dof} = 172/180$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ALEPH</td>
</tr>
<tr>
<td>$m_Z , [\text{GeV}]$</td>
<td>91.1893 ± 0.0031</td>
<td>1.000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Gamma_Z , [\text{GeV}]$</td>
<td>2.4959 ± 0.0043</td>
<td>0.038</td>
<td>0.033</td>
<td>0.011</td>
<td>0.246</td>
</tr>
<tr>
<td>$\sigma_{\text{had}}^0 , [\text{nb}]$</td>
<td>41.559 ± 0.057</td>
<td>-0.092</td>
<td>-0.383</td>
<td>1.000</td>
<td></td>
</tr>
<tr>
<td>R_ℓ^0</td>
<td>20.729 ± 0.039</td>
<td>0.033</td>
<td>0.011</td>
<td>0.246</td>
<td>1.000</td>
</tr>
<tr>
<td>$A_{\text{FB}}^{0,\ell}$</td>
<td>0.0173 ± 0.0016</td>
<td>0.071</td>
<td>0.002</td>
<td>0.001</td>
<td>0.076</td>
</tr>
</tbody>
</table>

W mass measurement (1)

- PDG precision: $80.385 \pm 0.015 \text{ GeV}$
 - Possible goal for CEPC pre-CDR: 3 MeV
- Three methods for W mass measurements:
 - 1. WW Threshold scan ($\sqrt{s}=160\text{GeV}$):
 - Advantage: Very robust method, can achieve high precision.
 - Disadvantage
 - Higher cost, Require dedicated runs $>1000\text{fb}^{-1}$ on WW threshold ($\sim 160\text{GeV}$)
W mass measurement (2)

- Direct measurement of the hadronic mass (method for pre-CDR)
 - Based on 10^{10} $Z\rightarrow$ hadrons sample to calibrate jet energy scale (<3 MeV)
 - Advantage:
 - No additional cost: measured in ZH runs ($\sqrt{s}=250$ GeV)
 - Higher statistics: 10 times larger than WW threshold region
 - Lower requirement on beam energy uncertainty.
 - Disadvantage:
 - Can not get better precision than 3 MeV
 - Require Beam momentum measurement: 10 ppm level on P_{beam}

By Manqi

CERN-PH-EP/2006-004
Summary

• CEPC electroweak physics in Preliminary Conceptual Design Report.
 • Expected precision based on projections from LEP and ILC.
• Aim for more realistic study with full simulation for CDR next year.
 • Mainly focus on fullsim study on key measurements.
 • Understand Detector requirements and accelerator requirements
 • m_W
 • Weak mixing angle
 • m_Z
 • A_{fb_B}
 • R_B
• Short of manpower in Z/W physics
• Need help from international collaborations
• Need input from theorists to improve the measurements!
 • Interpretations
 • Higher order calculations
 • New ideas
 •

• Welcome to join this effort
From Pre-CDR to CDR

- Propagate beam momentum scale uncertainty to all EW measurement.
- Give a clear physics requirement to accelerator

<table>
<thead>
<tr>
<th></th>
<th>m_Z [GeV]</th>
<th>Γ_Z [GeV]</th>
<th>σ^0_{had} [nb]</th>
<th>R^0_ℓ</th>
<th>$A^{0,\ell}_{\text{FB}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>χ^2/dof</td>
<td>91.1893 ± 0.0031</td>
<td>2.4959 ± 0.0043</td>
<td>41.559 ± 0.057</td>
<td>20.729 ± 0.039</td>
<td>0.0173 ± 0.0016</td>
</tr>
</tbody>
</table>

Correlations

- m_Z | Γ_Z | σ^0_{had} | R^0_ℓ | $A^{0,\ell}_{\text{FB}}$
- 1.000 | 0.038 | 0.092 | 0.033 | 0.071 | 0.001 | -0.076 | 1.000

ALEPH
Branching ratio ($R^{\mu\mu}$)

- LEP result: 0.2% total error (Stat: 0.15%, Syst: 0.1%)
- CEPC: 0.05% total error expected
 - Better EM calorimeter is the key

<table>
<thead>
<tr>
<th>Systematics source</th>
<th>LEP</th>
<th>CEPC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Radiative events ($Z\rightarrow\mu\mu\gamma$)</td>
<td>0.05%</td>
<td>0.05%</td>
</tr>
<tr>
<td>Photon energy scale</td>
<td>0.05%</td>
<td>0.01%</td>
</tr>
<tr>
<td>Muon Momentum scale</td>
<td>0.009%</td>
<td><0.003%</td>
</tr>
<tr>
<td>Muon Momentum resolution</td>
<td>0.005%</td>
<td><0.003%</td>
</tr>
</tbody>
</table>
CEPC detector (2)

- Calorimeters:
 - Concept of Particle Flow Algorithm (PFA) based
 - EM calorimeter energy resolution: $\sigma_{E/E} \sim 0.16/\sqrt{E}$
 - Had calorimeter energy resolution: $\sigma_{E/E} \sim 0.5/\sqrt{E}$
 - Expected jet energy resolution: $\sigma_{E/E} \sim 0.3/\sqrt{E}$

Jet energy (Higgs self-coupling, W/Z separation)
- $\sim 1/2$ resolution (wrt LHC)

Jet energy resolution at CEPC:

$\sigma_{E/E} = 0.3/\sqrt{E\text{(GeV)}}$
Plan for Weak mixing angle

- More details in Mengran’s talk

Truth distribution
From Z fitter

unFolding matrix

Reco level distribution