CEPC Detector Status & Tasks for CDR

Yuanning Gao (Tsinghua University) On Behalf of the CEPC-SppC Study group

THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY

High Energy Physics 9 – 26 Jan 2017 Conference: 23 – 26 Jan 2017

Outline

- Performance requests
- Status and goals for detector R&D
- Urgent tasks
- Plan for CDR
- Summary

Physics Program at CEPC

- Baseline
 - $10^6 H$ @ 240 GeV
 - $10^{10-11} Z$ @~ 91 GeV
 - $10^{6-8} W^+ W^-$ @~160 GeV
 - (w/ beam energy measurement)
- Upgrade phases (optional)
 - high luminosity Z-pole physics, 10^{35-36} cm⁻²s⁻¹
 - polarized beam(s) for Z, W
 - *tt* at ~350 GeV

A detector at CEPC

- The detector design could benefit from 20+ years' worldwide studies for ILC
- Performance requests:

€

Vertexing $(h \rightarrow b\overline{b}, c\overline{c}, \tau^{+}\tau^{-})$ $- \sim 1/5 r_{\text{beampipe}} \sim 1/30 \text{ pixel size (wrt LHC)}$ $\sigma_{ip} = 5 \mu m \oplus 10 \mu m / p \sin^{3/2} \theta$ > extremely good space resolution > low material budget

$$\sigma(1/p) = 5 \times 10^{-5} / \text{GeV}$$

A detector at CEPC

- The detector design could benefit from 20+ years' worldwide studies for ILC
- Performance requests:

Tracking $(e^+e^- \rightarrow Zh \rightarrow \ell^+\ell^-X; \text{ incl. } h \rightarrow \text{nothing})$ $- \sim 1/6 \text{ material, } \sim 1/10 \text{ resolution (wrt LHC)}$ $\sigma(1/p) = 5 \times 10^{-5}/\text{GeV} \text{ or better}$

precise tracking, low X0

A detector at CEPC

- The detector design could benefit from 20+ years' worldwide studies for ILC
- Performance requests:

Jet energy (Higgs self-coupling, W/Z separation)-

~1/2 resolution (wrt LHC)

 $\sigma_E / E = 0.3 / \sqrt{E(\text{GeV})}$

high granularity calorimeters
 Particle Flow Algorithm (PFA)
 less demanding wrt ILC detectors

ILD-like design in PreCDR

- ILD-like design as a reference for feasibility studies
- New MDI design with a shorter L*=1.5m
- Silicon pixel vertex detector, strip trackers
- TPC as main tracking device
- B field 3.5T
- Very high granularity
 ECAL (0.5cm x 0.5cm)
 HCAL (1.0cm x 1.0cm)

ILD-like design in PreCDR

- Not so obvious the challenging issues could be resolved ...
- beam structure
 - detector cooling
 - vertex detector readout
 - ion feedback in TPC
- Z pole
 - event rate (< 1kHz)
 - hermeticity ?
 - π/K separation?

Strategies for studies after PreCDR

- Explore technologies for each sub-detector could reach the performance requests: *ILD is just a reference*
- Starting critical R&D listed in PreCDR
- Meanwhile keep in mind the machine has not been fully defined yet...

Vertex detector R&D: Status and Plan

- R&D target: still not reach the request, 1st step
- Single point resolution near the IP: $\leq 3 \ \mu m \rightarrow high \ granularity$
- Power consumption: $<100 \text{ mW/cm}^2$
- Material budget: $\leq 0.15\%X_0/layer \rightarrow Low power dissipation, thinned, monolithic pixel sensor$
- Pixel occupancy: $\leq 1\% \rightarrow$ High granularity and/or short readout time
- Radiation tolerance: ~ 100 krad/y (TID) and $\sim 10^{11}$ N_{eq}/cm²/y (NIEL)
- Integration time: 10-100 µs
 - CMOS Pixel sensor (CPS)
- Small pixel size
- In-pixel functionality circuitry
- Novel readout scheme \rightarrow faster and less power
- Tower Jazz CiS 0.18µm process

Vertex detector R&D: Status and Plan

1st CPS prototype design

Joint TowerJazz 0.18 um CMOS process MPW submission with IPHC in Nov. 2015

Goal: sensor optimization and in-pixel pre-amplifier study

- Floorplan overview:
 - Two independent matrices: Matrix-1 with 33 \times 33 μ m² pixels (except one sector SFA20 with 16 \times 16 μ m² pixels), Matrix-2 with 16 \times 16 μ m² pixels.
 - Matrix-1 includes 3 blocks with in-pixel pre-amplifier
 - SFA20 in Matrix-1 contains pixel with AC-coupled pixels

- Tower Jazz CIS 0.18 μm, November 2015 submission
- Two types of wafer:
- 18µm HRES epi-layer wafer
- 700Ω Czochralski wafer
- Sensor arrival at IHEP June 2016
- Test board and system in preparation, including the NIEL measurement.

Vertex detector R&D: Status and Plan

- 2nd CPS prototype design
- Purpose: small-size digital pixel design verification, fast readout
- Pixel design:
- Pixel size: smaller than 22 \times 22 μ m²
- Each pixel contains a sensing diode, a pre-amplifier and a discriminator
- AC coupling: rolling-shutter readout with higher biased voltage
- DC coupling: asynchronous readout with high gain and low noise
- Readout design:
- Matrix readout using XYZ solution
- Pixel size: $26 \times 26 \mu m^2$
- Signal duration time:< 3µs
- Readout speed: 25 ns/hit
- Power consumption: $< 80 \text{ mW/cm}^2$

TPC studies: Status and Plan

- Target
 - understand the effect of ion feedback
 - GEM+Micromegas to suppress ion back flow (0.1%)

	GEM+MMG 420LPI (IHEP)	2GEMs + MMG 450 LPI (Yale University)	Micromegas only 450 LPI (Yale University)
Ion Back Flow	0.1~0.2% Edrift = 0.25 kV/cm	(0.3 –0.4)% Edrift = 0.4 kV/cm	(0.4 –1.5)% Edrift= (0.1-0.4) kV/cm
<ga></ga>	4000~5000	2000	2000
ϵ -parameter(=IBF*GA)	4~5	6~8	8~30
E -resolution	~16%	<12%	<= 8%
Gas Mixture (2-3 components)	Ar + iC4H10	Ne+CO2+N2, Ne+CO2,Ne+CF4, Ne+CO2+CH4	X + iC4H10 (Ar+CF4+iC4H10)
Sparking (²⁴¹ Am)	<10-8	< 3.*10 ⁻⁷ (Ne+CO2) (N.Smirnov report)	~ 10 ⁻⁷ (S. Procureur report)
Possible main problem	Thin frame	More FEE channel	#
Goals	CEPC TPC	ALICE upgrade	#

TPC studies: Status and Plan

- Target
 - understand the effect of ion feedback
 - GEM+Micromegas to suppress ion back flow (0.1%)

	GEM+MMG 420LPI (IHEP)	2GEMs + MMG 450 LPI (Yale University)	Micromegas only 450 LPI (Yale University)
Ion Back Flow	0.1~0.2% Edrift = 0.25 kV/cm	(0.3 –0.4)% Edrift = 0.4 kV/cm	(0.4 –1.5)% Edrift= (0.1-0.4) kV/cm
<ga></ga>	4000~5000	2000	2000
ϵ -parameter(=IBF*GA)	4~5	6~8	8~30
E -resolution	~16%	<12%	<= 8%
Gas Mixture (2-3 components)	Ar + iC4H10	Ne+CO2+N2, Ne+CO2,Ne+CF4, Ne+CO2+CH4	X + iC4H10 (Ar+CF4+iC4H10)
Sparking (²⁴¹ Am)	<10 ⁻⁸	< 3.*10 ⁻⁷ (Ne+CO2) (N.Smirnov report)	~ 10 ⁻⁷ (S. Procureur report)
Possible main problem	Thin frame	More FEE channel	#
Goals	CEPC TPC	ALICE upgrade	#

TPC studies: Status and Plan

- Preliminary results from simulation studies
 - ion back suppression to 0.1% is possible
 - \rightarrow beam test in 2017-2018 with GEM+Micromegas module
 - occupancy is very low even for Z-pole
 - distortion by ions acceptable up to $10^{34} \mbox{cm}^{-2} \mbox{s}^{-1}$

Calorimeters: Status and Plan

• CALICE studies

ECAL R&D: Scintillator-W

The CEPC ECAL consist of a cylindrical barrel system and two end caps.

One of the proposal for CEPC ECAL is based on scintillator strip with SiPM readout. Total readout channel: ~8 Million

Two scintillator layers make a sandwich structure with a tungsten absorber. The strips in adjacent layers are perpendicular to each other to achieve a 5×5 mm² cell size.

Detector Simulation: scintillator thickness

SiPM study: Dark Noise Rate

Zhigang Wang, Hang Zhao, Tao Hu (IHEP)

The dependency of the linearity and energy resolution on the scintillator thickness.

Particle: photon, Cell Size: 5x5mm Sensitive Layer: W:3;Air:0.5;Scintillator:1,2,3;Air:0.5;PCB:2;Air:0.5(mm) Layer number: 50

The thickness of scintillator can be reduced to 1 mm.

Electron hole pairs generated without the involvement of photons give rise to unwanted noise.

• Dark noise rate rises exponentially with the applied over-voltage.

Very recently, SiPMs with trenches between pixels dramatically reduced dark rate and pixel to pixel cross-talk.

• The dark noise rate of the new SiPMs (30kHz/mm²) is 1/3 of the old ones (100kHz/mm²), with the same gain.

ECAL Test facilities (IHEP, USTC)

Optimization of Sct. Strip

Optimizing the geometry and connection of scintillators.

SiPM area: $1 \times 1 \text{ mm}^2 \rightarrow 0.25 \times 4 \text{ mm}^2$:

2017-01-23

Yuanning Gao, CEPC Detector

Scintillator strip light output

The uniformity of scintillator strip light output need to be optimized.

CEPC HCAL

The HCAL consists of

- a cylindrical barrel system: 12 modules
- > two endcaps: 4 quarters
- > Absorber: Stainless steel

Active sensor

- Glass RPC
- Thick GEM or GEM

Readout (1×1 cm²)

- Digital (1 threshold)
- Semi-digital (3 thresholds)

CEPC DHCAL OPTIMIZATION

- To full fill the requirements of CEPC PFA, the DHCal is optimized by the following:
 - ► layers of DHCal, scanned from 20 layers to 48 layers.
 - > size of each cell, scanned from 10 mm to 80 mm.
 - > digitization (Q spectrum, spatial resolution, semi-Digi, etc..)

Schematic of RPC

Join the R&D activities in CALICE

- (tiny ceramic spacers)
- ✓ Large size: 1 × 1 m²
- ✓ Cost effective
- ✓ Efficient gas distribution system
- Homogenous resistive coating

HCAL Based on GEM (USTC)

Construction of GEM at USTC

Energy resolution: ~24.1%

Non-uniformity: ~5.4%

HCAL Based on GEM (USTC)

Design of readout electronics by USTC

WELL-THGEM Beam Test @ IHEP

- 7 THGEMs ware installed, and 5 of them were used, and flushed with Ar/iso-butane = 97:3.
- 1 threshold, binary readout
- 900 MeV proton beam was used
- 5x5cm2 sensitive region
 - → 20 x 20 cm2

Hongbang Liu, Qian Liu (UCAS)

CEPC-DHCAL research base on THGEM detector Boxiang

Boxiang Yu (IHEP)

The active detector thickness of CEPC-DHCAL is important to reduce the cost, the thickness of THGEM should be reduce to 6mm. Some work has been done.

The thinner 5cm \times 5cm detector has been developed. Some result has been obtained. The 20cm \times 20cm thinner THGEM detectors are under development.

New thinner structure of THGEM detector

Simulation studies: Optimization

- Granularity: Wi/wo active cooling
 - Geometry in ILD (ild_o2_v05):
 - ECAL, 5 mm Cell Size & 30 layers, 5 kw with power pulsing
 - HCAL, 10 mm Cell Size & 48 layers.
 - @ CEPC:
 - Wi Active cooling: + 2mm thick cooper per active layer, in progressing
 - Wo Active cooling: reduce the granularity by ~ 1 order of magnitude (in considering Electronics/Sensor progress...)
 - Performance:
 - Lepton ID
 - · Physics benchmarks:
 - Z→di lepton, Higgs to inc;
 - $Z \rightarrow vv; H \rightarrow WW \rightarrow lvqq;$
 - $Z \rightarrow vv; H \rightarrow ZZ \rightarrow IIqq;$
- ECAL Saturation studies on H→γγ measurements

Global efficiencies... preliminary

	Geom 1			Geom 2			
	$\mu\mu$ H	eeH		$\mu \mu H$	eeH		Н
Cut _µ	0.1	0.1	0			0	.1
Cute	0.01	0.001		0.01		0.00	01
ϵ_E	93.41 ± 0.92	98.64 ± 0.08	91.6	50 ± 1.02		97.89 ± 0.1	1
η_E	92.02 ± 1.00	99.74 ± 0.04	89.8	39 ± 1.10	99.67 ± 0.04)4
ε_n	99.54 ± 0.05	95.53 ± 0.76	99.1	9 ± 0.06]	86.48 ± 1.2	26
n.	99.60 ± 0.04	96.31 ± 0.70	99.8	33 ± 0.03		95.38 ± 0.8	31
Eevent	98.92 ± 0.11	93.93 ± 0.24	97.9	92 ± 0.14	-	96.19 ± 0.1	9
			Result @ S	Sep. mee	eting Test Geo 1	TG 2	TG 3
		ECAL	Cell Size/mm	5	10	20	20
			# Layers	30	30	30	20
-	HCAL		Cell Size/mm	10	10	20	20
			# Layers	48	48	48	20
and statements		Ratio of Channels	ECAL	1	1/4	1/16	1/24
and the second		(X/ILD)	HCAL	1	1	1/4	1/10
/		Event Recon.	μμΗ	95.7%*	98.0%	96.5%	95.2%
1	/ X	Efficiency eeH		91 106*	89.6%	99 1 %	the second second

Lepton + Jets: Br(H→WW)

Br(H→WW) via vvH, H→WW*→lvqq

No lose in the object level efficiency; JER slightly degraded, ~ 5/10% at 10/20 mm (*ill. behaviors: stay to be tuned*)

Over all: event reco. efficiency varies ~1%

	Simu.	Recon.	Efficiency
CEPC_v1	2885	2783	96.5%
TG1	2878	2814	97.8%
TG2	2878	2807	97.5%

TG1: E30L_H48L_10mm, TG2: E30L_H48L_20mm 11

2/09/2016

ECAL Saturation/Linear Range Study Impact on Scintillator-W ECAL ?

Comparison of RC_scaled

T.Takeshita, ILDDET@KEK

Scintillator: MIP \rightarrow Photon \rightarrow P.E

Preliminary studies on MDI

• MDI is crucial for CEPC. A design of MDI relies on the design of the machine.

Interaction Region Design

- Shorter TPC to reduce the impacts of showers introduced by the forward machine elements
- Cone-shaped forward region design to give space for the mechanical support (next slide)
- Weaker solenoid field to shrink the compensating magnet
- · Extremely limited space for the luminosity calorimeter

Mechanical Support

- Required space for the mechanical supporting structure: 150 - 300 mrad
- Supporting point ~6 m away from the IP
- · Feasibility studies on-going:
 - Stress, deformation and vibration

ELEMENT	WEIGHT (kg)
LumiCal	130
QD0 (Including solenoids)	900
QF1	600
Pump	20

Background without Shielding

Source	Simulation Tool	Sub-Type	Particle Flux at VTX [cm ⁻² BX ⁻¹]	Particle Energy [GeV]	Priority	
Synchrotron	Geant4; BDSIM	Dipole	~ 10 ¹⁰	~ 0.001		
Radiation		Quadrupole	~ 10 ⁶	~ 0.007	XXX	
Beam Lost Particles	BBBrem; SAD	Radiative Bhabha	~ 10	~ 120		
		Beam Gas Scattering	t	t	××	
Beamstrahlung	Guinea-Pig++; PYTHIA6	Pairs	~ 10-2	~ 0.05	+	
		Hadrons	~ 10 ⁻⁵	~ 2	*	

- Software framework to study all beam induced backgrounds fully implemented and well maintained
- Background levels for the single ring design evaluated
- Next step: background levels for the (partial)-double ring

Exercises...

QD0 Design Progress

· Compact and high gradient quadrupole magnets for (partial)-double ring design

Field gradient (T/m)	Magnet length	Field harmonics	Coil inner radius (mm)
200	1.3	$B_n/B_2 < 5.0 \times 10^{-4}$ @ r=8 mm	12.5

- Minimum distance between two aperture centerlines ~45mm (coil inner radius of 12.5mm) \rightarrow extremely tight radial space
- · Serpentine winding coil using direct winding selected to achieve high efficiency and high compactness (experience from **BEPCII**)
- Serpentine coil adopted for BEPCII, J-PARC, ATF2, Super-KEKB, ILC baseline design, etc.

Geant4 vs Fluka: Energy Deposition

- Radiation backgrounds evaluated with both Geant4 and Fluka → almost consistent results
- Implemented geometries still slightly different \rightarrow to be harmonized

Compensating/Screening Solenoids

Compensation conditions: B main*L main+B comp*L comp=0 $L^* = L$ main +L comp = 1.5m

- To minimize the effects of the longitudinal detector solenoid field on the accelerator beam
- Integral longitudinal field generated by the detector solenoid and solenoid coils should cancel out.
- · Screening solenoid (outside of QD0): the longitudinal field inside the quadrupole bore should be 0.
- Compensating solenoid options (before QD0):
 - 1m long, center field: 5.2T (NbTi) \rightarrow 0.7m long, center field: 7.4T $(NbTi) \rightarrow 0.4m$ long, center field: 13T (Nb3Sn)

Urgent tasks

- Physics @Z
 - \rightarrow EW physics based on 10^{10-11} Z

vs. 10^{12} Z (FCC-ee studies)

- \rightarrow flavor physics
- Beam energy measurement
 - \rightarrow beam depolarization at Z, W
 - \rightarrow at 240 GeV?
- Anything else ?

Plan for CDR

- By international collaboration !
- 1st draft by end 2017
- Optimization based on ILD-like design as a reference
- Develop 2+ concepts?
 - full silicon tracking
 - drift chamber + dual readout copper calorimeter

Full Silicon Tracker Concept for CEPC*

*http://cepc.ihep.ac.cn/ cepc/cepc_twiki/index.php/Pure_Silicon_Detector

- CEPC full silicon has been implemented in Mokka.
- Based on CEPC V1 silicon tracker, we replace TPC with additional SIT layers and FTD endcaps.
- The advantage is to recycle CEPC silicon tracking.

1/2

Prof.

Weiming Yao

Full Detector Simulation and Reconstruction

- Generated single muon with CEPC full silicon
- Reconstructed using Marlin Silicon only.
- The performance is comparable to CEPC V1.

Funding from Ministry of Science and Technology

R&D'S on Physics and Key Technologies for High Energy Electron-Positron Circular Collider

- 2016.07-2021.06
- 36M RMB
- Accelerator Physics & collider design 3.88
- Key accelerator technologies 11.60
- Simulation & detector design 5.24
- Key detector technologies 15.28

Another MOST fund (~40M) in 2018

Summary

- Program made after the PreCDR
 - R&D on key technologies
 - need more efforts on MDI (after the machine design?)

- Physics @Z/W, beam energy measurements to be studied soon

- Plan for CDR
 - develop/collect (new) ideas for 2+ detector concepts
 - critical R&D
- CEPC is an international project, you are all welcome to join us!

Detector talks at this workshop

	Day 2		Dav 3
14:00-14:20	Detector Optimization and Physics Simulation Toward the CEPC CDR Manqi Ruan (Institute of High Energy Physics, Chinese Academy of	14:00-14:20	CEPC TPC Huirong Qi (Institute of High Energy Physics, Chinese Academy of Sciences)
14:20-14:40	Sciences) Status of CEPC Calorimeters R&D	-14:20-14:40	A Second Detector Concept for CEPC Franco Bedeschi (Italian Institute of Nuclear Physics)
	Haijun Yang (Shanghai Jiaotong University)	14:40-15:00	Test Beam Results of a Silicon Photomultiplier Based Dual Readout
14:40-15:00	Status of CEPC Software Gang Li (Institute of High Energy Physics, Chinese Academy of Sciences)	_	Calorimeter Module Massimo Caccia (Italian Institute of Nuclear Physics)
15:00-15:20	ILC Software & Grid Usage Jan Strube (Pacific Northwest National Laboratory)	15:00-15:20	RICH Detectors and Gaseous Single Photon Detectors Silvia Dalla Torre (Italian Institute of Nuclear Physics)
15:20-15:40	SUSY Searches at LHC and Beyond Xuai Zhuang (Institute of High Energy Physics, Chinese Academy of Sciences)	15:20-15:40	Machine Detector Interface for CEPC Qinglei Xiu (Institute of High Energy Physics, Chinese Academy of Sciences)

Day 4

16:10-16:30	CEPC Vertex Detector Ping Yang (Central China Normal University)	
16:30-16:50	SiD - An All-silicon Detector for the ILC	
	Marcel Stanitzki (Deutsches Elektronen-Synchroton)	
16:50-17:10	Depleted CMOS Status and Prospects	
	Daniela Bortoletto (University of Oxford)	
17:10-17:30	A Drift Chamber Option for the CEPC	
	Franco Grancagnolo (Italian Institute of Nuclear Physics)	
17:30-17:50	Discussions	