Dark Photon at the CEPC

Xiao-Gang He, SJTU/NTU
Collaborators: Min He and Cheng-Kai Huang IAS, Hong Kong

The Dark Photon

A vector boson $X \mu$ couples to SM matter electromagnetic current ${ }^{\mu}{ }^{\mu}$ em as

$$
\varepsilon \mathrm{eQ}_{\mathrm{em}} \mathrm{j}^{\mu}{ }_{\mathrm{em}} X_{\mu}
$$

$$
\varepsilon \ll 1
$$

Generating Dark Photon Interaction through

Gauge Boson Kinetic Mixing

$L=-1 / 4 F_{\mu v} F^{\mu v}-1 / 4 X_{\mu v} X^{\mu v}$
will use X or A^{\prime} for dark photon

$$
\begin{aligned}
& \epsilon X_{\mu \nu} F^{\mu \nu} \\
& X_{\mu \nu}=\partial_{\mu} X_{\nu}-\partial_{\nu} X_{\mu}
\end{aligned} \quad F_{\mu \nu}^{\varepsilon}=\partial_{\mu} A_{\nu}^{\gamma}-\partial_{\nu} A_{\mu}
$$

X and A are gauge fields of $\mathrm{U}(1)_{\mathrm{X}} \mathrm{XU}(1)_{\mathrm{A}}$
This term is renormalizable and gauge invariant
ε is a unknown number in a given model.
Holdom 1986, Foot and He 1991,....

There are many interesting consequences

Consider $U(1)_{A}=U(1)_{Y}$ and

$\mathrm{U}(1)_{\mathrm{X}}$ a new gauge group: dark photon ol Dark photon connected to a hidden world (dark sector...)

- $S U(2)_{L} \times U(1)_{Y} \times U(1)_{x}$ gauge invariance:

$\mathcal{L} \supset-\frac{1}{4}\left(X_{\mu \nu}\right)^{2}-\frac{1}{4}\left(B_{\mu \nu}\right)^{2}-\frac{1}{4}\left(W_{\mu \nu}^{a}\right)^{2}-\frac{\epsilon}{2 c_{W}} B_{\mu \nu} X^{\mu \nu}$

$$
\rightarrow(\ldots)-\frac{\epsilon}{2} X_{\mu \nu}\left(F^{\mu \nu}-t_{W} Z^{\mu \nu}\right)-\mathcal{L} \supset e j_{e m}^{\mu} A_{\mu}
$$

$$
\begin{aligned}
& +\left[g_{x} j_{x}^{\mu}-\epsilon e j_{e m}^{\mu}-\epsilon t_{W}\left(\frac{\eta}{1-\eta}\right) g_{Z} j_{Z}^{\mu}\right] X_{\mu} \\
& +\left[g_{z} j_{Z}^{\mu}+\epsilon t_{W}\left(\frac{1}{1-\eta}\right) g_{x} j_{x}^{\mu}\right] Z_{\mu} \\
& \mathcal{M}^{2}=m_{Z}^{2}\left(\begin{array}{cc}
\eta & \epsilon t_{W} \eta \\
\epsilon t_{W} \eta & 1
\end{array}\right) \text { with } \eta=m_{x}^{2} / m_{Z}^{2}
\end{aligned}
$$

Summary of constraints on the dark photon mass and coupling

What CEPC can do for dark photon?

This talk describe: study dark photon using e+e- -> $\gamma \mathrm{A}^{\prime}$-> $\mu+\mu-$ $\mu+$

CEPC project (Xinchou Lou)
 A reminder about the CEPC-SppC

Phase 1: $\mathrm{e}^{+} \mathrm{e}^{-}$Higgs (Z) factory two detectors, 1M ZH events in ~10yrs
Circular Electron Positron Collider (CEPC)
$\mathrm{E}_{\mathrm{cm}} \approx 240 \mathrm{GeV}$, luminosity $\sim 2 \times 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$, can also run at the Z-pole $\sim 10^{10} \mathrm{Z}$ bosons Precision measurement of the Higgs boson (and the Z boson)

Phase 2: a discovery machine; pp collision with $\mathrm{E}_{\mathrm{cm}} \approx 50-100 \mathrm{TeV}$; ep, HI options
Super proton-proton Collider (SppC)

Integrate dimuon energy range $\left|m_{\mu \mu}-m_{A^{\prime}}\right|<2 \sigma_{\mu \mu}$

Evaluation of the cross section

$\mathrm{e}^{+} \mathrm{e}^{-}->\gamma \gamma^{*}->\gamma \mu^{+} \mu^{-}$

Using notation

$$
\left.\begin{array}{rlrl}
s & =\left(p_{1}+p_{2}\right)^{2}, & t & =\left(p_{2}-k_{2}\right)^{2}, \\
s^{\prime} & =\left(k_{1}+k_{2}\right)^{2}, & t^{\prime} & =\left(p_{1}-k_{1}\right)^{2},
\end{array} r p_{2}-k_{1}\right)^{2}, ~ u^{\prime}=\left(p_{1}-k_{2}\right)^{2} .
$$

We set $m_{e}=m_{\mu}=0$, then the squared amplitude for this process is

$$
\frac{1}{4} \sum_{s p i n s}\left|i M_{0}\right|^{2}=\frac{4 e^{6}\left(t^{2}+t^{\prime 2}+u^{2}+u^{\prime 2}\right)\left[2 s s^{\prime}\left(t+t^{\prime}\right)+2 t t^{\prime}\left(s+s^{\prime}\right)+u\left(s t+s^{\prime} t^{\prime}\right)+u^{\prime}\left(s t^{\prime}+s^{\prime} t\right)\right]}{\left(s^{\prime}+t+u\right)\left(s^{\prime}+t^{\prime}+u^{\prime}\right)\left(s^{\prime}+t+u^{\prime}\right)\left(s^{\prime}+t^{\prime}+u\right)} .
$$

$$
\begin{gathered}
\mathrm{e}^{+} \mathrm{e}^{-}->\gamma \mathrm{A}^{\prime *}->\gamma \mu^{+} \mu^{-} \\
\frac{4 \epsilon^{4} e^{6}\left[\left(s^{\prime}-m_{A}^{2}\right)\left(s-m_{A}^{2}\right)+\Gamma^{2} m_{A}^{2}\right]\left(t^{2}+t^{\prime 2}+u^{2}+u^{\prime 2}\right)\left[s s^{\prime}\left(t+t^{\prime}-u-u^{\prime}\right)+\left(t t^{\prime}-u u^{\prime}\right)\left(s+s^{\prime}\right)\right.}{\left[\left(s^{\prime}-m_{A}^{2}\right)^{2}+\Gamma^{2} m_{A}^{2}\right]\left[\left(s-m_{A}^{2}\right)^{2}+\Gamma^{2} m_{A}^{2}\right]\left(s^{\prime}+t+u\right)\left(s^{\prime}+t^{\prime}+u^{\prime}\right)\left(s^{\prime}+t+u^{\prime}\right)\left(s^{\prime}+t^{\prime}+u\right)}
\end{gathered}
$$

$$
\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \gamma \mu^{+} \mu^{-}\right)=\sigma\left(\mathrm{e}^{+} \mathrm{e}^{-}->\gamma \mathrm{A}^{\prime}\right) \operatorname{Br}\left(\mathrm{A}^{\prime}->\mu^{+} \mu^{-}\right)
$$

$\frac{d \sigma\left(e^{+} e^{-} \rightarrow \gamma \gamma \rightarrow \gamma \mu^{+} \mu^{-}\right)}{d s_{3}}$,
$\frac{d \sigma\left(e^{+} e^{-} \rightarrow \gamma A \rightarrow \gamma \mu^{+} \mu^{-}\right)}{d s_{3}}$

$$
\begin{aligned}
\Gamma(A \rightarrow f \bar{f}) & =\frac{g_{f}^{2} m_{A}}{12 \pi}\left(1+\frac{2 m_{f}^{2}}{m_{A}^{2}}\right)\left(1-\frac{4 m_{f}^{2}}{m_{A}^{2}}\right)^{\frac{1}{2}} \\
\Gamma & =\sum_{f} \Gamma(A \rightarrow f \bar{f})
\end{aligned}
$$

$\mathrm{S}_{3}=\left(\mathrm{k}_{1}+\mathrm{k}_{2}\right)^{2}=\mathrm{m}^{2}{ }_{\mu \mu}$ muon pair invariant mass squared

$$
\begin{aligned}
& u=\left(p_{2}-k_{1}\right)^{2}, \\
& u^{\prime}=\left(p_{1}-k_{2}\right)^{2} \text {. }
\end{aligned}
$$

Observable

$$
R=\frac{\sigma_{\gamma A^{\prime}}^{m_{\mu \mu}}}{\sigma_{\gamma \gamma}^{m_{\mu \mu}}}=\frac{\int_{\left(m_{A^{\prime}}-\sigma_{\mu \mu}\right)^{2}}^{\left(m_{A^{\prime}}+\sigma_{\mu \mu}\right)^{2}}\left(d \sigma_{\gamma A} / d s_{3}\right) d s_{3}}{\int_{\left(m_{A^{\prime}}+\sigma_{\mu \mu}\right)^{2}}^{\left(m_{\mu}\right.}\left(d \sigma_{\gamma \gamma} / d s_{3}\right) d s_{3}}
$$

Given σ with sensitivity on R,

ε^{2} is a function of $m_{A}, \sigma=0.5 \% m_{A}$

FIG. 2: Cross sections $\sigma_{\gamma \gamma}^{m_{\mu \mu}}$ and $\sigma_{\gamma A^{\prime}}^{m_{\mu \mu}}$ as functions of $\sqrt{s} . m_{A^{\prime}}=20,40$ and 60 GeV . The $m_{A^{\prime}}$ dependence of $\sigma_{\gamma \gamma}^{m_{\mu \mu}}$ is due to integration ranges depend on $m_{A^{\prime}}$.

FIG. 3: $N_{\gamma \gamma}$ and $N_{\gamma A^{\prime}} / \epsilon^{2}$ as functions of $m_{A^{\prime}}$ for CEPC $(\sqrt{s}=240 \mathrm{GeV})$ and FCC-ee $(\sqrt{s}=160,240,350 \mathrm{GeV})$ for one year running.

CEPC may have advantage probing dark photon at 10 to a few $10 \mathrm{~s}\left(\ll m_{z}\right)$ GeV mass range.

Spontaneous symmetry breaking and Abelian-NonAbelian gauge fields mixing

Arguelles, XG He, G. Ovanesyan, T. Peng and M. Ramsey-Mulsof, arXiv:1604.00044
Assuming that there is a field Δ^{a} transforming as 3 under $\operatorname{SU}(2)_{w}$, then one can make gauge singlet: $\quad \mathrm{W}^{\mathrm{a}}{ }_{\mu \nu} \mathrm{X}^{\mu \nu} \Delta^{\mathrm{a}}$

If the VEV of $\left\langle\Delta^{\mathrm{a}}\right\rangle=\mathrm{v}_{3} / \operatorname{sqrt}(2)$ along a particular direction in group space is not zero, one can generate kinetic mixing term

$$
\mathrm{W}^{3}{ }_{\mu \nu} \mathrm{X}^{\mu \nu} \mathrm{V}_{3} / \operatorname{sqrt}(2)
$$

Problem: not renormalizable.
If one gives up renormalizability one can write higher order operators to generate abelian and non-abelian gauge fields mixing!
In fact in the $S M$, one can generate such a mixing between $S U(2)_{L}$ and $U(1)_{Y}$

$$
\mathrm{W}^{\mathrm{a}}{ }_{\mu \nu} \mathrm{X}{ }^{\mu \nu}\left(\mathrm{H}^{+} \tau^{\mathrm{a}} \mathrm{H}\right)
$$

Here H is the usual SM doublet!
Possible to have kinetic mixing between ablian and non-abelian gauge fields. Chen, Cline, and Frey, 2009; He, Ovanesyan, Ramesy-Musolf, 2014.

UV completion of kinetic mixing of Abeliand-NonAbelian gauge field?

Yes, they can be generated at loop level starting from a renormalizable theory.
The particle in the loop carry both abelian and nonabelian charges.
One can even talking about
$\mathrm{SU}(\mathrm{N})$ and $\mathrm{SU}(\mathrm{m})$ kinetic mixing

$$
W_{\mu \nu}^{a}{ }_{\mu \nu} Y^{b \mu \nu} \Delta_{a b}
$$

Kinetic mixing between an Abelian and a non-Abelian fields should be very common when going beyond SM.

A triplet $\Delta^{a}(0,3,0)$ and $W-B$ mixing

$S U(2)_{W}=S U(2)_{L}, U(1)_{X}=U(1)_{Y}$

$$
\begin{array}{rlr}
L_{k-\text { mixing }} & =-\frac{1}{2} \alpha \frac{v_{\Delta} / \sqrt{2}}{\Lambda} B^{0, \mu \nu} W_{\mu \nu}^{3,0} & m_{W}^{2}=\left(m_{W}^{0}\right)^{2}\left(1+4 \frac{v_{\Delta}^{2}}{v^{2}}\right) \\
& =-\frac{1}{2} \epsilon\left(s_{W} c_{W} A_{\mu \nu}^{0} A^{0, \mu \nu}-s_{W} c_{W} Z_{\mu \nu}^{0} Z^{0, \mu \nu}+\left(c_{W}^{2}-s_{W}^{2}\right) A_{\mu \nu}^{0} Z^{0, \mu \nu}\right)
\end{array}
$$

Analysis the effects through S,T, U parameters

$$
\begin{aligned}
& \Delta L_{e f f}=-\frac{A}{4} A_{\mu \nu}^{0} A^{0, \mu \nu}-\frac{B}{2} W_{\mu \nu}^{+0} W^{-0, \mu \nu}-\frac{C}{4} Z_{\mu \nu}^{0} Z^{0, \mu \nu}+\frac{G}{2} A_{\mu \nu}^{0} Z^{0, \mu \nu} \\
&+w\left(m_{W}^{0}\right)^{2} W_{\mu}^{+, 0} W^{-, 0, \mu}+\frac{z}{2}\left(m_{Z}^{0}\right)^{2} Z_{\mu}^{0} Z^{0 \mu} \\
& A=2 s_{W} c_{W} \epsilon, \quad B=0, C=-2 s_{W} c_{W} \epsilon, \quad G=-\left(c_{W}^{2}-s_{W}^{2}\right) \epsilon, \quad w=4 \frac{v_{\Delta}^{2}}{v^{2}}, \quad z=0 . \\
& \alpha S=4 s_{W}^{2} c_{W}^{2}\left(A-C-\frac{c_{W}^{2}-s_{W}^{2}}{s_{W} c_{W}} G\right)=4 s_{W}^{2} c_{W}^{2}\left(4 s_{W} c_{W}+\frac{\left(c_{W}^{2}-s_{W}^{2}\right)^{2}}{s_{W} c_{W}}\right) \epsilon, \\
& \alpha T=w-z=4 \frac{v_{\Delta}^{2}}{v^{2}}, \\
& \alpha U=4 s_{W}^{4}\left(A-\frac{1}{s_{W}^{2}} B+\frac{c_{W}^{2}}{s_{W}^{2}} C-2 \frac{c_{W}}{s_{W}} G\right)=0 .
\end{aligned}
$$

Some phenomenological implications

$$
\mathcal{O}_{W X}^{(5)}=-\frac{\beta}{\Lambda} \operatorname{Tr}\left(W_{\mu \nu} \Sigma\right) X^{\mu \nu}
$$

$\epsilon=\beta \sin \theta_{W}\left(\frac{v_{\Sigma}}{\Lambda}\right)$

Bound on ϵ from muon $\mathrm{g}-2$ on kinetic mixing

Bound on ϵ_{WX} from muon $\mathrm{g}-2$ on kinetic mixing

FIG. 1: Bound on abelian mixing parameter ϵ (left) and non-abelian mixing parameter $\epsilon_{W X}$ (right).

(a)

(a)

(b)

(b)
ε

ε

e

Figure 4. Branching ratios for H^{+}decays as a function of β / Λ (bottom horizontal axis) and ϵ (upper horizontal axis) for $m_{X}=0.4 \mathrm{GeV}$. The top (bottom) row corresponds to $v_{\Sigma}=1 \mathrm{GeV}$ ($v_{\Sigma}=10^{-3} \mathrm{GeV}$), while the left (right) column corresponds to $m_{H^{+}}=130 \mathrm{GeV}$ ($m_{H^{-}}=130$ GeV). The solid black line indicates the branching ratio for $H^{+} \rightarrow W^{+} X$. Branching ratios for other final states are as indicated by the legend insert.

Figure 5. Constrains on triplet-assisted non-abelian kinetic mixing, recast from the ATLAS search reported Ref. [12]. The left panel gives the exclusion in the ($c \tau, \sigma \times \mathrm{BR}$) plane, where the region above the parabola is excluded. The diagonal lines indicate the dependence of $\sigma \times \mathrm{BR}$ on $c \tau$ for different representative choices of v_{Σ}. The right panel gives the exclusion region in the $\left(v_{\Sigma}, \Lambda / \beta\right)$ plane for $m_{X}=0.4 \mathrm{GeV}$ (red region) and $m_{X}=1.5 \mathrm{GeV}$ (yellow region).

