# EFT Analysis of Higgs Boson at Higgs Factories

Wen Han Chiu

The Hong Kong University of Science and Technology

January 23, 2017



In collaboration with: Iris Leung, Tao Liu, Kunfeng Lyu and Liantao Wang

## Background

- The Standard Model is extremely robust
- Most notable prediction: Higgs Boson
- Caveat: Lot's of unanswered problems
- Example: Neutrino mass generation, dark matter, ...

## How do we move forward?

- Lot's of theories
- Means to test predictions: Higgs
- The theories all make different predictions
- Should make unbiased predictions

## $\kappa$ -framework

- Perturb Higgs couplings from SM values by  $\kappa$
- Very well-studied
  - (M.E. Peskin arXiv:1312.4974, M. Klute et. al. arXiv:1301.1322, etc..)
- Problem: Violates gauge invariance and unitarity



(Plot pulled from Z. Liu's slides)

## Effective Field Theory Approach

• A way to model new physics while preserving symmetries

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \sum_{i} \frac{c_i}{\Lambda^{d-4}} \mathcal{O}_i$$

- Results in corrections to observables of  $\mathcal{O}(\Lambda^{4-d})^*$
- Only dim. 5 EW operator  $\rightarrow$  Majorana  $\nu$  mass
- $\Rightarrow$  Leading order contribution is dimension six

## Operators

- Assume SM symmetries
- A min. of 59 non-redundant dim. six EW operators in the SILH basis (arXiv:1303.3876)
- Focus on only 10
  - 9 complete CP-even basis for Higgs strahlung +  $\mathcal{O}_{6H}$

Operators  $\mathcal{O}_{WW} = g^2 |H|^2 W^a_{\mu\nu} W^{a,\mu\nu}$  $\mathcal{O}_{BB} = g^{\prime 2} |H|^2 B_{\mu\nu} B^{\mu\nu}$  $\mathcal{O}_{WB} = gg'H^{\dagger}\sigma^{a}HW^{a}_{\mu\nu}B^{\mu\nu}$  $\mathcal{O}_H = \frac{1}{2} \left( \partial_\mu |H|^2 \right)^2$  $\mathcal{O}_T = \frac{1}{2} \left( H^\dagger \overleftrightarrow{D}_\mu H \right)^2$  $\mathcal{O}_{6H} = \left| H^{\dagger} H \right|^3$  $\mathcal{O}_{L}^{(3)l} = \left(iH^{\dagger}\sigma_{a}\overrightarrow{D}_{\mu}H\right)\left(\overline{L}_{L}\gamma^{\mu}\sigma^{a}L_{L}\right)$  $\mathcal{O}_{LL}^{(3)l} = (\bar{L}_L \gamma_\mu \sigma^a L_L) (\bar{L}_L \gamma^\mu \sigma^a L_L)$  $\mathcal{O}_L^l = (iH^{\dagger}\widetilde{D}_{\mu}H)(\overline{L}_L\gamma^{\mu}L_L)$  $\mathcal{O}_R^e = (iH^{\dagger} \overleftrightarrow{D}_{\mu} H) (\overline{l}_R \gamma^{\mu} l_R)$ 

- Field redefinition and mixing:
  - Example:

$$\begin{split} \Delta \mathcal{L} &\supset \frac{1}{2} \left( 1 + \frac{v^2}{\Lambda^2} c_H \right) \partial_\mu h \partial^\mu h \\ \Rightarrow h &\rightarrow \frac{1}{\sqrt{1 + \frac{v^2}{\Lambda^2} c_H}} h \simeq \left( 1 - \frac{v^2}{2\Lambda^2} c_H \right) h \equiv (1 + \delta Z_h) h \end{split}$$

- Modification of EWPO and Z-Pole observables
  - Example:

$$\begin{split} \Delta \mathcal{L} &\supset -\frac{1}{2} M_Z^2 Z_\mu Z^\mu - \frac{1}{8} \frac{g^2 v^2}{c_w^2 \Lambda^2} c_T Z_\mu Z^\mu \\ &\rightarrow -\frac{1}{2} \left( M_Z^2 - \frac{1}{4} \frac{g^2 v^4}{c_w^2 \Lambda^2} c_T \right) (1 + \delta Z_Z)^2 Z_\mu Z^\mu \\ &\simeq -\frac{1}{2} \left( 1 + \delta Z_Z - \frac{v^2}{2\Lambda^2} c_T \right)^2 M_Z^2 Z_\mu Z^\mu \\ &\Rightarrow M_Z^{(r)} &= \left( 1 + \delta Z_Z - \frac{v^2}{2\Lambda^2} c_T \right) M_Z^{(sm)} \end{split}$$

- Modification of existing vertices
  - Example:

$$\mathcal{O}_{6H} \Rightarrow \Delta \mathcal{L} \supset -\frac{m_h^2}{2\nu} \left(1 - \frac{2\nu^4}{m_h^2 \Lambda^2} c_{6H}\right) h^3$$

Contributes to Zh at loop level<sup>1</sup>



<sup>1</sup>A detailed study was conducted by M. McCullough (arXiv:1312.3222)

- Introducing new vertices
  - Example:



#### Constraints From CEPC

- Methodology similar to that used by S.F. Ge et al. (arXiv:1603.03385)
- Choose input basis:  $M_Z$ ,  $\alpha$ ,  $G_F$
- Derive LO corrections to SM observables  $X^{(r)} = \left(1 + \frac{\delta X}{X^{(SM)}}(c_i, M_Z, \alpha, G_F)\right) X^{(SM)}$ 
  - $\left( \begin{array}{c} X^{(SM)} \\ \end{array} \\ \end{array} \right)$
- Assume SM value = experimental central value
- $\Rightarrow$ Corrections to SM  $\leq$  Experimental bounds

## **Required Precision**

- Mostly follow the constraints given by the CEPC pre-CDR
- For observables with small statistical uncertainties, take 2 cases
  - Optimistic case: Minimal systematic uncertainties
  - Pessimistic case: Systematics ~ Statistical uncertainties
- Current data obtained from PDG

#### **Required Precisions**

|                           | <b>Current Precision</b> | <b>Expected Precision</b>   |  |  |
|---------------------------|--------------------------|-----------------------------|--|--|
| $M_Z$                     | $2.3 \times 10^{-5}$     | $0.55 - 1.1 \times 10^{-5}$ |  |  |
| $G_F$                     | $5.14 \times 10^{-7}$    | _                           |  |  |
| α                         | $3.29 \times 10^{-10}$   | —                           |  |  |
| $\sigma(Zh)_{250}$        | —                        | 0.51%                       |  |  |
| $M_W$                     | $1.87 \times 10^{-4}$    | $3.7 - 6.2 \times 10^{-5}$  |  |  |
| $N_{ u}$                  | 0.27%                    | 0.1%                        |  |  |
| $A^b_{FB}$                | 1.7%                     | 0.15%                       |  |  |
| $R_b$                     | 0.3%                     | 0.08%                       |  |  |
| $R_{	au}$                 | 0.2%                     | 0.05%                       |  |  |
| $R_{\mu}$                 | 0.2%                     | 0.05%                       |  |  |
| $\sin^2 	heta_W^{ m eff}$ | 0.07%                    | 0.01%                       |  |  |

IHEP-CEPC-DR-2015-01

## Single Parameter Fit

|                                     | $N_{\nu}$ | $A^b_{FB}$ | R <sub>b</sub> | R <sub>µ</sub> | $R_{	au}$ | $\sin^2 \theta_W^{\rm eff}$ | M <sub>W</sub> | $\sigma(Zh)$ |
|-------------------------------------|-----------|------------|----------------|----------------|-----------|-----------------------------|----------------|--------------|
| $c_{WW}/\Lambda_{\rm TeV}^2$        | _         | 0.0091     | 0.183          | 0.0223         | 0.0223    | 0.006                       | 0.103          | 0.0224       |
| $c_{BB}/\Lambda_{\rm TeV}^2$        | _         | 0.124      | 2.532          | 0.307          | 0.307     | 0.0794                      | 0.473          | 0.684        |
| $c_{WB}/\Lambda_{\rm TeV}^2$        | _         | 0.0073     | 0.238          | 0.167          | 0.166     | 0.00429                     | 0.00598        | 0.155        |
| $c_H/\Lambda_{\rm TeV}^2$           | —         | _          | _              | _              |           | _                           | _              | 0.08         |
| $c_T/\Lambda_{\rm TeV}^2$           | 0.0297    | 0.0033     | 0.200          | 0.0894         | 0.09      | 0.002                       | 0.0014         | 0.124        |
| $c_{6H}/\Lambda_{\rm TeV}^2$        | _         | —          | —              | _              |           | —                           | —              | 0.71         |
| $c_{LL}^{(3)l}/\Lambda_{\rm TeV}^2$ | 0.0149    | 0.0017     | 0.101          | 0.0448         | 0.0451    | 0.001                       | 0.0025         | 0.0172       |
| $c_L^{(3)l}/\Lambda_{\rm TeV}^2$    | 0.0149    | 0.0012     | 0.100          | 0.0040         | 0.045     | 0.00073                     | 0.0025         | 0.0081       |
| $c_L^l/\Lambda_{\rm TeV}^2$         | _         | 0.0046     |                | 0.00367        | 0.004     | 0.0027                      | _              | 0.0047       |
| $c_R^e/\Lambda_{\rm TeV}^2$         | _         | 0.0034     |                | 0.005          | 0.0037    | 0.002                       | _              | 0.007        |

The red shows the most constraint cases.

#### Two Parameter Fit

- Previous studies only constrain independent operators
- Correlation is important depending on the full theory
- Multiple operators typically induced simultaneously<sup>1</sup>
- Use  $\chi^2$  analysis
- Constrain parameters using 2-3 observables
- We assume other Wilson coefficients zero and focus on the two parameters.

## **Correlation Plots**

General comments:

- Range of allowed c<sub>i</sub> increase noticeably vs single operator case
- Most can be constrained to  $\mathcal{O}(10^{-2})$  at CEPC



## Constraining $c_{6H}$ and $c_H$

- All Wilson coefficients except  $c_{6H}$  is well constrained
- Because  $\mathcal{O}_{6H}$  enters Higgs strahlung at loop level
- Need other processes



• These processes do not take place at CEPC

#### Precision Inputs From Various Colliders

| Channel                                      | Expected Precision of $\sigma$ |  |  |
|----------------------------------------------|--------------------------------|--|--|
| Zh (250 GeV CEPC)                            | 0.5%                           |  |  |
| Zh (240 GeV FCC-ee)                          | 0.4%                           |  |  |
| Zh (250 GeV 2 ab <sup>-1</sup> ILC)          | 0.9%                           |  |  |
| $v\bar{v}h(350 \text{ GeV FCC-ee})$          | 0.75%                          |  |  |
| $Zhh(500 \text{ GeV 4 ab}^{-1} \text{ ILC})$ | 15.1%                          |  |  |
| $v\bar{v}hh$ (1 TeV 5 ab <sup>-1</sup> ILC)  | 12%                            |  |  |

arXiv: 1602.05043v2 IHEP-CEPC-DR-2015-01 arXiv: 1506.07830v1 arXiv: 1310.0763v3 18

## Constraints on $C_{6H}$

- Fit using:  $\sigma(Zh), \sigma(\nu \bar{\nu} h)_{350}, \sigma(Zhh)_{500}$  and  $\sigma(\nu \bar{\nu} hh)_{1000}$
- CEPC Constraints:  $5 \text{ ab}^{-1}$  of 250 GeV data at CEPC
- FCC-ee constraints: 10 ab<sup>-1</sup> of 240 GeV data, 2.5 ab<sup>-1</sup> of 350 GeV data
- ILC Constraints:
   2 ab<sup>-1</sup> at 250 GeV, 4 ab<sup>-1</sup> at 500 GeV and 5 ab<sup>-1</sup> at 1 TeV



## Comparison of Colliders

• Observables:  $\sigma(Zh)$ ,  $M_W$  and  $\sigma(\nu\bar{\nu}h)_{350}$ 





- Parameter space for "complete" Higgs Strahlung basis well constrained at CEPC
- For operators which contribute at loop level, other colliders are more useful

## Backups

## Minimal Toy Model

- As previously mentioned, multiple operator are typically simultaneously induced
- Illustrate this using toy models

 $c_L^l - c_L^{(3)l}$  correlation

- Based off of the work in 1612.02040 by Yun Jiang
- Integrating out a new vector like heavy lepton yields three operators

| Case               | $SU(2)_L$ | $U(1)_Y$ | $J_L^{\mathcal{L}}$    | $\mathcal{O}_L^l$ | $\mathcal{O}_L^{(3)l}$ | $\mathcal{O}_{eH}$ | $\mathcal{O}_{He}^{(1)}$ |
|--------------------|-----------|----------|------------------------|-------------------|------------------------|--------------------|--------------------------|
| ${\cal L}_I^{(1)}$ | 1         | -1       | $\bar{L}_L H$          | $\checkmark$      |                        |                    |                          |
| ${\cal L}_I^{(3)}$ | 3         | -1       | $\sigma^I \bar{L}_L H$ | $\checkmark$      | $\checkmark$           | $\checkmark$       |                          |

 $\mathcal{O}_{eH} = (H^{\dagger}H)(\overline{L}_L H e_R)$  does not contribute to the processes of interest

#### $C_{6H}$ - $C_H$ correlation

- There are many models that can contribute to higgs self interaction.
- Example: Higgs inflation (H.J. He et. al. arXiv:1506.03302).
- Here we consider a simple scenario, introducing a UV massive scalar S

$$\mathcal{L}_{SH} = \frac{1}{2} (\partial_{\mu} S)^2 - \frac{1}{2} m_S^2 S^2 + \Lambda_S S H^{\dagger} H + \lambda H^{\dagger} H S^2$$

• After integrating out S, we can get the dim-6 operators

$$\mathcal{L}_{EFT} \sim \frac{3\lambda\Lambda_S^2}{2m_S^4}\mathcal{O}_{6H} + \frac{2\Lambda_S^2}{m_S^4}\mathcal{O}_H$$