Final Focus Challenges – Highlights from ATF2

Philip Bambade

Laboratoire de l'Accélérateur Linéaire IN2P3/CNRS – Université Paris-Sud, Orsay

IAS Conference on HEP, Hong-Kong

23-26 January 2017

Linear collider concept

focus RF technology (gradient, efficient power transfer) beam phase-space control and stability

Luminosity -

energy spread vertical emittance

Beam parameters (hidden) in LC luminosity scaling

$$L = \frac{n_b N^2 f}{4\pi \sigma_x \sigma_y} H_D \rightarrow \eta_{efficiency} \frac{P_{electrical}}{E_{CM}} \sqrt{\frac{\Delta E_{BS}}{\varepsilon_{N,y}}}$$

Optimization based on setting

 $\sigma_z = \beta_y \rightarrow \text{bunch length} \leq \text{"depth of focus"} \Rightarrow \text{avoid "hour-glass effect"}$ $\beta_x \gg \beta_y \rightarrow \text{very flat bunch profile} \Rightarrow \text{minimize } \Delta E_{BS} \propto \frac{N^2}{\sigma_z (\sigma_x + \sigma_y)^2}$

Consequences for final focus and additional considerations

- minimize β_y to maximize luminosity \rightarrow only down to $\sim \sigma_z$
- β_x → balances high luminosity versus low ΔE_{BS}
 β_x ∧ ΔE_{BS} ∧ unless σ_z is reduced, however this then limits β_y smallness
 β_x ∧ ΔE_{BS} ∧ and β_y can be reduced to recover luminosity, but needs smaller σ_z
 1st order chromaticity ξ ~ L*/β_y → corrected with paired sextupoles
 σ_y² = β_yε_y [1 + K₁ (L*/β_y)² δ_E² + K_{ijk} Σ_{i,j,k} (L*/β_y)ⁱ (δ_E)^k ...], with K₁ ~ 1 → 0
 very small β_x and/or β_y ⇒ more complex control of higher order optical aberration
 large L* and small ΔE_{BS} easier for detector and post-IP extraction

Design challenges in LC final focus

• Complex optics increases tuning difficulty of real system with errors

local or non-local chromaticity correction for non-local correction \rightarrow separated or interleaved

use only sextupoles or also higher order magnets (e.g. octupoles...)
Stabilization of two colliding beams with feedback (cf. FONT group)

beam-beam deflection technique \rightarrow ILC long train \Rightarrow MHz bandwidth

(\rightarrow CLIC \Rightarrow requires also active mechanical stabilization)

- Collimation of beam halo for background control wakefield \rightarrow emittance growth for case of very large optical demagnification (small β_y) can amplify input jitter \rightarrow beam breakup \rightarrow tighter tolerances for stabilization
- Beam instrumentation

Recent trends / approaches for final focus design

> Increasing β_x with reduced σ_z to lower ΔE_{BS} or raise luminosity

Study of alternative ILC final focus optical configurations, D. Wang et al., NIMA 781 (2015) 14-19

Increasing L*

CLIC Beam Delivery System Rebaselining and Long L* Lattice Optimization, F. Plassard et al., IPAC2016-THPMR045

Alternative chromaticity correction for better tuning ability
 Non-interleaved FFS design, O. Blanco et al., arXiv:1504.00162
 Final-focus systems for multi-TeV linear colliders, H. Garcia Morales et al., PRSTAB 17 (2014) 10, 101001

Study of alternative ILC final focus optical configurations $\stackrel{\star}{\sim}$ Dou Wang^{a,*}, Philip Bambade^b, Yiwei Wang^a, Cecile Rimbault^b, Jie Gao^a ^a IHEP, Beijing, China ^b LAL, Paris, France</sub>NIMA 781 (2015) 14-19

Reduced bunch length enables

D. Wang and Y. Wang

- 1. Less beamstrahlung with the same luminosity, or
- 2. Higher luminosity with equal amount of beamstrahlung.

Approach is to use flatter beams

- Same magnets as in ILC nominal design, only refitting them
- Requires shorter bunch length than nominal (150 or 200 microns), it's the price to pay...

Benefits from less beamstrahlung

- Easier post-IP extraction line, with less losses...
- Less beam-beam induced effects (backgrounds...) for ILD and SiD

ILC FFS optics rematch and optimization

- Minimize $\sigma_x \times \sigma_y$ with fixed βy and σ_z (σ_z =150 μm)
- Chromaticity correction using 5 sextupoles with reasonable values
- Energy spread for both beams = 0.0006

Maximum β_x to obtain higher luminosity than nominal \rightarrow 45 mm

Alternative optical parameters for ILC FFS

	ILC RDR	ILC low BS	ILC high Lumi
Energy per beam (GeV)	250	250	250
N _e (× 10 ¹⁰)	2	2	2
σ _z (μm)	300	150	150
β _{x/y} (mm)	15/0.4	45/0.2	20/0.2
A _y	0.75	0.75	0.75
σ _{x/y} by MAPCLASS (nm)	594/7.89	994/4.10	750/4.6
$\sigma_{x} \times \sigma_{y} (nm^{2})$	4687	4075	3450
Luminosity per collision from guineapig++ (×10 ³⁴ m ⁻²)	1.126	1.143	1.40
Beamstrahlung energy spread from guineapig++ (%)	2.8	1.8	2.8

- Larger luminosity with similar beamstrahlung as nominal design for $\beta_x < 45$ mm, or
- Less beamstrahlung keeping luminosity as in nominal design for 45 mm = β_x

Nanometre scale beam handling at ATF/ATF2

ATF2 beamline: Nano-meter beam R&D

Final focus system development
Technologies to maintain the luminosity at ILC
Goal 1: Beam size: 37 nm (design), 41 nm (achieved)
Goal 2: Beam stabilization via feedback: achieved 67 nm
Beam instrumentation development

Damping Ring (~ 140m) Low emittance beam

ATF2 = scaled ILC FFS

FFTB → ATF2 local chromaticity correction

✓ superior

✓ more compact

Parameters	ATF2	ILC	CLIC	SuperKEKB
Beam Energy [GeV]	1.3	250	1500	4-7
L* [m]	1	3.5 - 4.5	3.5	0.47-1.3
γε _{x/y} [m.rad]	5 10 ⁻⁶ / 3 10 ⁻⁸	10 ⁻⁵ / 4 10 ⁻⁸	6.6 10 ⁻⁷ / 2 10 ⁻⁸	~ 3 10 ⁻⁵ / ~ 1 10 ⁻⁷
IP β _{x/y} [mm]	4 / 0.1	21 / 0.4	6.9 / 0.07	25-32 / 0.27-0.41
IP η' [rad]	0.14	0.0094	0.00144	
δ _E [%]	~ 0.1	~ 0.1	~ 0.3	0.065
Chromaticity ~ L* / β^*	~ 104	~ 104	~ 5 10 ⁴	1.7-3.2 10 ³
Number of bunches	1-3	~ 3000	312	2500
Bunch population	1-2 10 ¹⁰	2 10 ¹⁰	3.7 10 ⁹	
IP σ _y [nm]	37	5.7	0.7	59

Producing nanometre beams at ATF2

2008

Is 37 nm vertical size the limit at ATF2 ?

Optical configurations with variable β^* at different IP locations in ATF2, by S. Bai et al. ATF-08-05, LAL/RT-08-10

Variability of β_x and β_y ? (optical "zoom")

- Staged commissioning with larger $\beta_{x,y}$ for easier tuning with less sensitivity to errors and backgrounds
- Beam size down to \sim 17 nm may be possible !
 - Probe larger chromaticity of CLIC baseline and some of the alternative ILC parameters

Probing half β_v^* optics in the Accelerator Test Facility 2 M. Patecki (CERN) et al., PRAB 19 (2016) no.10, 101001

One of main CERN-CLIC R&D at ATF2 \rightarrow

2016 : CERN installed 2 octupoles to facilitate demonstration of "ultra-low β optics"

CERN-IHEP-KEK-LAL-SLAC For the ATF2, CLIC and ILC projects Exploring ultra-low β^* values in ATF2 -R&D Programme proposal P. Bambade, S. Bai, Y. Renier, LAL (France) H. Braun, J.P. Delahaye, D. Schulte, R. Tomás[†], F. Zimmermann, CERN (Switzerland) J. Gao, D. Wang, IHEP (China) J. Urakawa, T. Tauchi, T. Okugi, S. Kuroda, Y. Honda KEK (Japan) A. Seryi, M. Woodley SLAC (USA) Abstract We propose to explore the beam sizes and performance of the ATF2 Final Focus System for reduced IP beta functions up to a factor between 2 and 4 below its design. The results will demonstrate the feasibility of the system in a chromaticity regime of interest for CLIC and ILC Corresponding author: rogelio.tomas@cern.ch Geneva, Switzerland May 7, 2008 Variable ATF2 beam size sigy(log scale) 97 87 -77 67 57 nominal betx 47 -🛡 — half betx 37 27 sqrt(bety*epsy) 0.0000 0.0002 0.0004 0.0006 0.0008 bety_{nominal}/4

S.Bai, ATF-08-05, PhD thesis, IHEP (2010)

bety

Measuring nanometre beams at ATF2

Laser wavelength 532 nm

Fringe Phase

History of minimum beam size in ATF2

Experimental Validation of a Novel Compact Focusing Scheme for Future Energy-Frontier Linear Lepton Colliders, by G. White et al. (ATF2 Collaboration): Phys.Rev.Lett 112, 034802 (2014)

Time (hours) from operation start after 3 days shutdown

Stability

$$\sigma_{y} \sim 41 \text{ nm}$$

smallest vertical beam size ever achieved

Fast recovery after stop

Result of consecutive measurements with FONT upstream feedback on

Beam intensity = 0.7×10^9 /bunch ATF2(MFB1FF) FB off

Largest Modulation was achieved

ATF2 : further challenges and limitations

- ATF2 reproducibly achieves design $\sigma_{\gamma} \rightarrow 40$ nm, but
 - 10⁹ electrons / bunch < nominal $10^{10} \Rightarrow$ strong intensity-dependence
 - $\beta_x = 10 \times \text{nominal} \Rightarrow \text{some observation of } \sigma_y \text{ degradation when } \beta_x \searrow$ \rightarrow ILC Final Focus really validated ?

 $\ensuremath{\text{Yes}} \rightarrow \ensuremath{\text{both}}\xspace$ proper (energy) scaling of higher order multipole and wakefield effects

• $\beta_y = 10^{-4}$ m (nominal value) \rightarrow can smaller σ_y be achieved with "ultra-low β_y " optics ?

On-going test with pair of newly installed octupoles

- Feedback stabilization (cf. FONT) \rightarrow limits σ_y reduction ? On-going assessment & improvements of BPM instrumentation
- Background control / halo collimation \rightarrow limits σ_y reduction ? Seems not major problem from recent studies

Conclusions and outlook

Final focus challenges well identified and researched

- mature for engineering design with certain rules / limits
- ILC design conservative, validated w.r.t. final focus
- certain variations / flexibility in parameters are possible

 \succ ATF2 reproducibly achieves smallest σ_{y} in the world

- expect running to end 2018

 \rightarrow close remaining issues

 \rightarrow probe limits beyond original parameters (e.g. ultra-low β)

- invaluable "real system" experience & training (many PhD students !)

Extra slides

Wakefield in ILC FF compared with ATF2

- Effects of transverse wakefield will be much smaller than in ATF2
 - High energy, short bunch length (see next slide)
 - Beam pipe aperture will be similar
 - Except for collimators (special care will be necessary)
 - Careful design of beam pipe and structures in the beam line
- But, understanding the intensity dependence and comparison between observations and calculations are important

See

http://atf.kek.jp/twiki/pub/ATF/CompareWakeILCAT2/wakecompare-ILCATF-v3.pdf

and next slide

Misalignment

	ILC	ATF2	Dependence	Ratio of effect ILC/ATF2
Beam Energy	250 GeV	1.3 GeV	1/E	0.0052
Bunch length	0.3 mm	7.0 mm	Shape pf wake	~0.5
Emittance	0.07 pm	12 pm	$1/\sqrt{\varepsilon}$	13
Sum of Beta- function	310 km	58 km	$\sqrt{\sum \beta}$	2.3
Total			0.078	0.078

Orbit jitter

	ILC	ATF2	Ratio of effect	Ratio of effect ILC/ATF2
			ILC/ATF2	
Beam Energy	250 GeV	1.3 GeV	1/E	0.0052
Bunch Length	0.3 mm	7.0 mm	Shape pf wake	~0.5
Sum of Beta- function	310 km	58 km	$\sum \beta$	5.3
Total			0.014	0.014

Misalignment

	ILC	ATF2	Dependence	Ratio of effect ILC/ATF2
Beam Energy	250 GeV	1.3 GeV	1/E	0.0052
Bunch length	0.3 mm	7.0 mm	Shape pf wake	~0.5
Emittance	0.07 pm	12 pm	$1/\sqrt{\varepsilon}$	13
Sum of Beta- function	310 km	58 km	$\sqrt{\sum eta}$	2.3

Effect of misalignment at ILC with bunch population 2E10 will be similar to that at ATF with bunch population 0.16E10.

Effect of betatron oscillation at ILC with bunch population 2E10 will be similar to that at ATF with bunch population 0.03E10.

Bunch	0.3 mm	7.0 mm	Shape pf wake	~0.5
Length				
Sum of Beta-	310 km	58 km	$\sum \beta$	5.3
function				
Total			0.014	0.014

Tolerances of sextupole field error to IP vertical beam size

The tolerances of sextupole errors for ATF2 10x1 optics is comparable to ILC.

Tolerances of FD multipole field error to IP vertical beam size

Linear and second order optics corrections for the KEK Accelerator Test Facility final focus beam line, T. Okugi *et al.*, PRSTAB 17, 023501 (2014)

Toshiyuki Okugi, KEK

The tolerances of FD multipole errors for ATF2 10x1 optics is comparable to ILC.

6