ILC Accelerator at Z, H and tt

Kaoru Yokoya, KEK 2017.1.23 IAS at HKUST

2017/1/23 IAS@HKUST Yokoya

TDR

- ILC-TDR (Technical Design Report) describes the design optimized for $E_{CM} = 500 \text{GeV}$
- Parameter sets for 200, 230, 250, 350 and 1000GeV are also given but not in detail
 - Next slide. The values of luminosity corrected after TDR
- There is no official parameter set for 92 GeV
- Basically, linear colliders are not good at low energies

IP and General Parameters (corre	ction Apr.20)15 included)								
			Baseline					L Upgrade	Ecm U	pgrade
Centre-of-mass energy	E _{cm}	GeV	200	230	250	350	500	500	1000	1000
Beam energy	E _{beam}	GeV	100	115	125	175	250	500	500	500
Collision rate	f _{rep}	Hz	5	5	5	5	5	5	4	4
Electron linac rate	f _{linac}	Hz	10	10	10	5	5	5	4	4
Number of bunches	n _b		1312	1312	1312	1312	1312	2625	2450	2450
Bunch population	N	×10 ¹⁰	2	2	2	2	2	2	1.737	1.737
Bunch separation	Δ_{tb}	ns	553.8	553.8	553.8	553.8	553.8	366.2	366.2	366.2
Bunch separation ×f _{RF}	$\Delta_{\text{tb}} \text{f}_{\text{RF}}$		720	720	720	720	720	476	476	476
Pulse current	I beam	mA	5.79	5.79	5.79	5.79	5.79	8.75	7.60	7.60
RMS bunch length	σ_z	mm	0.3	0.3	0.3	0.3	0.3	0.3	0.25	0.225
Electron RMS energy spread	∆p/p	%	0.206	0.194	0.190	0.158	0.125	0.125	0.083	0.085
Positron RMS energy spread	∆p/p	%	0.187	0.163	0.150	0.100	0.070	0.070	0.043	0.047
Electron polarisation	P-	%	80	80	80	80	80	80	80	80
Positron polarisation	P+	%	31	31	30	30	30	30	20	20
Horizontal emittance at IP	γε _x	μm	10	10	10	10	10	10	10	10
Vertical emittance at IP	$\gamma \epsilon_y$	nm	35	35	35	35	35	35	30	30
IP horizontal beta function	β _x *	mm	16	14	13	16	11	11	22.6	11
IP vertical beta function	β _y *	mm	0.34	0.38	0.41	0.34	0.48	0.48	0.25	0.23
IP RMS horizontal beam size	σ_x^*	nm	904	789	729	684	474	474	481	335
IP RMS veritcal beam size	σ_y^*	nm	7.80	7.69	7.66	5.89	5.86	5.86	2.77	2.66
Horizontal distruption parameter	Dx		0.210	0.239	0.257	0.210	0.304	0.304	0.108	0.199
Vertical disruption parameter	Dy		24.3	24.5	24.5	24.3	24.6	24.6	18.7	25.1
Geometric luminosity	L _{geom}	10 ³⁴ /cm ² s	0.296	0.344	0.374	0.518	0.751	1.504	1.768	2.643
Average beamstrahlung parameter	Yav		0.013	0.017	0.020	0.030	0.062	0.062	0.127	0.203
Maximum beamstrahlung parameter	Y _{max}		0.031	0.041	0.048	0.072	0.146	0.146	0.305	0.483
Average number of photons / particle	nγ		0.95	1.08	1.16	1.23	1.72	1.72	1.43	1.97
Luminosity	L	10 ³⁴ /cm ² s	0.59	0.73	0.82	1.03	1.79	3.60	3.02	5.11
Luminosity enhancement factor	H _D		1.99	2.12	2.19	1.99	2.38	2.39	1.71	1.93
Fraction of luminosity in top 1%	L _{0.01} /L		0.913	0.886	0.871	0.7743	0.583	0.583	0.592	0.445
Average energy loss	δ_{EBS}	%	0.65	0.83	0.97	1.85	4.49	4.49	5.59	10.53
Number of pairs per bunch crossing	N _{pairs}	×10 ³	45	56	62	94	139	139	200	3 383
Total pair energy per bunch crossing	Epairs	TeV	25	38	47	115	344	344	1338	3441

Proposed Operation Scenario (ICHEP2016)

- 500GeV machine assumed
- Start with 500GeV, then, \rightarrow 350, \rightarrow 250GeV
- Luminosity upgrade: 1312 bunches \rightarrow 2625 bunches

Integrated Luminosities [fb]

10Hz Operation at 250GeV

- Beaseline design in TDR: 5Hz
- 10Hz operation is possible at 250GeV
 - Assume 500GeV machine
 - 10Hz possible only at 250GeV
 - < 250GeV: poor positron yield
 - > 250GeV: power excess
 - Proposed after TDR (~summer 2013)
 - Damping rings support 10Hz operation (already in TDR)
 - Strong wigglers, doubled RF system
 - Linac RF system accepts 10Hz
 - Klystron ready (XFEL)
 - Total power nearly the same as 5Hz at 500GeV
 - Gradient is only half of 500GeV
 - The only uncertainty is positron target
- Proposed scenario (ICHEP2016) assumes 10Hz collision

Luminosity Limit at 250GeV

• Simple scaling: L proportional to E_{CM}

$$\mathcal{L} = f_{rep} \frac{n_b N^2}{4\pi \sigma_x^* \sigma_y^*} \times H_D$$

- Geometric emittance proportional to $1/\gamma$
- However, beam angle spread gives a strong constraint at < 250GeV
 - Causes background from synchrotron radiation of large amplitude particles in the final quads
 - Deep collimation necessary
- This effect is already visible at 250GeV
- TDR gives 0.82 x 10³⁴ @250GeV
 - 1.79 x 10³⁴ @500GeV

Baseline Positron Production Scheme

- Undulator method
- Undulator
 - Placed at the end of the electron linac
 - Helical, superconducting
 - Length ~150m (~230m when highly polarized positron is needed)
 - K=0.92, λ =1.15cm, (B=0.86T on the axis)
 - beam aperture 5.85mm (diameter)
- Target: rotating titanium alloy
- Flux Concentrator for positron capture
- Normal-conducting acceleration up to 400MeV
- Polarization ~30% (~60% with photon collimator and longer undulator)

e-Driven Positron Source

- Conventional method (electron-driven source) is also being considered
- Hit ~5 GeV electrons on a target, and collect the generated positrons
- All normal-conducting
- No polarized positron
- 10Hz collision impossible (up to ~6.1Hz)

Operation Below 250GeV

- The positron production scheme using undulator causes a problem at low energies
- For E_{CM}>250GeV, use electron for collision:
 - i.e., $E_e = E_{CM}/2$
- Positron production yield depends on $E_e \rightarrow$
- Poor production rate below E_e=125GeV
- Study being done for shorter pitch, e.g., using Nb₃Sn, but not ready.
 - Z-pole is anyway impossible

5+5Hz Operation

- For E_{CM} < 250GeV,
 - Operate electron linac at 10Hz
 - 5Hz for colliding beam $(E_e = E_{CM}/2)$
 - 5Hz for positron production (E_e = 150 or 125GeV)
 - Already in TDR
 - This is the reason that DRs are ready for 10Hz operation
- Spent electron after positron production must be dumped
- Operation at Z-pole is possible in simple principle but.....

Electron dump line (Okugi, Santander 2016)

5+5Hz Operation Hardware

- Hardware requirements
 - 5Hz switching of accelerating gradient
 - Hardware not seriously studied, but should be OK
 - To turn-off some of the cryomodules is presumably impossible (5Hz detuning for empty cavities needed)
 - Lower gradient operation may cause some beam dynamics issues (discuss later)
 - Damping in 100ms in DRs
 - Strong wigglers already in TDR
 - 5Hz pulsed magnets needed before and after the undulator
 - Dump line and dump (up to 6.3MW) for the spent electron after producing positron

Luminosity vs. E_{CM}

N.Walker

ILC possibilities at Z and W.pdf

Centre of mass energy (GeV)

Figure 1: ILC luminosity parameters versus centre-of-mass energy. Data points are the published
numbers [1], with the exception of the 90 GeV and 160 GeV analytical points. The γ^{3/2} scaling (from
2017/1/23 IAS@HKUSTthe 250 GeV luminosity) is also shown.

Yokoya

Luminosity at Z-pole

- L = $f_{rep} \times N_{bunch} \times N^2 / 4\pi \sigma_x \sigma_y$
- Naive scaling: $\sigma_x \sigma_y$ is proportional to sqrt($\epsilon_x \epsilon_y$) ~ 1/E_{CM} \rightarrow L ~ E_{CM}
- But the larger beam divergence near IP due to the larger emittance at low energies would cause background
- A more conservative scaling is L $\sim E_{CM}^{3/2}$ or E_{CM}^{2}
 - Horizontal angle is already at the limit at E_{CM} =250GeV
 - $L \sim E_{CM}^{3/2}$ if horizontal plane only
 - $L \sim E_{CM}^{2}$ if both planes
- This would results in L=1.5x10³³ or 1x10³³ at Z-pole
- Further reduction of luminosity may be expected because of the beam dynamics (emittance increase) of low gradient operation
 - \rightarrow next pages
- Can still be used for detector calibration

Beam Dynamics : Positron production beam

- 2 different energy beams in electron main linac
- Orbit is tuned for the colliding beam ($E_{CM}/2$)
- The positron production beam (125GeV or 150GeV) will shift vertically due to earth-following curvature)
- The orbit difference is O(1mm) for E_{CM}/2=100GeV,
- but >10mm for E_{CM}/2=45
- Orbit difference itself can be corrected by pulsed magnets at main linac exit

K.Kubo EDMS D*01133735

Beam Dynamics : Colliding Beam (1)

- Main linac
 - Low gradient operation necessary
 - Note: for the case e-driven source, emittance increase problem is not serious because "full gradient plus empty cavity" is possible
 - Emittance increase due to energy spread + misalignment: $\Delta\epsilon$ proportional to $(\sigma_{\rm E}/{\rm E})^2$ proportional to $({\rm E_0}/{\rm E})^2$
 - $\sigma_{\rm E}$ (fixed)
 - (250/45)² ~ 30 or, may be, (125/45)2 ~ 8
 - Emittance increase due to wakefield also proportional to 1/E²
 - Emittance budget in TDR to decide the alignment tolerance is $\Delta\epsilon_{\rm v}$ / $\epsilon_{\rm v}$ = 10nm / 20nm = 0.5
- Undulator
 - Emittance increase due to resistive wakefield proportional to $1/\mbox{E}^2$
 - Radiated photon angle $1/\gamma = 10^{-5}$: intercepted by the downstream undulators Mask radius 2.3mm / length up to 200m ~ 10^{-5}
 - If the colliding beam cannot go through the undulator, a bypass line must be constructed

Emittance growth vs. final energy

Average of 40 random seeds. Error bar: standard deviation.

20161201 K.Kubo, preliminary

Beam Dynamics : Colliding Beam (2)

- BDS
 - Final quads
 - QD0 is split into 2 parts (1m+1m) in TDR
 - Upstream half is turned off for E_{CM} = 250GeV operation (to make effective L* small)
 - However, further shorter magnet (0.5m) would not gain much
 - Anyways, replacement of QD0 is meaningless for calibration purpose
 - Emittance increase in BDS
 - Collimation depth
 - To avoid background, the collimators must cut the beam closer to the beam center
 - Must use the emittance increased in the main linac
- For all these beam dynamics issues, serious studies are needed

Giga-Z

- 5+5Hz scenario is not sufficient for Giga-Z
- N.Walker suggests a scheme below for Giga-Z
 - Split electron linac into 2 parts
 - Prepare an additional electron gun and a long transport line of colliding electron beam
- This would require a big change in the design

Z-pole Operation: Summary

- One of the detector teams (ILD) requires the luminosity for detector calibration 2x10³² 1/cm²/s at Z-pole
- This is presumably feasible by 5+5Hz operation, though serious studies are needed
- Once operation below 250GeV turns out to be necessary, the requirement of Z-pole calibration would not cause additional cost
 - If any operation below 250GeV (including calibration) is not needed, the cost saving is significant
- In any case the luminosity required for Giga-Z seems to be too far, unless strongly desired

Staging

- Strong demand for cost reduction
- Improvement of linac technology is under study
 - Higher gradient: e.g., 31.5MV/m \rightarrow 35MV/m
 - Higher Q values: e.g., $1x10^{10} \rightarrow 2x10^{10}$
 - Nitrogen infusion being developed at FNAL
 - But the cost reduction is at most 10-15%
- Recent trend is to consider staging to reduce the first stage cost
- Starting with $E_{CM} = 250 \text{GeV}$ is a reasonable choice
- The choice whether 500GeV tunnel or just 250GeV tunnel is still under debate

Possible Staging Scenarios of ILC

250GeV Estimate Ver.0 Shin MICHIZONO

Physics Demand: Higher L @250GeV

- 10Hz collision @250GeV is possible only with option F
 - Requires full RF system of 500GeV
 - But this would be somewhat expensive
- With other options, the only way of raising the luminosity is to focus the beam more (in particular, in horizontal plane)
 - i.e., more beamstrahlung (1% \rightarrow 4% is acceptable from physics)
 - L proportional to 1/ σ_x , δ_{bs} to 1/ σ_x^2

$$\mathcal{L} \approx C \frac{P_B}{E} \sqrt{\frac{\delta_{BS}}{\epsilon_{y,n}}} \min\left(1, \sqrt{\sigma_z/\beta_y^*}\right)$$

- However, the horizontal angle effect is the limiting factor
- What about re-designing the damping ring for lower horizontal emittance
 - Present design is very conservative in this respect

Summary

- Baseline luminosity at $E_{CM} = 250 \text{GeV}$ is ~ 0.82 x 10^{34}
- Luminosity can be doubled by doubling the number of bunches (1312→2625)
- Another factor of 2 is possible by 10Hz collision, If 500GeV machine is built
- Recently staging (starting at 250GeV) is demanded to reduce the first stage cost
 - 10Hz collision is presumably difficult
 - The only way to increase the luminosity at 250GeV is to lower the horizontal emittance
- Luminosity at Z-pole is somewhat low, though sufficient for detector calibration
- Giga-Z is not realistic unless strongly desired